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ABSTRACT
Previous approaches for computing duplicate-sensitive ag-
gregates in sensor networks (e.g., in TAG) have used a
tree topology, in order to conserve energy and to avoid
double-counting sensor readings. However, a tree topol-
ogy is not robust against node and communication fail-
ures, which are common in sensor networks. In this pa-
per, we present synopsis diffusion, a general framework for
achieving significantly more accurate and reliable answers
by combining energy-efficient multi-path routing schemes
with techniques that avoid double-counting. Synopsis dif-
fusion avoids double-counting through the use of order- and
duplicate-insensitive (ODI) synopses that compactly sum-
marize intermediate results during in-network aggregation.
We provide a surprisingly simple test that makes it easy to
check the correctness of an ODI synopsis. We show that
the properties of ODI synopses and synopsis diffusion cre-
ate implicit acknowledgments of packet delivery. We show
that this property can, in turn, enable the system to adapt
message routing to dynamic message loss conditions, even
in the presence of asymmetric links. Finally, we illustrate,
using extensive simulations, the significant robustness, ac-
curacy, and energy-efficiency improvements of synopsis dif-
fusion over previous approaches.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distrib-
uted Systems; C.3 [Special-Purpose and Application-
Based Systems: Embedded Systems

General Terms
Algorithms, Performance, Reliability, Theory

Keywords
Sensor Networks, Synopsis Diffusion, Query Processing

1. INTRODUCTION
In a large sensor network, aggregation queries often as-

sume greater importance than individual sensor readings.
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Previous studies [19, 29] have shown that computing aggre-
gates in-network, i.e., combining partial results at the in-
termediate nodes during message routing, significantly re-
duces the amount of communication and, hence, the energy
consumed. A popular approach used by sensor database
systems [20, 27] is to construct a spanning tree in the net-
work, rooted at the querying node, and then perform in-
network aggregation along the tree. Partial results propa-
gate level-by-level up the tree in distinct epochs, with each
node awaiting messages from all its children before sending
a new partial result to its parent.
However, aggregating along a tree is very susceptible to

node and transmission failures, which are common in sen-
sor networks [19, 28, 29]. Because each of these failures
loses an entire subtree of readings, a large fraction of the
readings are typically unaccounted for in a spanning tree
based system (Figure 1(a)). This introduces significant er-
ror in the query answer [6, 19, 29]. Efforts to reduce losses
by retransmitting packets waste significant energy and de-
lay query responses [19]. An improvement proposed for
TAG [19] was to use a DAG instead of a tree, with each
node with accumulated value v sending v/k to each of its
k parents. For aggregates such as Count or Sum, this re-
duces from v to v/k the error resulting from a single packet
loss, but the overall aggregation error remains high. This
is demonstrated in Figure 1(b), which shows that both the
tree (TAG) and DAG (TAG2, two parents) versions con-
sistently overestimate the actual average value. Moreover,
the high variance of the computed aggregate suggests that
simply scaling the measured value up or down will not solve
the problem.
The fundamental stumbling block is that in these com-

mon solutions, aggregation and the required routing topol-
ogy are tightly coupled, and, therefore, it is not possible
to use arbitrarily robust routing, like multi-path routing.
Multi-path routing often results in message duplication,
which would cause an overcounting of a large fraction of
the readings. For example, if an individual reading or a
partial sum is sent along four paths (to improve the likeli-
hood that at least one path succeeds), and three of them
happen to succeed, that value or partial sum will contribute
to the total sum three times instead of once.
In this paper, we present synopsis diffusion, a general

framework for combining multi-path routing schemes with
clever algorithms to avoid double-counting. By decoupling
aggregation from message routing, synopsis diffusion en-
ables the use of arbitrary multi-path routing schemes and
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Figure 1: (a) Random placement of the sensors in
a 20×20 grid and their activity with a realistic com-
munication model during a typical epoch. The lines
show the paths taken by sensor readings that have
reached the querying node at the center. (b) The
average value computed with different aggregation
schemes by the querying node at different epochs.
Each sensor has a value inversely proportional to
the square of its distance from the querying node
at the center, emulating the intensity readings of a
radiation source at the center.

allows the level of redundancy in message routing (as a
trade-off with energy consumption) to be adapted to sen-
sor network conditions. As a result, highly accurate and
reliable answers can be obtained using roughly the same
energy consumption as with tree-based schemes.
Synopsis diffusion achieves its decoupling of aggregation

and routing through the use of order- and duplicate-insensi-
tive (ODI) synopses. To the best of our knowledge, this is
the first paper to formally define and study this important
class of synopses. Previous and concurrent works [1, 3, 5, 6,
8, 22, 26] consider only isolated examples of such synopses.
ODI synopses are small-size digests of the partial results
received at a node such that any particular sensor reading
is accounted for only once. In other words, the synopsis at
a node is the same regardless of (1) the order in which read-
ings or partial results are received at the node, and (2) the
number of times a given reading from a given sensor arrives
at the node (either directly or indirectly via partial results).
While developing ODI synopses for aggregates such as Max
and Min is trivial, ODI synopses for duplicate-sensitive ag-
gregates (e.g., Sum, Count, Avg, Median, Uniform sample)
are more challenging to devise.
This paper establishes a formal foundation for synopsis

diffusion and demonstrates its implications to sensor net-
work aggregation. It makes the following contributions:

• A Novel Aggregation Framework. We introduce and
formalize the synopsis diffusion framework and the
ODI synopses. Moreover, we present simple proper-
ties that characterize ODI synopses, and show how
these properties can be used to ease the design of
(provably correct) synopsis diffusion algorithms.

