
Towards Correcting Input Data Errors Probabilistically
Using Integrity Constraints

Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu
Department of Computer Science and Engineering

University of Washington
Seattle, WA

{nodira,magda,suciu}@cs.washington.edu

ABSTRACT
Mobile and pervasive applications frequently rely on devices such
as RFID antennas or sensors (light, temperature, motion) to provide
them information about the physical world. These devices, how-
ever, are unreliable. They produce streams of information where
portions of data may be missing, duplicated, or erroneous. Current
state of the art is to correct errors locally (e.g., range constraints
for temperature readings) or use spatial/temporal correlations (e.g.,
smoothing temperature readings). However, errors are often appar-
ent only in a global setting, e.g., missed readings of objects that are
known to be present, or exit readings from a parking garage without
matching entry readings.

In this paper, we present StreamClean, a system for correcting
input data errors automatically using application defined global in-
tegrity constraints. Because it is frequently impossible to make cor-
rections with certainty, we propose a probabilistic approach, where
the system assigns to each input tuple the probability that it is cor-
rect.

We show that StreamClean handles a large class of input data er-
rors, and corrects them sufficiently fast to keep-up with input rates
of many mobile and pervasive applications. We also show that the
probabilities assigned by StreamClean correspond to a user’s intu-
itive notion of correctness.

Categories and Subject Descriptors: H.2.4 [Database Manage-
ment]: Systems query processing

General Terms: Algorithms, Design, Languages

Keywords: Stream processing, probabilistic databases, data clean-
ing, entropy maximization

1. INTRODUCTION
Many mobile and pervasive applications provide useful services

to users by continuously collecting and processing information
from the physical world. For example, an application may use Ra-
dio Frequency Identification (RFID) information from geograph-
ically distributed antennas to enable users to track their tagged
equipment or manage their tagged inventory [18, 22, 29]. Another
application may track cars that enter, exit, and park in a garage in
order to monitor overall utilization [23], or possibly inform drivers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE’06, June 25, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-436-7/06/0006 ...$5.00.

Figure 1: Example of input errors in an RFID-based equipment
tracking application.

of currently available parking spots.
Mobile services that need to continuously process information

“streaming in” from data sources can efficiently be implemented
on top of what are called stream processing engines (SPEs) [2,
12], (a.k.a., data-stream management systems [1, 26], or contin-
uous query processors [10]).

The challenge in building such services is that, in real deploy-
ments, failures are likely to occur: SPE nodes can crash, commu-
nication between SPE nodes can be interrupted, data sources can
crash, become disconnected, or they can produce incorrect input
data. Although the service quality depends on the overall sys-
tem reliability, the data sources are often the most brittle compo-
nents [22]. As illustrated in Figure 1, in an RFID-based equipment-
tracking application, an antenna can easily fail to detect a tag caus-
ing an input tuple to be missing, or two antennas can detect the
same tag, resulting in erroneous duplicate inputs. As a result, even
an otherwise fault-tolerant equipment-tracking application can mis-
inform users about the location of their items.

In this paper, we propose StreamClean, a system for enhancing a
stream-processing engine with the capability of detecting and han-
dling input data errors. Previous work on SPE reliability focused
on crash-failures of processing nodes and network failures [4, 21,
27], ignoring data source failures. Some SPEs manage the qual-
ity of input data by correcting input streams with per-input fil-
ters [22] or leveraging spatial and temporal correlations to smooth
the data [16]. Other errors require that the user specify the algo-
rithm necessary to clean the data [22]. In contrast to previous pro-
posals, StreamClean handles various types of local and global er-
rors without requiring users to indicate the data cleaning algorithm.
Instead, users specify a set of global application-specific integrity
constraints over the input data. A constraint can, for example, spec-
ify that “at any time t, each car that entered the garage at time te < t
must either be parked or must have exited the garage at some time

tx ∈ [te, t]”. StreamClean verifies such constraints at runtime. Con-
straint violations indicate errors.

To recover from input errors, StreamClean uses a probabilistic
approach. It “cleans” the input data by inserting missing tuples
when necessary and, for groups of conflicting tuples, assigning to
each one the probability that it is correct. To compute these proba-
bilities, StreamClean uses a non-linear optimization method, where
the objective is to find a probability assignment that is the most uni-
form possible (i.e., that maximizes entropy) while satisfying all in-
tegrity constraints. Other approaches are possible, but beyond our
scope here.

In this paper, we show preliminary results demonstrating the fea-
sibility of the approach. We show that StreamClean handles a large
class of input data errors. We also show that using application-
defined integrity constraints to detect errors and using entropy max-
imization to assign probabilities to tuples yields useful and intu-
itive probabilistic results. Finally, we demonstrate the feasibility of
resolving constraint violations using non-linear programming by
showing that large systems of equations can be quickly solved. Us-
ing a publicly available program [8] for Matlab [25], we find that
the median time to solve a system with 100 equations and up to
20 variables per equation is below 175 msec. The overall time
increases linearly with the size of the system but the pace of the
increase is slow: a factor of 4 increase in system size yields only a
factor 2.4 increase in processing time.

2. RELATED WORK
The most closely related project to ours is the Extensible Sen-

sor stream Processing (ESP) framework [22], part of the HiFi
project [18]. ESP allows a user to specify, in the form of declar-
ative queries, the sequence of algorithms that the system should
use to clean the data. This approach works well in many scenarios
where the user can predict the types of errors that will occur and
the appropriate algorithms to correct them. In StreamClean, we in-
vestigate a different approach, where the user only states the prop-
erties that should be true about the data. Additionally, because it
is frequently impossible to make corrections with certainty, instead
of attempting to completely clean the data, we propose a proba-
bilistic approach. EPS proposes a five-stage data cleaning pipeline.
Within this taxonomy, StreamClean fits well at the advanced clean-
ing stages called “Arbitrate” and “Virtualize”, leveraging simple
low-level cleaning mechanisms that average measurements within
a short time-window and across a group of sensors covering the
same area.