• Better Aggregation Topologies. We show how ODI
synopses enable energy-saving communication strate-
gies such as (1) exploiting the wireless broadcast com-
munication medium by having any and all listeners
take advantage of any message they hear, (2) elim-

inating acknowledgment messages because ODI syn-
opses enable implicit acknowledgments, and (3) quickly
accounting for changes in network connectivity. By
exploiting these techniques, we show how to construct
an adaptive aggregation topology (Adaptive Rings)
that is as energy efficient as, but much more robust
than, a tree topology. Its significant accuracy im-
provement is demonstrated in Figure 1(b), by the
A.Rings curve.

• Example Aggregates. We present a number of aggre-
gates that can be computed using ODI synopses. For
example, we provide provably accurate answers to
Median, a holistic aggregate [13] that was considered
not amenable to in-network aggregation [19].

• Performance Evaluation. We present an extensive
performance study on a realistic simulator (the TAG
system simulator) demonstrating the significant ro-
bustness and accuracy improvements achieved by syn-
opsis diffusion for roughly the same power consump-
tion as tree-based approaches.

Concurrent with our work, Considine et al. [6] indepen-
dently proposed using duplicate-insensitive sketches for ro-
bust aggregation in sensor networks and demonstrated the
advantages of a broadcast-based multi-path routing topol-
ogy over previous tree-based approaches. However, they
primarily focused on energy-efficient computation of the
Sum aggregate, and did not address the other contribu-
tions listed above.
The remainder of the paper is organized as follows. Sec-

tion 2 presents the basic synopsis diffusion approach. Sec-
tion 3 presents our formal framework and theorems for ODI
synopses. Section 4 presents ODI synopses for additional
aggregates. Section 5 describes our Adaptive Rings rout-
ing scheme. Section 6 describes our experimental results
and various trade-offs that synopsis diffusion enables. Sec-
tion 7 describes related work, and conclusions appear in
Section 8.

2. SYNOPSIS DIFFUSION
In this section, we describe synopsis diffusion, a novel in-

network aggregation framework that enables robust, highly-
accurate estimations of duplicate-sensitive aggregates. The
basic approach is to use best effort, multi-path routing
schemes (e.g., [9]) together with duplicate-insensitive in-
network aggregation schemes. This section describes the
general framework and, to illustrate the framework’s use,
presents examples of both a routing scheme (called Rings)
and an aggregation scheme (for the Count aggregate). Al-
though the description is based on adapting the TAG com-
munication model and continuous query scheme [19], it is
not dependent on the particular model or scheme.
Synopsis diffusion performs in-network aggregation. The

partial result at a node is represented as a synopsis [3, 10],
a small digest (e.g., histogram, bit-vectors, sample, etc.) of
the data. The aggregate computation is defined by three
functions on the synopses:

• Synopsis Generation: A synopsis generation func-
tion SG(·) takes a sensor reading (including its meta-
data) and generates a synopsis representing that data.
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Figure 2: Synopsis diffusion over the Rings topol-
ogy. Crossed arrows and circles represent failed
links and nodes.

• Synopsis Fusion: A synopsis fusion function SF (·, ·)
takes two synopses and generates a new synopsis.

• Synopsis Evaluation: A synopsis evaluation func-
tion SE(·) translates a synopsis into the final answer.

The exact details of the functions SG(), SF (), and SE()
depend on the particular aggregate query to be answered.
An example is given at the end of this section; additional
examples are presented in Section 4.
A synopsis diffusion algorithm consists of two phases: a

distribution phase in which the aggregate query is flooded
through the network and an aggregation topology is con-
structed, and an aggregation phase where the aggregate
values are continually routed toward the querying node.
Within the aggregation phase, each node periodically uses
the function SG() to convert sensor data to a local synop-
sis and the function SF () to merge two synopses to create
a new local synopsis. For example, whenever a node re-
ceives a synopsis from a neighbor, it may update its local
synopsis by applying SF () to its current local synopsis and
the received synopsis. Finally, the querying node uses the
function SE() to translate its local synopsis to the final
answer. The continuous query defines the desired period
between successive answers, as well as the overall duration
of the query [20, 27]. One-time queries can also be sup-
ported as a special, simplified case.
An important metric when discussing the quality of query

answers in the presence of failures is the fraction of sensor
nodes contributing to the final answer, called the percent
contributing. With synopsis diffusion, a sensor node con-
tributes to the final answer if there is at least one failure-
free “propagation path” from it to the querying node. A
propagation path is a hop-by-hop sequence of successfully
transmitted messages from the sensor node to the querying
node. Note that it does not require that the sensor’s read-
ing actually be transmitted in the message, because with
in-network aggregation, the reading will typically be folded
into a partial result at each node on the path.
Although the synopsis diffusion framework is indepen-

dent of the underlying topology, to make it more concrete,
we describe next an example overlay topology, called Rings,
which organizes the nodes into a set of rings around the
querying node.

2.1 Synopsis Diffusion on a Rings Overlay
During the query distribution phase, nodes form a set of

rings around the querying node q as follows: q is in ring
R0, and a node is in ring Ri if it receives the query first
from a node in ring Ri−1 (thus a node is in ring Ri if it
is i hops away from q). The subsequent query aggregation

period is divided into epochs and one aggregate answer is
provided at each epoch. As in [19], we assume that nodes
in different rings are loosely time synchronized and are al-
lotted specific time intervals when they should be awake
to receive synopses from other nodes. The duration of the
allotted time is determined a priori based on the density
of deployment (so that even if the sensors perform carrier
sensing, all the sensors get enough time to transmit their
messages once).
We now describe the query aggregation phase in greater

detail, using the example Rings topology in Figure 2 for
illustration. In this example, node q is in R0, there are
five nodes in R1 (including one node that fails during the
aggregation phase), and there are four nodes in R2. At the
beginning of each epoch, each node in the outermost ring
(R2 in the figure) generates its local synopsis s = SG(r),
where r is the sensor reading relevant to the query answer,
and broadcasts it. A node in ring Ri wakes up at its allotted
time, generates its local synopsis s := SG(·), and receives
synopses from all nodes within transmission range in ring
Ri+1

1. Upon receiving a synopsis s′, it updates its local
synopsis as s := SF (s, s′). At the end of its allotted time
the node broadcasts its updated synopsis s. Thus, the fused
synopses propagate level-by-level toward the querying node
q, which at the end of the epoch returns SE(s) as the
answer to the aggregate query.
Figure 2 shows that even though there are link and node

failures, nodes B and C have at least one failure-free prop-
agation path to the querying node q. Thus, their sensed
values are accounted for in the answer produced this epoch.
In contrast, all of the propagation paths from node A failed,
so its value is not accounted for.
Because the underlying wireless communication is broad-

cast, each node transmits exactly once; therefore, Rings
generates the same optimal number of messages as tree-
based approaches (e.g., [19, 20, 21, 29]). However, because
synopses propagate from the sensor nodes to the query-
ing node along multiple paths, Rings is much more robust.
(This added robustness is quantified in Section 6.)

2.2 Duplicate-Sensitive Aggregates
With synopsis diffusion, aggregation can be done over

arbitrary message routing topologies. The main challenge
of a synopsis diffusion algorithm is to support duplicate-
sensitive aggregates correctly for all possible multi-path prop-
agation schemes. As we will show in Section 3, to achieve
this, we require the target aggregate function (e.g., Count)
to be mapped to a set of order- and duplicate-insensitive
(ODI) synopsis generation and fusion functions. Intuitively,
such a set of functions ensure that a partial result at a node
u is determined by the set of readings from sensor nodes
with propagation paths to u, independent of the overlap
in these paths and any overlap with redundant paths. No
matter in what combination the fusion functions are ap-
plied, the result is the same. Thus, a sensor reading is
accounted for (exactly once) in the aggregate if there is
a propagation path from the sensor node to the querying
node, and it is never accounted for more than once. We

1Note that there is no one-to-one (or even static) relation-
ship between the nodes in ring Ri and those in ring Ri+1

— a node in ring Ri fuses all the synopses it overhears from
the nodes in ring Ri+1.
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illustrate such functions using the following algorithm for
Count.

Count. This algorithm counts the approximate total num-
ber of sensor nodes in the network. (It can be readily
adapted to other counting problems.) Note that the stan-
dard in-network approach for Count, where each node sums
its children’s accumulated counts and sends the sum to
its parent(s), will not work with arbitrary topologies—
the same value may be counted more than once if the
topology is not a tree. The approximation algorithm we
present here is adapted from Flajolet and Martin’s algo-
rithm (FM) [8] for counting distinct elements in a multi-
set. It is a well-known algorithm for duplicate-insensitive
approximate Count [5, 6, 25]. The algorithm uses the fol-
lowing coin tossing experiment CT(x): toss a fair coin until
either the first heads occurs or x coin tosses have occurred
with no heads, and return the number of coin tosses. Note
that CT () simulates the behavior of the exponential hash
function that is used in FM:

for i = 1, . . . , x− 1 : CT (x) = i with probability 2−i (1)

The different components of the synopsis diffusion algo-
rithm for Count are as follows.

• Synopsis: The synopsis is a bit vector of length k >
log(n), where n is an upper bound on the number of
sensor nodes in the network.2

• SG(): Output a bit vector s of length k with only the
CT (k)’th bit set.

• SF (s, s′): Output the bit-wise Boolean OR of the bit
vectors s and s′.

• SE(s): If i is the index of the lowest-order bit in s
that is still 0, output 2i−1/0.77351 [8].