Deshpande et al., [16] propose to handle input errors by building
a probabilistic model of the spatial and temporal correlations be-
tween values produced by different sensors. The model then serves
to predict missing values and identify outliers. The main chal-
lenge of the approach lies in selecting, building, and maintaining
an appropriate model. StreamClean explores an alternate approach
where a user directly specifies the input-data properties relevant to
a given deployment and application.

Bertossi and Chomicki [6] describe a framework in which
queries can be answered over inconsistent databases: the database
violates some integrity constraints, but the user still wants to eval-
uate queries over the database. Bertossi and Chomicki define a
tuple to be a certain answer to a query if it appears as an answer to
the query on all possible minimal “repairs” of the database. Later,
Andritsos et al., [3] extend this approach to a probabilistic frame-
work, in which the repairing tuples are associated some probabili-
ties, thus reducing the problem to query evaluation on a probabilis-
tic database as studied in [13, 14]. Our approach follows this line
of research, in that the input streams can be viewed as a database

violating the constraints given by the users. We consider, how-
ever, constraints that are much more complex than [3] (which only
consider key constraints), as we have found them to be needed in
stream-processing applications.

Probabilistic databases have a long history and have mostly fo-
cused on the data model and query evaluation approaches. Cavallo
and Pittarelli [9] describe a model in which all tuples in the same
table are disjoint (exclusive); Barbara et al., [5] consider indepen-
dent/disjoint tuples, but restrict the queries; Fuhr [19] describes
a “complete” data model and gives an exponential space evalua-
tion algorithm; Lakshmanan describes a model in which probabil-
ities are approximated by intervals; Dalvi [14], and later in [13],
shows that select-project-join queries are either efficiently com-
putable (and give an explicit algorithm to compute them) or are
#P-hard. Widom describes a probabilistic system called Trio [30]
where probabilities and data lineage become first class citizens; the
design space for probabilistic data models for Trio is described
in [15]. This line of work is complementary to ours. We do not
consider query evaluation in this paper, and the probabilistic data
model that we describe here is unique, and quite specific to our
application: the probabilistic data is the result of constraints being
violated.

3. APPROACH OVERVIEW
In this section, we present a motivating scenario and the high-

level overview of StreamClean.

3.1 Motivation and Goals
Imagine an RFID-based book tracking system deployed in a li-

brary [22]. Such a deployment is similar to that shown in Figure 1,
except that RFID tags are attached to books and antennas are de-
ployed on shelves and near tables. Every time a tag is in the vicinity
of an antenna, the antenna detects the tag and produces an event. If
a tag remains near an antenna, the antenna produces periodic events
indicating the presence of the tag. With this deployment, librarians
can see the location of each book at any time. The challenge is
that RFID antennas are not reliable [17, 22]: they can fail to read
a nearby tag or detect a tag that is relatively far away and also de-
tected by another antenna.1 Antenna errors can cause users to re-
ceive erroneous information. If an antenna fails to detect a nearby
book, and the book is misshelved, a librarian will not be notified
about the problem. If multiple antennas detect the same book, a li-
brarian may simultaneously receive information that the book is on
the correct shelf and an alert that the book is misshelved. Such er-
roneous information can be at best annoying to users, and at worst
discourage them from using the system.

Ideally, we would like the system to correct all input data er-
rors. However, it is often not possible to correct data source errors
with certainty. For instance, if two antennas detect the same book,
it is not always clear which antenna is correct. We thus propose
to correct input data probabilistically. When errors occur on input
streams, we would like the results sent to applications to be anno-
tated with the probability that they are correct. The system could,
for example, indicate that there is a 20% chance the book is on the
correct shelf, a 75% chance it is misshelved, and a 5% chance that
it is lying on one of the tables. With this approach, an application
can take into consideration the probabilities when processing the

1To provide at least some form of fault-tolerance, the process
polling antennas usually polls them multiple times in a short time-
period and produces one input tuple for each distinct tag detected
within that period. Even with this setup, antennas sometimes fail
to detect tags or multiple antennas detect the same tag.

Figure 2: An SPE, showing a query diagram.

data. Whether it exposes these probabilities to the user depends on
the application.

Such a system requires four pieces of functionality:
1. A mechanism to detect input data errors.
2. An algorithm to correct input data by assigning probabilities

reflecting some intuitive notion of correctness.
3. Added capability in stream processing engines to process

probabilistic data.
4. Modification of applications to handle probabilistic results.

For example, a GUI could display books in different shades
depending on their probability of being at each of the shown
locations.

In this paper, we propose, StreamClean, a system for (1) detect-
ing and (2) correcting input data errors. We do not address (3) the
problem of extending a stream processing engine with the capabil-
ity of handling probabilistic data, nor (4) how to modify applica-
tions to handle probabilistic data. For (3), one approach would be
to adapt techniques from probabilistic databases [11, 13, 14]. We
show one example of how this would work in Section 6.1, but we
leave the details of the complete adaptation for future work.

As has been widely noted, input data errors are not specific to
RFID settings. They affect most sensor-based applications [22].
Although we use the library scenario throughout this paper, the ap-
proach that we propose is applicable to any application that collects
and uses information from RFID antennas or other sensors, with
the limitation that StreamClean currently handles only discrete do-
mains.