In Section 3, we prove that this algorithm is order- and
duplicate-insensitive and that the approximation error guar-
antees of [8] hold for the algorithm. Intuitively, the number
of sensor nodes is proportional to 2i−1 because if no node
sets the i’th bit, then by (1) there are probably less than 2i

nodes. The accuracy of the algorithm can be improved by
having each synopsis maintain multiple independent bit-
vectors and then taking the average of the indices within
SE() [8].
Considine et al. [6] recently showed how to extend this

algorithm to the Sum aggregate, in an energy-efficient man-
ner, by devising a suitable ODI synopsis. We will use their
Sum algorithm in our Sum experiments in Section 6. Ad-
ditional examples in Section 4 demonstrate that synopsis
diffusion can be used for very differing aggregates, if suit-
able ODI synopses can be found.

3. FORMAL FRAMEWORK, THEOREMS,
AND IMPLICATIONS

In this section, we present the first formal foundation for
duplicate-insensitive aggregation. We define a synopsis dif-
fusion algorithm to be “ODI-correct” if and only if its SG()
and SF () functions are order- and duplicate-insensitive. In-
tuitively, these two properties ensure that the final result is

2The upper bound can be approximated by the total num-
ber of sensor nodes deployed initially, or by the size of the
sensor-id space.

independent of the underlying routing topology—the com-
puted aggregate is the same irrespective of the order in
which the sensor readings are combined and the number
of times they are included during the multi-path routing.
We formalize these two requirements later in this section.
We begin by defining, in the next section, some of the key
terms used in our formal framework.

3.1 Definitions
A sensor reading r is a tuple consisting of both one or

more sensor measurements and any meta-data associated
with the measurements (e.g., timestamp, sensor id, and
location). Because of the meta-data, sensor readings are
assumed to be unique (e.g., there is only one reading cor-
responding to a given sensor id and timestamp).
We define a synopsis label function SL(), which com-

putes the label of a synopsis. The label of a synopsis s
is defined as the set consisting of all sensor readings con-
tributing to s. More formally, SL() is defined inductively,
as follows. There are two cases for SL(s), depending on
whether the synopsis s results from an application of SF ()
or an application of SG():

SL(s) =


SL(s1) � SL(s2) if s = SF (s1, s2)
{r} if s = SG(r)

The operator � takes two multi-sets and returns the multi-
set consisting of all the elements in both multi-sets, includ-
ing any duplicates. For example, {a, b, c, c} � {b, c, d} =
{a, b, b, c, c, c, d}. Note that SL() is determined by the sen-
sor readings and the applications of SG() and SF ()—it is
independent of the particulars of SG() and SF (). Note also
that a synopsis label is a virtual concept, used only for rea-
soning about the correctness of SG() and SF () functions:
SL() is not executed by the sensor network.
The notion of what constitutes a “duplicate” may vary

from query to query, e.g., a query computing the number of
sensors with temperature above 50◦F considers two read-
ings from the same sensor as duplicates, whereas a query
for the number of distinct temperature readings considers
any two readings with the same temperature as duplicates.
For a given query q, we define a projection operator

Πq : multi-set of sensor readings �→ set of values

that converts a multi-set of sensor readings (tuples) to its
corresponding set of subtuples (called “values”) by select-
ing some set of the attributes in a tuple (the same set for
all tuples), discarding all other attributes from each tuple,
and then removing any duplicates in the resulting multi-set
of subtuples. The set of selected attributes must be such
that two readings are considered duplicates for the query
q if and only if their values are the same. For example,
for a query computing the number of distinct temperature
readings, the value for a sensor reading is its temperature
measurement. For a query computing the average tem-
perature, the value of a sensor reading is its (temperature
measurement, sensor id) pair.

3.2 ODI-Correctness
We now define what it means to be order- and duplicate-

insensitive. Let R be the universe of valid sensor readings.
Consider a SG() function, a SF () function, and a projec-
tion operator Πq; these define a universe, S , of valid syn-
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Figure 3: Equivalent graphs under ODI-correctness

opses over the readings in R. We assume that SF () is a
deterministic function of its inputs. The formal definition
of the properties we seek is:

• A synopsis diffusion algorithm isODI-correct if SF ()
and SG() are order- and duplicate-insensitive func-
tions, i.e., they satisfy: ∀s ∈ S : s = SG∗(V ), where
V = Πq(SL(s)) = {v1, . . . , vk} and SG∗() is defined
inductively as

SG∗(V ) =


SF (SG∗(V − {vk}), SG(rk)) if |V | = k > 1
SG(r1) if |V | = 1

where Πq({ri}) = vi.