3.2 Processing Model and Approach
In this section, we present the processing and error models, we

show how StreamClean fits into the overall architecture of an SPE,
and outline its main components.

In a stream processing application, geographically distributed
data sources (e.g., RFID antennas) produce continuous streams of
information. The SPE processes these streams (filters, correlates,
and aggregates them) by pushing them through a dataflow of opera-
tors, called a query diagram [2]. Since streams are unbounded, and
users need timely information about the monitored system, opera-
tors typically perform their computations over windows of data that
slide with time [1, 10, 26]. Figure 2 shows an example of a query
diagram. In this example, each antenna reports every five seconds,
the set of books it has detected in the past five-second interval;
producing one input tuple per sighted book. The Read operator
performs a lookup in a back-end database to associate information
about the proper location of each sighted book. The Filter opera-
tor filters misshelved books. The Count distinct operators coupled
with the Join operator compute the fraction of distinct misshelved
books over all distinct sightings in the past five-second period.

As illustrated in Figure 3, we propose to insert StreamClean be-
tween the data sources and the operators running at the SPE. This
enables StreamClean to detect and correct errors before any ad-

Figure 3: An SPE extended with StreamClean.

ditional processing occurs. In this paper, we assume that all input
streams go to a central location running a single instance of Stream-
Clean. Distribution issues are outside the scope of this paper.

We assume that three types of errors can occur on input streams:
(1) input tuples may be missing, (2) erroneous input tuples may be
inserted, or (3) input tuples may have erroneous values in some of
their attributes (e.g., a wrong temperature reading). Because these
errors can be caused by software bugs, crashes, or environmental
conditions, they can affect either all the tuples on a stream, a burst
of tuples, or individual input tuples.

StreamClean uses application-defined constraints to detect and
recover from input data errors. Integrity constraints can be defined
over both stored relations and input streams. We discuss Stream-
Clean’s constraint language and the types of constraints it supports
in Section 4.

In order to keep up with high input rates, we propose that the sys-
tem accumulates input tuples for a short application-specific time-
period, d (e.g., a few seconds), without processing them. At the
end of each time-period, the SPE verifies and corrects the new in-
put before pushing it to the SPE.

StreamClean can keep additional history (older than the window
d) for the purpose of constraint checking. However, because data
streams are continuously processed by operators, StreamClean, as-
signs probabilities and otherwise corrects only new data. Stream-
Clean does not recompute probabilities assigned to earlier tuples
because these tuples have already been processed (or are being pro-
cessed).

To correct input data, one approach would be to simply drop er-
roneous inputs and replace them with subsequent readings. The
problem with this approach is that some events occur only once
(e.g., a book that is checked-out, a person passing-by an antenna)
and some failures cause long sequences of erroneous inputs (e.g.,
an antenna may systematically detect a book on a nearby shelf).
Instead, to correct input data errors, StreamClean uses a technique
based on non-linear programming. The idea is to transform in-
tegrity constraints over the data into constraints over the proba-
bilities that individual tuples are correct. Among the probability
assignments that satisfy a set of constraints, StreamClean seeks the
one that provides the most uniform probability distribution. We fur-
ther discuss how StreamClean corrects input streams in Section 5.

We evaluate StreamClean in Section 6, and discuss challenges
and future work in Section 7.

4. INTEGRITY CONSTRAINTS
We propose a simple yet powerful constraint language that en-

ables a user to express different types of integrity constraints over
input data streams. The constraint language has a single construct:

FORALL INPUT1 AS I1, INPUT2 AS I2, ..., INPUTn AS In
WHERE EXPR1
CHECK EXPR2
CONFIDENCE c

The CHECK clause is mandatory, whereas the FORALL, WHERE,
and CONFIDENCE clauses are optional. The arguments of the
FORALL clause have the same syntax as a SQL FOR clause, EXPR1
is some arbitrary SQL condition, and c is a number between 0 and
1 which defaults to 1. The condition in the CHECK clause is of
the form COUNT(Q) oprel k, where oprel is <, >, <=,
>= and Q is a select-from-where SQL query. We only consider the
COUNT aggregate function in this paper, and plan to explore other
functions in future work. However, even with only the COUNT ag-
gregate, a large class of constraints can be represented as shown
below.

Because different types of constraints must be resolved differ-
ently, we classify constraints along three axes: (1) the type of de-
pendency they express between tuples (inclusion or exclusion), (2)
whether they affect tuples that occur approximately at the same
point in time or at different points in time (stateful or stateless),
and finally (3) whether they are hard constraints or soft constraints.
Hard constraints must always be true while soft constraints are true
only “most of the time”. For each type of constraint, we show how
a user can express it using the above construct.

4.1 Exclusion and Inclusion Constraints
StreamClean distinguishes and handles two basic types of depen-

dency between tuples. Some tuples exclude each other: they cannot
all be true in the same instance of the world. For example, a book
cannot appear on a shelf and on a table at the same time. Other
tuples, in contrast, include each other: if some tuples are true, then
other tuples must also be true. For example, if a book is returned
to the library, it must have been previously checked-out. Exclusion
constraints typically come into play when errors cause input data
to be either duplicated or contain erroneous values. Inclusion con-
straints in contrast come into play when errors cause input data to
be missing or contain erroneous values.

4.1.1 Exclusion Constraints
For this type of constraint, the user must simply indicate that the

presence of a tuple or a group of tuples (defined with the FORALL
... WHERE clause) limits the presence of other tuples (defined
with the CHECK clause). To indicate an exclusion, the condition in
the CHECK clause takes the form COUNT(Q) oprel k, where
oprel is < or <= and Q is a select-from-where SQL query.