Figure 3 helps illustrate ODI-correctness. We can rep-
resent the SG() and SF() functions performed to compute
a single aggregation result using an aggregation DAG, as
shown in Figure 3(a). There is a node for each of the
different instantiations of the functions SG() (which form
the leaf nodes) and SF () (which form the non-leaf nodes).
There is an edge e : f1 → f2 iff the output of the function
f1 is an input to the function f2. Thus, all internal nodes
have two incoming edges and 0 or more outgoing edges.
Corresponding to the aggregation DAG, ODI-correctness
defines a canonical left-deep tree (Figure 3(b)). The leaf
nodes are the functions SG() on the distinct values (in
this example, all readings result in distinct values), and the
non-leaf nodes are the functions SF (). A synopsis diffusion
algorithm is ODI-correct if for any aggregation DAG, the
resulting synopsis is identical to the synopsis s produced
by the canonical left-deep tree.
More simply, regardless of how SG() and SF () are ap-

plied (i.e., regardless of the redundancy arising from multi-
path routing), the resulting synopsis is the same as when
each distinct value is accounted for only once in s. We chose
a left-deep tree for our canonical representation because
it lends itself to an important connection with traditional
data streams (as discussed in Section 3.3).

3.2.1 A Simple Test for ODI-Correctness
We believe that ODI-correctness captures the overall goal

of order- and duplicate-insensitivity. However, it is not
immediately useful for designing synopsis diffusion algo-
rithms because verifying correctness using this definition
would entail considering the unbounded number of ways
that SG() and SF () can be applied to a set of sensor read-
ings and comparing each against the synopsis produced by
the canonical tree.
Thus, a very important contribution of this paper is

in deriving the following simple test for ODI-correctness.
There are four properties to check to complete the test.

• Property P1: SG() preserves duplicates: ∀r1, r2 ∈
R : Πq({r1}) = Πq({r2}) implies SG(r1) = SG(r2).
That is, if two readings are considered duplicates (by
Πq) then the same synopsis is generated.

• Property P2: SF () is commutative: ∀s1, s2 ∈ S :
SF (s1, s2) = SF (s2, s1).

• Property P3: SF () is associative: ∀s1, s2, s3 ∈ S :
SF (s1, SF (s2, s3)) = SF (SF (s1, s2), s3).

• Property P4: SF () is same-synopsis idempotent:
∀s ∈ S : SF (s, s) = s.

Note that property P4 is much weaker than the duplicate-
insensitivity property required for ODI-correctness. It only
refers to what happens when SF () is applied to the ex-
act same synopsis for both its arguments. It says nothing
about what happens when SF () is applied to differing argu-
ments that come from overlapping sets of sensor readings.3

Given the simplicity of properties P1–P4, it is surprising
that they characterize ODI-correctness. The next theorem
shows that indeed this is the case.

Theorem 1. Properties P1–P4 are necessary and suffi-
cient properties for ODI-correctness.

The proof is given in the appendix.
We illustrate how these properties can be used to prove

the ODI-correctness of a synopsis diffusion algorithm by
revisiting the Count algorithm that estimates the number
of sensor nodes in the network.

Claim 1. The Count algorithm in Section 2.2 is ODI-
correct.

Proof. Consider a projection operator Πq that maps a
set of sensor readings to the corresponding sensor ids. In
the Count algorithm, SF (s, s′) is the Boolean OR of the
bit vectors s and s′. Since Boolean OR is commutative
and associative, so is SF (). Next, observe that Πq({r1}) =
Πq({r2}) if and only if r1 and r2 have the same sensor id
and hence are the same reading. Thus SG(r1) = SG(r2).

4

Finally, SF (s, s) is the Boolean OR of the bit vector s with
itself, which equals s. Therefore, properties P1–P4 hold, so
by Theorem 1, the algorithm is ODI-correct.
Note that the SE() function did not factor into the con-

siderations of ODI-correctness. ODI-correctness only shows
that SE() will see the same synopsis as the left-deep tree.
The accuracy of the approximate answer, on the other
hand, depends on the accuracy of applying SE() to this
synopsis. Clever algorithms are still required to get prov-
ably good approximations, although the task has been sim-
plified to being able to show (1) the ODI-correctness of
SG() and SF (), and (2) the accuracy of SE() when ap-
plied to synopses from left-deep trees.
3For example, consider the SF () function that takes two
numbers x and y and returns their average. This satis-
fies property P4, because the average of x and x equals
x. However, the function cannot be used to compute
a duplicate-insensitive average of all the sensor readings.
For example, if the readings are 2, 4, and 36, we have
SF(SF(2,4),SF(2,36)) = 11 but SF(SF(2,36),SF(4,36)) =
19.5 (and the exact average is 14).
4We assume here that SG is applied only once to a sensor
reading. The case where SG can be redundantly applied
can be (provably) handled by using the exponential hash
function of FM, instead of the simpler CT -based genera-
tion.
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3.2.2 Algebraic Structure and Implications
We begin with the following corollary of Theorem 1.

Corollary 1. Consider an ODI-correct synopsis diffu-
sion algorithm with functions SG() and SF (). The set S of
synopsis generated by SG() together with the binary func-
tion SF () forms a semi-lattice structure.

A semi-lattice [7] is an algebraic structure with the property
that for every two elements in the structure there is an
element that is their least upper bound. The function SF ()
is essentially the join operator in lattice terminology; and
therefore,

if z = SF (x, y) then SF (x, z) = z and SF (y, z) = z (2)

An example of a semi-lattice is the fixed size bit-vectors
used in the Count algorithm with the Boolean OR function.
The top of the lattice is the all 1’s bit-vector, the bottom
is the all 0’s bit-vector, and for any two bit-vectors x and
y, if x OR y = z, then x OR z = z and y OR z = z.
Corollary 1 follows immediately from Theorem 1 because it
is well known that a commutative, associative, idempotent
binary function on a set forms a semi-lattice [7].