Example 1. In our language, the exclusion constraint: “A book
can appear in at most one location at any point in time” is expressed
as follows.

FORALL SIGHTINGS S
WHERE S.t = now()
CHECK COUNT(SELECT * FROM SIGHTINGS T

WHERE T.t = S.t AND T.bid = S.bid) <= 1

We assume the system provides a user-defined function now()
that returns the identifier of the current time-period, and that each
antenna, sid, produces a tuple every time-period, t, for each book,
bid, it detected in that time-period.

Example 2. The exclusion constraint: “There are at most 10
books on a shelf” is expressed as:

FORALL SHELVES S
CHECK COUNT(SELECT * FROM SIGHTINGS T

WHERE S.sid = T.sid AND T.t = now()) <= 10

4.1.2 Inclusion Constraints
For this type of constraint, the user must simply indicate that the

presence of a tuple or a group of tuples (defined with the FORALL
... WHERE clause) implies the presence of other tuples (defined
with the CHECK clause). To indicate an inclusion, the condition in

the CHECK clause takes the form COUNT(Q) oprel k, where
oprel is > or >=.

Example 3. Consider the constraint: “Each book that is in the
catalog must appear in at least one location at any time.” This con-
straint is expressed as:

FORALL BOOKS B
CHECK COUNT(SELECT * FROM SIGHTINGS S

WHERE S.bid = B.bid and S.t = now()) >= 1

4.2 Stateless and Stateful Constraints
A dependency can affect tuples that occur approximately at the

same point in time (within the same window d) or can affect tuples
that occur at different points in time. We say that a constraint is
stateless if it applies to tuples in the most recent window d inde-
pendently of what happened in the past. Otherwise, we classify the
constraint as stateful. The above constraints were all stateless. We
now show two examples of stateful constraints.

Example 4. Stateful exclusion constraint: “A checked-out book
cannot appear in the library.” (For simplicity, we assume that there
is no more than one check-out and return for each book in Stream-
Clean’s history).

FORALL CHECKOUTS C
CHECK COUNT(SELECT * FROM SIGHTINGS S

WHERE S.bid=C.bid and S.t=now()) <= 0

Example 5. Stateful inclusion constraint: “A returned book must
have previously been checked-out.”

FORALL RETURNS R
WHERE R.t = now()
CHECK COUNT(SELECT * FROM CHECKOUTS C

WHERE C.bid=R.bid and C.t<R.t) >= 1

4.3 Hard or Soft Constraints
The CONFIDENCE clause allows the user to indicate the likeli-

hood that a constraint holds. When omitted, the confidence defaults
to 1, indicating that the constraint is hard. For any value below 1,
the constraint is said to be soft, as it holds only some of the time.

Example 6.The soft constraint: “Every book seen at time t on a
shelve is likely to be on the same shelve at time t +1.” is expressed
as:

FORALL SIGHTINGS S
WHERE S.t = now() - 1
CHECK COUNT(SELECT * FROM SIGHTINGS T

WHERE S.bid=T.bid and T.t = now()) >= 1
CONFIDENCE 0.3

If a book is not detected at time t then the constraint in Example
3 will place the book equally likely on any shelve in the library.
This new constraint will place the book with a higher probability
on the same shelf as it was at time t −1.

5. RESOLVING VIOLATIONS
In this section, we present the constraint resolution algorithms.

For each time-window d, StreamClean first checks all integrity con-
straints against the available data (window, d, of new tuples, win-
dow of old tuples, and stored relations). For each constraint viola-
tion, StreamClean inserts or deletes new input tuples as necessary,
and translates the constraint into an equation over tuple probabili-
ties (Section 5.1). StreamClean then solves the system of equations
to assign probabilities to the new input tuples (Section 5.2).

Input: A set of arriving tuples T for window [t1, t2],
a set of user-defined integrity constraints I
Output: A set CME of equations to represent the constraints
1. Let CME = [] //constraint equations for this window

//Translate inclusion constraint violations
2. while ∃ violated C ∈ I with a > or ≥ in the check clause
3. if C does not contain FORALL clause
4. Let y1,y2, ...,yn = fixup_tuples(C,null)
5. Add y1,y2, ...,yn to T
6. Add following constraint to CME :
7. i. ∑

n
i=1 pyi ≥ expected_count(C)

8. else //C does have FORALL clause
9. Let x1,x2, ...,xn = violating_tuples(C)
10. for each xi
11. Let y1,y2, ...,ym = fixup_tuples(C,xi)
12. Add y1,y2, ...,ym to T
13. Add following constraints to CME
14. i. ∑

m
j=1 py j ≥ expected_count(C)

15. ii. pxi −∑
m
j=1 py j = 0

//Translate exclusion constraint violations
16. while ∃ violated C ∈ I with a < or ≤ in the check clause
17. Let G = violating_groups(C)
18. for each group g = {x1, ...,xn} ∈ G
19. Add following constraint to C:
20. 1. ∑

n
i=1 pxi ≤ expected_count(C)

//Remove tuples which are not in current window from CME
21. for each equation E in CME
22. for each tuple x involved in E s.t. x.t < t1
23. Remove x from the left-hand side of E and from T
24. Subtract px from the right-hand side of E

Figure 4: Algorithm for translating constraint violations into
equations.

5.1 Translating Constraints into Equations
We give the overall algorithm for translating the integrity con-

straints into equations in Figure 4. The algorithm presented is for
hard constraints only. We present the procedure for handling soft
constraints at the end of this section.