Implications. The semi-lattice structure of ODI synopses
and the SF () function has an attractive practical implica-
tion in the context of ad hoc wireless sensor networks. In
such networks, the underlying routing topology needs to
be continuously adapted to cope with unpredictable node
and communication failures. Using explicit acknowledg-
ments for this purpose wastes considerable energy. A com-
mon solution in ad hoc wireless networks is to use implicit
acknowledgments [16] to monitor communication failures.
Each node u sending to u′ snoops the subsequent broad-
cast from u′ to see if u’s message was indeed forwarded
(and, therefore, was previously received) by u′. However,
no known approaches could support implicit acknowledg-
ments as part of in-network aggregation. Consider, for ex-
ample, computing the Sum with the TAG protocol. If u
sends the value x to u′, and later overhears u′ transmitting
some value z ≥ x, there can be two possibilities: either
u′ has heard from u and has included x in z, or u′ has
not heard from u5 and z is the sum of the values u′ heard
from its other children. Thus, u has no way of determining
whether transmission through u′ is reliable.
The use of ODI synopses provides an implicit acknowl-

edgment mechanism and avoids the effect of this crucial
problem. By (2) above, if a node u transmits the synop-
sis x and later overhears some parent node u′ transmitting
a synopsis z such that SF (x, z) = z, it can infer that its
synopsis has been effectively included into the synopsis z
of that parent.6 Otherwise, it can infer that its message
to that parent has been lost. Thus, overhearing a synopsis
z = SF (x, z) acts as an implicit acknowledgment for the
node u. On inferring message loss, a sensor can retransmit

5Because wireless communication can be asymmetric, u
may hear from u′ even if u′ does not hear from u.
6We say it is effectively included because the condition
SF (x, z) = z does not precisely imply that the transmission
from u has been received by u′. Rather, it implies that even
if the transmission were lost, the loss had no effect on the
synopsis transmitted by u′ (because it happened to have
been compensated by the synopses from other children of
u′).

its message or adapt the topology accordingly (e.g., switch
its parent in a Tree topology or change its level in a Rings
topology).

3.3 Error Bounds of Approximate Answers
Using synopses may provide only an approximate answer

to certain queries. In fact, there are two distinct sources
of errors in the final answers computed by a synopsis dif-
fusion algorithm A. The first one is the communication
error, which is defined as the fraction of sensor readings
not accounted for in A’s answer in a given epoch (i.e., 1
minus the percent contributing). This error is introduced by
the underlying routing scheme; it occurs when some of the
sensors have no failure-free propagation paths to the query-
ing node. The second source of error is the approximation
error, which is defined as the relative error of the answer
computed by A with respect to the answer computed by
a corresponding exact algorithm using all the readings ac-
counted for in A’s final answer. This error is introduced by
the SG(), SF (), and SE() functions.
We argue that with a sufficiently robust routing scheme,

the communication error can be made negligible. We il-
lustrate this using a simple analysis. Suppose the under-
lying multi-path routing constructs a DAG G rooted at
the querying node. We consider a regular DAG of height
h where each node at level i, 1 ≤ i ≤ h, has k neighbors
at level (i− 1) to transmit its synopses toward the query-
ing node. For simplicity, assume that level i has di nodes,
where d is some constant. Also assume for this analysis that
message losses occur independently at random with prob-
ability p. Then the number of sensor readings N that can
reach the querying node is given by N ≥ Ph

i=0(1−pk)idi =
dh+1(1−pk)h+1−1

d(1−pk)−1
. Thus, the overall communication error is

upper bounded by approximately 1 − (1 − pk)h. To make
it more concrete, assume that p = 0.1, h = 10. Then,
with k = 1 (i.e., a tree topology), the error is around 0.65,
while it is less than 0.1 and 0.01 for k = 2 and k = 3,
respectively. Hence, by increasing the number of neigh-
bors to transmit synopses toward the querying node (i.e.,
increasing the redundancy of the underlying message rout-
ing), through denser sensor deployment if necessary, the
communication error can be made insignificant.
Thus, with a robust routing topology, the main source

of error in the result computed by a synopsis diffusion al-
gorithm is the approximation error. Next, we summarize a
generic framework to analyze this approximation error.
Traditionally, the error properties of approximation al-

gorithms are analyzed in a centralized model where the al-
gorithms are applied at a central place (e.g., the querying
node) where all the values are first collected. For exam-
ple, data stream algorithms [3] use this model. However,
synopsis diffusion presents a distributed model where the
SG() and SF () functions are applied in the distributed set
of sensors. The following theorem shows the equivalence
of these two models for an ODI-correct synopsis diffusion
algorithm.

Theorem 2. The answer computed by an ODI-correct
synopsis diffusion algorithm is the same as that computed
by first collecting the values that can reach the querying
node through at least one failure-free propagation path and
then applying the SG(), SF (), and SE() functions on them.

255



Proof. (sketch) Consider an arbitrary instance of syn-
opsis diffusion aggregation. By ODI-correctness, the corre-
sponding aggregation DAG (Figure 3(a)) can be reduced to
a canonical left-deep tree (Figure 3(b)). This left-deep tree
can be viewed as processing a data stream of sensor read-
ings at a centralized place: to each new stream value, we
first apply SG and then apply SF with the current stream
synopsis.
Hence, the final result computed by a synopsis diffusion

algorithm has the following semantics: (1) the final an-
swer includes all the values that can reach the querying
node through at least one failure-free propagation path,
and (2) the result is the same as that found by applying
the function SE on the output of a centralized data stream
algorithm using SG and SF as indicated above.
Theorem 2 shows that any approximation error guaran-

tees provided for the well-studied centralized data stream
scenario immediately apply to a synopsis diffusion algo-
rithm, as long as the data stream synopsis is ODI-correct.
Thus, we can effectively leverage existing data stream error
analysis, as illustrated in the following claim.

Claim 2. The Count algorithm in Section 2.2 has the
same approximation error guarantees as Flajolet-Martin’s
(FM) distinct count algorithm [8].

Proof: Follows from Theorem 2.

4. ADDITIONAL EXAMPLES
In this section, we present examples of ODI-correct syn-

opsis diffusion algorithms to show the generality of the
framework. Because of page limitations, we only sketch
the results.

Previous results. Maximum and Minimum are trivial.
Count and Sum were discussed in Section 2. Average, Stan-
dard Deviation, and Second Moment can be computed by
applying the Sum algorithm over suitably defined values [6].
Count Distinct can be done using a trivial adaption of Fla-
jolet and Martin’s algorithm (FM) [8].
In the remainder of the section, we present new ODI-

correct synopsis diffusion algorithms for some additional
important aggregates.

Uniform sample of sensor readings. Suppose each
node u has a value valu. This algorithm computes a uni-
form sample of a given size K of the values occurring in
all the nodes in the network. Note that traditional sam-
pling procedures [17] would not produce a uniform sam-
ple in the presence of multi-path routing because they are
duplicate-sensitive. However, our ODI synopses produce a
uniform sample of the contributing nodes (i.e., the nodes
with failure-free propagation paths, regardless of whether
they are selected for the sample). The components of the
algorithm are as follows:

• Synopsis: A sample of size K of tuples. (Initially, it
will have fewer than K tuples, until there are at least
K nodes contributing to the synopsis.)

• SG(): At node u, output the tuple (valu, ru, idu),
where idu is the sensor id for node u, and ru is a
uniform random number within the range [0, 1].

• SF (s, s′): From all the tuples in s∪ s′, output the K
tuples (vali, ri, idi) with the K largest ri values. If

there are less than K tuples in s ∪ s′, output them
all.

• SE(s): Output the set of values vali in s.

Because the SG() function labels each value with a uni-
form random number and thus places it in a random posi-
tion in the global ordering of all the values in the network,
selecting the K largest positions results in a uniform sam-
ple of the values from contributing nodes. The (duplicate-
removing) union operation in SF ensures that the synopsis
accounts for a given node’s value at most once.7

Aggregates computed from uniform samples. Many
useful holistic aggregates, for which there are no efficient
and exact in-network aggregation algorithms, can be ap-
proximated from a uniform sample computed using the
previous algorithm. For example, given the sensor values
x1, x2, . . . , xn, the k-th Statistical Moment µk =

1
n

Pn
i=1 x

k
i

(e.g., µ1 is the Mean) and the k-th percentile value for
0 < k < 100 (e.g., k = 50 is the Median) can be approxi-
mated with ε additive error8 and with probability 1− δ by
using a sample of size O( 1

ε2
log 1

δ
) [4]. Thus, our random

sampling algorithm provides an efficient way to estimate
these holistic aggregates.

Most Popular Items. The goal of this algorithm is to
return the K values that occur the most frequently among
all the sensor readings. (When K = 1, this is the Mode.)
It uses the CT () function used in the Count algorithm de-
scribed in Section 2.

• Synopsis: A set of the K most popular items (esti-
mated).

• SG(): At node u, output the (value, weight) pair
(valu, CT (k)), where k > log(n) and n is an upper
bound on the total number of items.

• SF (s, s′): For each distinct value v in s ∪ s′, discard
all but the pair (v, weight) with maximum weight for
that value. Then output the K pairs with maximum
weight. If there are less than K pairs, output them
all.

• SE(s): Output the set of values in s.

Essentially, the algorithm determines the frequency of an
item by running an ODI-correct Count algorithm for each
value. The counting is done using the Alon et al. variant [1]
of Flajolet-Martin’s algorithm (FM), which estimates the
number of distinct values by keeping track of the highest-
order bit that is set to 1. Maintaining the Count for every
item would result in very large synopses being exchanged.
Instead, our algorithm keeps track of the items generating
the highest-order bits (and thus, probabilistically, occur-
ring the most frequently in the network). To reduce the
number of false positives and false negatives, each synop-
sis can contain multiple independent sets of popular items
and the function SE() can choose the K items that appear
in the greatest number of sets. Details are omitted due to
page limitations.