The procedure begins by processing inclusion constraints (Fig-
ure 4: line 2). Two sets of tuples are involved in these constraints,
the premise tuples and the conclusion tuples2. The premise tuples
are those provided by the FORALL clause, i.e., tuples that appear
in the input streams. The second set are the conclusion tuples, i.e.,
tuples which should have been present in the input stream. If the
constraint is broken, less than the specified number of conclusion
tuples have appeared in the stream. In this case, the algorithm gen-
erates and inserts the fix-up tuples, the set of all possible conclusion
tuples that are not present in the stream (line 5, 12). To simplify the
discussion, when an inclusion constraint is violated, we assume that
no conclusion tuples are present.

The algorithm also adds to the set of equations, CME , the restric-
tion that the sum of the probabilities of the fix-up tuples must be
greater than (or equal to) the expected_count of conclusion
tuples (line 7, 14) (In reality, this is the expected_count mi-
nus the number of conclusion tuples already present in the stream).
This is done for constraints with or without a FORALL clause.

If the constraint has a FORALL clause, another equation (line
15) is included to allow the probability of the premise tuple to be
adjusted instead of only that of the fix-up tuples. It is particularly

2We borrow these terms from logic terminology where they are
used to describe the two sides of an implication.

useful when the premise tuple occurs in the current time window,
and the fix-up tuples should have occurred in the past. We do not
adjust the probabilities of old tuples, so the only option is to remove
the premise tuple.

We now explain the generation of fix-up tuples (line 4, 11). Con-
sider an inclusion constraint of the form:

FORALL INPUT1 AS I1, INPUT2 AS I2, ..., INPUTn AS In
WHERE EXPR1
CHECK COUNT(SELECT * FROM Reln_Name R

WHERE EXPR2) >= k

If there is no FORALL clause, the system generates all possi-
ble tuples that can be constructed from the active domain of ta-
ble R. It then selects only those tuples that satisfy EXPR2. Note
that the number of fix-up tuples is typically much larger than the
expected_count: e.g., in Example 3 the system will gener-
ate one fix-up tuple for every possible location of the missing
books. The system then adds the constraint that the expected
number of fix-up tuples (i.e., the sum of their probabilities) is ≥
expected_count.

If there is a FORALL clause, we first select the premise tuples
that break the constraint. This is done by taking a left outer join be-
tween the premise tuples and R and then selecting the tuples where
the attributes of R are all null. (i.e., all premise tuples that do not
join.) Second, for each violating premise tuple, we generate the fix-
up tuples, by generating all possible tuples over R, and filtering on
EXPR2. This is the same as before, except this time EXPR2 may
depend on the premise tuple’s attributes.

Next, the algorithm handles exclusion constraints. It first identi-
fies the groups of tuples that violate an exclusion constraint together
(line 17). Then for each group, it adds an equation to CME stating
that the tuples’ probabilities must sum to less than (or equal to) the
specified count (line 20). The challenging part is identifying the
conflicting groups.

To identify the conflicting groups of tuples we take a join be-
tween the outer FORALL clause relations, and the inner CHECK
clause relation. For example, given an exclusion constraint of the
same form as the inclusion constraint above except with a ≤ oper-
ator, we execute the following join:

SELECT *
FROM (SELECT * FROM INPUT1 AS I1, ..., INPUTn AS In

WHERE EXPR1) as S INNER JOIN Reln_Name as R
ON EXPR2

Any pair of tuples, across S and R, that join in this view par-
ticipate in the same conflicting group. If we think of each tuple
as a vertex in a graph, with edges between two tuples if they join,
each strongly connected component of this graph corresponds to a
conflicting group.

Soft constraints are handled similarly to hard constraints, except
that the expected_count threshold in the equations is adjusted
by the confidence factor. For inclusion (exclusion) constraints, the
expected_count is multiplied (divided) by the confidence fac-
tor. The confidence factor effectively increases the search space
and thus softens the constraint.

The final step of the translation (lines 21-24) caters for stateful
constraints, by handling old tuples and their probabilities. Since the
probabilities for these tuples have already been fixed, we must en-
sure that they are not re-adjusted. Therefore, the algorithm removes
these tuples from the equations, and adjusts the equations accord-
ingly. Similarly, tuples from stored relations are also removed from
these equations.

Input: A set CME of equations over probabilities of tuples T
Output: A set of tuples T ′ with associated probabilities
Let x1, ...,xn be the tuples in T , all initialized to probability 1.0

Maximize −∑
n
i=1(pxi · log pxi)

subject to CME

for each tuple xi in T
Add xi with its associated probability pxi to T ′.

Figure 5: Assigning probabilities to tuples using entropy maxi-
mization.

5.2 Assigning Probabilities to Tuples
The generated system of equations bounds the probabilities that

StreamClean can assign to input tuples. The next step is to actually
compute and assign these probabilities.

In most cases, multiple probability assignments are possible. For
example, if two tuples exclude each other, StreamClean could as-
sign a probability of 1.0 to one of them and 0.0 to the other one,
or even assign a 0.0 probability to both tuples. A more intuitive
solution, however, would be to assign a probability of 0.5 to each
tuple. This intuition is captured by the maximum-entropy princi-
ple [20], which favors a solution that meets all explicitly imposed
constraints, but is otherwise as uniform as possible. Mathemat-
ically, maximizing the entropy of tuple probabilities, px, trans-
lates into maximizing the entropy function [28], E, defined as
E(px) = −∑

n
i=1(pxi · log pxi) subject to the imposed constraints.

By using entropy maximization (EM), we also make the explicit
assumption that in the absence of stated constraints the probabili-
ties of different input tuples are independent of each other. Figure 5
summarizes the approach.

EM is a well-known technique, and it has been successfully ap-
plied in many domains. For example, Markl et al., use EM to es-
timate the selectivity of conjunctive predicates [24]. Several al-
gorithms exist to perform this type of optimization numerically.
StreamClean performs the computation using a publicly available
program [8] for Matlab [25].

Once the probabilities have been computed, StreamClean sends
the tuples and their assigned probabilities to the SPE and moves on
to correcting the next window of input tuples.

6. EVALUATION
We study the feasibility of using entropy maximization to re-

solve integrity constraint violations. We evaluate the feasibility
from two orthogonal perspectives, through a qualitative evaluation
and a quantitative evaluation.

6.1 Qualitative Evaluation
For StreamClean to be useful, the probabilities it assigns to input

tuples must correspond to what a user might expect. We evaluate
whether the approach results in such intuitively correct assignments
by presenting an end-to-end example. We first examine the proba-
bilities assigned to input tuples through entropy maximization. We
then examine the resulting probabilities of the output tuples of a
query.

6.1.1 Input Probabilities
Consider the library scenario but with only three book shelves

S1, S2 and S3, no tables, and with one antenna per shelf. For each
time-period, t, each antenna produces an input tuple for each book,

b, that it detected within that time-period. Each input tuple takes
the form (t,Si,b).

We first consider two constraints: (1) a shelf contains no more
than ten books at any given time (exclusion constraint from Sec-
tion 4.1.1 Example 2); (2) each book that is in the catalog must ap-
pear in at least one location at any time (inclusion constraint from
Section 4.1.2 Example 3). Suppose that we are at time t = 5 and
we do not have a reading for a book with book ID b34. Because
the missing book can be on anyone of the three shelves, we expect
StreamClean to assign a probability of 1

3 to each of these possible
sightings.

Now suppose that S2 and S3 appear full according to the antennas
that monitor them. S1’s antenna reads only three books, b1,b2,b3
(misses b34), whereas S2’s antenna reads ten books, b4,b5, ...,b13
(b4-b6 are in reality checked-out) and S3’s antenna’s reads twenty
books b14,b15, ...,b33 (b14-b18,b29-b33 are actually on a nearby
cart). With these readings, we expect the probability that b34 is
on the empty shelf to be higher than the probability it is on S2 or
S3, especially shelf S3 that reports more books than its capacity.

Suppose a third stateful constraint specifies that checked-out
books cannot appear in the library (Example 4, Section 4.2), and
that books b4, b5 and b6 were checked-out at time 2. Since the an-
tenna on shelf S2 reads the tags for the checked-out books, it may
actually not be full after all. With this additional constraint, we
would expect the probability that S2 holds book b34 to increase.

Finally, suppose we also include the constraint (Example 1 Sec-
tion 4.1.1): each object must be in at most one location at any time.

The translation from constraints to equations (Section 5.1) re-
turns the following entropy maximization problem. pt,s,b is the
probability that tuple (t,s,b) is correct.

Maximize −∑
3
j=1(∑

24
k=1 p5,S j ,bk · log p5,S j ,bk)

subject to ∑
3
i=1 p5,S1 ,bi + p5,S1 ,b34)≤10 //constraint 1

∑
13
i=4 p5,S2 ,bi + p5,S2 ,b34)≤10 //constraint 1

∑
33
i=14 p5,S3 ,bi + p5,S3 ,b34)≤10 //constraint 1

p5,S1 ,b34 +p5,S2 ,b34 +p5,S3 ,b34≥1 //constraint 2
p5,S2 ,b4 ≤ 0 //constraint 3
p5,S2 ,b5 ≤ 0 //constraint 3
p5,S2 ,b6 ≤ 0 //constraint 3
p5,S1 ,b34 +p5,S2 ,b34 +p5,S3 ,b34≤1 //constraint 4

The program assigns the following probabilities.

p5,S1 ,b34 = p5,S2 ,b34 = 0.4016
p5,S3 ,b34 = 0.1968
p5,S1 ,b1 = p5,S1 ,b2 = p5,S1 ,b3 = 1.0
p5,S2 ,b4 = p5,S2 ,b5 = p5,S2 ,b6 = 0.0
p5,S2 ,b7 = p5,S2 ,b8 = ... = p5,S2 ,b13 = 1.0
p5,S3 ,b14 = p5,S3 ,b15 = ... = p5,S3 ,b33 = 0.4901

As we can see, the results match our expectations. The probability
that the book is on shelf S3 is quite low as S3 is already reading too
many book tags. Since S1 is not full, there is a high probability that
the book is there. Interestingly, the probability that the book is on
S2 is also high. Although the antenna gave us the impression that
the bookshelf was full, StreamClean decided that books b4, b5 and
b6 are checked-out, and hence are less likely to be on the shelf.

6.1.2 Query evaluation
We now examine how the probabilities assigned to input tuples

propagate to the results of the query shown in Figure 2. We assume
that books b1,b2,b3,b34 should be shelved on S1, b4, ...,b13 on S2,
and b14, ...,b23 on S3. We assume that query operators implement
the approach proposed by Dalvi and Suciu [14].

The filter operator does not modify tuple probabilities. The mis-
shelved books that pass the filter have the same probabilities as
the input tuples. The count operators simply compute the expected
values of their results. Assuming the tuple probabilities from Sec-
tion 6.1, the count of distinct book sightings is 20.802 books. The
count of misshelved books is 5.4994. Hence for the current time-
period, this query returns the result (5,0.26437) where t = 5 is the
current time and 0.26437 is the fraction of misshelved books. In
reality, 5 out of 20 (i.e., 0.25) books are misshleved. Antennas re-
ported 10 out of 33 (i.e., 0.303) books, but StreamClean helped
bring this value closer to the actual one.

6.2 Quantitative Evaluation
StreamClean must perform a non-linear optimization for every

window of tuples it corrects. We believe that this, the entropy
maximization, will be the bottleneck of our approach. The other
process-intensive operation is the identification of violating tuples
and groups. This latter operation, however, boils down to execut-
ing database queries where most of the data is in the window of
new tuples, which can easily be kept in memory. Hence, in this
section, we evaluate if entropy maximization is sufficiently fast to
keep up with the data input rate of a mobile or pervasive applica-
tion. We present the results of micro-benchmarking an off-the-shelf
Matlab implementation [8] of the entropy maximization algorithm
by Blien and Grael [7]. Our main goal is to determine if entropy
maximization is a feasible approach to pursue.

We evaluate two kinds of systems. The first kind, which we
call lightly violating, are systems of equations where the number
of equations (constraint violations) is less than or equal to the num-
ber of variables (tuples). The second kind, called heavily violating,
are those where the number of equations is greater than or equal to
the number of variables.

In a typical scenario, we expect StreamClean to accumulate and
correct input tuples in windows that span a few seconds, as for
many pervasive or mobile applications such a delay is tolerable.
Each optimization must therefore complete within that time-frame.

We can easily expect a deployment where large numbers of con-
straints are violated within each time-window, and each constraint
involves up to a few tens of tuples. However, as the number of vi-
olated constraints increases, it becomes likely that constraints can
be partitioned into smaller independent groups. We thus run exper-
iments with 100 equations. For each equation, we vary the num-
ber of variables per equation (i.e., conflicting tuples) from 1 to 20.
By doing so, we increase the size of the system of equations. For
each configuration, we experiment with a different total number of
variables. When the number of variables increases, each variable
participates in a smaller number of equations and the solution space
increases. We run all experiments on a machine with a dual 2.4GHz
Xeon processor with 2GB of memory.

Because our goal is to determine the speed at which the equations
can be solved, to simplify our experiments, we test the feasibility of
entropy maximization only on exclusion constraint violations. To
generate a test configuration, we assign variables to equations ran-
domly, ensuring that a variable is not placed into the same equation
twice, and that the resulting system of equations is fully connected.

Figure 6 presents the results. Each point is the median value
across 50 runs of each experiment. The figure shows that the run-
ning times are reasonably fast even for large systems of equations.
For example, with 20 variables per equation, 100 equations, and
2000 variables, the system is represented by a 2000 by 100 matrix
of integers, yet the assignment of probabilities to tuples takes less
than 175 ms.

The figures also show that, as soon as each equation contains at

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10 12 14 16 18 20

Ru
nn

in
g

tim
e

in
 s

ec
on

ds

k: number of variables per equation

var=100
var=200

var=(100+100k)/2
var=100k

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10 12 14 16 18 20

Ru
nn

in
g

tim
e

in
 s

ec
on

ds

k: number of variables per equation

var=k
var=100

var=(k+100)/2

Figure 6: Time to solve a system of 100 equations with differ-
ent numbers of variables per equation in a (a) lightly and (b)
heavily violating system.

least a couple of variables (approximately 4 or 5) the time to solve
the system of equations starts to increase linearly with the size of
the system. The increase, however, is slow (low gradient). For
a factor 4 increase in system size (from 100 equations with 5 vari-
ables per equation to 100 equations with 20 variables per equation),
the time to solve the system of equations increases only by a factor
of 2.4. Increasing the number of equations instead of the number
of variables yields a similar linear increase. We do not show these
results due to space constraints.

Interestingly, when the system is either so lightly violating that a
large number of solutions exist or the system is so heavily violating
that only few solutions exist, the system of equations is solved in a
small and constant time.3

From these preliminary results, entropy maximization thus ap-
pears to be a feasible approach, since even relatively large systems
of equations are solved within a fraction of a second, and the time
to solve equations increases slowly with the size of the system.

7. CONCLUSION
Devices, such as RFID antennas, light, motion, and temperature

sensors are known to be unreliable. A fraction of data they report
is erroneous, duplicated or missing. However, many mobile and
pervasive applications rely on the data produced by such devices.
To improve the quality-of-service of these applications, the input
data must thus be cleaned before it can be processed.

We presented, StreamClean, a system for correcting input data
errors probabilistically using user-defined integrity constraints.
Our contributions include a simple declarative language for defin-
ing integrity constraints over multiple streams, the application of
the concept of maximum entropy to the problem, and a preliminary
feasibility study.

Our approach has several benefits. First, using a declarative con-

3A solution always exists as equations are inequalities with ≤
signs, and an assignment of all zero’s is always feasible.

straint language simplifies the task of the user who only needs to
express properties of the input data and not the algorithm necessary
to clean it. Second, the language enables the expression of a wide
range of constraints: local, global, static constraints, and even dy-
namic constraints, which define valid sequences of events created
by moving objects (e.g., a book that is checked-out then returned, a
car that enters then exits a parking garage).

The work introduced in this paper also presents many challenges
that we are currently addressing. One challenge is to integrate
StreamClean with an existing stream processing engine such as Bo-
realis [2] and experiment with a real RFID or sensor-based deploy-
ment, and real input rates. Such integration requires the modifica-
tion of the SPE to handle probabilistic data. We are exploring the
adaption of techniques from [14], which support arbitrarily com-
plex SQL queries on probabilistic databases, including queries in-
volving aggregate functions (e.g., SUM, MIN, MAX).

We would like to extend StreamClean to produce appropriate fix-
up tuples when tuple attributes come from continuous domains.

Another challenge is to expand the subset of constraints we can
handle to support, for example, arbitrary aggregate operators rather
than simply the COUNT operator. Providing such support within
our framework is an open problem.

A final challenge is to investigate how applications can take ad-
vantage of the probabilistic information to provide more informa-
tion to users without confusing them.

Overall, correcting their input data is an important challenge for
mobile and pervasive applications, and StreamClean is a step to-
ward automating this task.

Acknowledgments This work is partially support by Suciu’s NSF
CAREER Award IIS-00992955, and Khoussainova’s New Zealand
Federation of Graduate Women Fellowship.

8. REFERENCES
[1] Abadi et. al. Aurora: A new model and architecture for data

stream management. VLDB Journal, 12(2), Sept. 2003.
[2] Abadi et. al. The design of the Borealis stream processing

engine. In Proc. of the CIDR Conf., Jan. 2005.
[3] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers

over dirty databases. In Proc. of the 22nd ICDE Conf., 2006.
[4] M. Balazinska, H. Balakrishnan, S. Madden, and

M. Stonebraker. Fault-tolerance in the Borealis distributed
stream processing system. In Proc. of the 2005 SIGMOD
Conf., June 2005.

[5] D. Barbara, H. Garcia-Molina, and D. Porter. The
management of probabilistic data. IEEE Trans. Knowl. Data
Eng., 4(5):487–502, 1992.

[6] L. Bertossi and J. Chomicki. Query answering in inconsistent
databases. In G. S. J. Chomicki and R. van der Meyden,
editors, Logics for Emerging Applications of Databases.
Springer, 2003.

[7] U. Blien and F. Grael. Entropy optimizing methods for the
estimation of tables. In I. Balderjahn, R. Mathar, and M.
Schader, eds.: Classification, Data Analysis, and Data
Highways (Springer Verlag, Berlin), 1997.

[8] M. Boss. Matlab central file exchange - entrop.
http://www.mathworks.com/matlabcentral/
fileexchange/loadFile.do?objectI%d=
5566&objectType=file, 2004.

[9] R. Cavallo and M. Pittarelli. The theory of probabilistic
databases. In Proc. of the 13th VLDB Conf., pages 71–81,
Sept. 1987.

[10] Chandrasekaran et al. TelegraphCQ: Continuous dataflow

processing for an uncertain world. In Proc. of the CIDR
Conf., Jan. 2003.

[11] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In Proc. of the
2003 SIGMOD Conf., pages 551–562, 2003.

[12] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. Zdonik. Scalable distributed
stream processing. In Proc. of the CIDR Conf., Jan. 2003.

[13] N. Dalvi, C. Re, and D. Suciu. Query evaluation on
probabilistic databases. IEEE Data Engineering Bulletin,
29(1):25–31, 2006.

[14] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In Proc. of the 30th VLDB Conf.,
Toronto, Canada, Sept. 2004.

[15] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. In ICDE, 2006.

[16] A. Deshpande, C. Guestrin, and S. R. Madden. Using
probabilistic models for data management in acquisitional
environments. In Proc. of the CIDR Conf., Jan. 2005.

[17] C. Floerkemeier and M. Lampe. Issues with RFID usage in
ubiquitous computing applications. In Proc. of the 2nd
Pervasive Conf., Apr. 2004.

[18] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss,
S. Rizvi, E. Wu, O. Cooper, A. Edakkunni, and W. Hong.
Design considerations for high fan-in systems: The HiFi
approach. In Proc. of the CIDR Conf., Jan. 2005.

[19] N. Fuhr and T. Roelleke. A probabilistic relational algebra
for the integration of information retrieval and database
systems. ACM Trans. Inf. Syst., 15(1):32–66, 1997.

[20] S. Guiasu and A. Shenitzer. The principle of maximum
entropy. The Mathematical Intelligencer, 7(1), 1985.

[21] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel,
M. Stonebraker, and S. Zdonik. High-availability algorithms
for distributed stream processing. In Proc. of the 21st ICDE
Conf., Apr. 2005.

[22] S. Jeffery, G. Alonso, M. J. Franklin, W. Hong, , and
J. Widom. Declarative support for sensor data cleaning. In
Proc. of the 4th Pervasive Conf., 2006.

[23] J. Liu and F. Zhao. Towards semantic services for sensor-rich
information systems. In Proc. of the Basenets Workshop,
Oct. 2005.

[24] V. Markl, N. Megiddo, M. Kutsch, T. Tran, P. Haas, and
U. Srivastava. Consistently estimating the selectivity of
conjuncts of predicates. In VLDB, pages 373–384, 2005.

[25] T. MathWorks. Matlab. http:
//www.mathworks.com/products/matlab/, 2006.

[26] Motwani et. al. Query processing, approximation, and
resource management in a data stream management system.
In Proc. of the CIDR Conf., Jan. 2003.

[27] M. Shah, J. Hellerstein, and E. Brewer. Highly-available,
fault-tolerant, parallel dataflows. In Proc. of the 2004
SIGMOD Conf., June 2004.

[28] C. E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 27, 1948.

[29] M. L. Songini. Wal-Mart details its RFID journey.
ComputerWorld.http:
//www.computerworld.com/industrytopics/

retail/story/0,10801,109132%,00.html, Mar. 2006.
[30] J. Widom. Trio: A system for integrated management of

data, accuracy, and lineage. In Proc. of the CIDR Conf.,
pages 262–276, 2005.