7Note that in practice, idu need not be included in the syn-
opsis, because equality in the random id ru can effectively
detect duplicates.
8For k-th percentile aggregates, the error is with respect to
the rank of the value not its magnitude.
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(a) Rings (b) Adaptive Rings

Figure 4: Random placement of the sensors in a
20× 20 grid and their activity with a realistic com-
munication model during a typical epoch. The
querying node is at the center of the grid. The
small dots (solid squares) indicate the nodes ac-
counted for (not accounted for, respectively) in the
answer computed in that epoch.

The algorithm can be adapted to approximately answer
the iceberg query to find all items occurring above a certain
threshold T as follows: SF () retains all the values with
weight ≥ log(T ).

5. ADAPTING THE TOPOLOGY
As mentioned in Section 3.2.2, the implicit acknowledg-

ments provided by ODI synopses can readily be exploited
to infer when to retransmit a synopsis or to adapt the rout-
ing topology. Using retransmissions expends energy and it
delays query responses because each level in a topology may
need to wait for possible retransmissions before preceding.
Thus, we will focus on adapting the topology if message
loss is frequent, hoping that it will reduce loss rate in the
long run. In this section, we show how to modify the Rings
topology described in Section 2.1 to construct a more ro-
bust topology, which we call Adaptive Rings.
The Adaptive Rings topology copes with changes in net-

work conditions (e.g., the addition or deletion of sensors,
long term changes in link loss rate) by adapting the ring
assignments of the nodes, as follows. A node u in ring i
keeps track of ni−1, the number of times the transmissions
from any node in ring i − 1 have effectively included u’s
synopses in the last w epochs.9 When ni−1 is small, u tries
to assign itself to a new ring. To do that, it keeps track of
ni−2, the number of times its synopses have been included
by any node in ring i− 2 in the last w epochs, and nj , the
number of times it overhears the transmissions of nodes in
ring j in the last w epochs, for j = i, i + 1, i + 2. Node u
then uses the following heuristic: (1) If ni−1 < ni+1 and
ni−1 < ni < ni+2, it assigns itself to ring i+ 1 with prob-
ability p, and (2) If ni+1 < ni−1 and ni+1 < ni < ni−2, it
assigns itself to ring i − 1 with probability p. Intuitively,
the heuristic tries to assign u to a ring so that it can have
a good number of nodes from the neighboring ring to for-
ward its synopses toward the querying node at ring 0. The

9As a trade-off between adaptivity and energy consump-
tion, the frequency of listening for implicit acknowledg-
ments can be reduced from every epoch to every several
epochs.

probabilistic nature of the heuristic avoids synchronous ring
transition of the nodes and provides better stability of the
topology. In our evaluation in Section 6, we use w = 10
and p = 0.5.
ODI synopses play two key roles in this adaptation. First,

implicit acknowledgment provides an estimation of the qual-
ity of the existing links through ni−1 and second, it ensures
that double counting a value during the adaptation does
not hurt.
We make another change to increase the robustness of

Adaptive Rings. Because the nodes in ring 1 have only one
node receiving the transmission (the querying node), ring
1’s transmissions are more susceptible to random transmis-
sion losses. To cope with this, we suggest (1) using multiple
querying nodes (in ring 0) who form a mesh and combine
the aggregated value at the end of each epoch, or (2) mak-
ing nodes in ring 1 transmit multiple times if the implicit
acknowledgment from the querying node (which broadcasts
the final synopsis at the end of each epoch) implies that it
has not received a synopsis. The latter approach, although
slightly more power consuming, uses the traditional model
of having a single querying node; we use this approach in
our evaluation (where each node in ring 1 transmits twice).
Figure 4 shows the effectiveness of the adaptation with

a snapshot (from the querying node’s point of view) of a
single epoch. It graphically shows that the percent con-
tributing with Rings (Figure 4(a)), which is significantly
higher than with a tree topology, can be significantly im-
proved by having ring 1 nodes transmit twice (Figure 4(b)).
(The effectiveness of Adaptive Rings’ topology adaptation
heuristic is highlighted in Section 6.6.)

6. EVALUATION
In this section, we evaluate our synopsis diffusion scheme

and compare it with existing schemes. We present the accu-
racy of a few synopsis diffusion algorithms running over the
Adaptive Rings scheme and show the sensitivity of Adap-
tive Rings to different network parameters (e.g., loss rate,
node failures, node density).

6.1 Methodology
Topology. To evaluate the performance of synopsis dif-
fusion and different aggregation topologies, we implement
the algorithms within the TAG simulator used in [19]. In
our simulations unless otherwise noted, we collect a sum ag-
gregate on a deployment of 600 sensors placed randomly in
a 20 ft × 20 ft grid. The querying node is at the center of
the grid. Sensors report their node-ids, which are assigned
sequentially from 1 to 600, as their sensor readings.

Aggregation Schemes. We simulate five different ag-
gregation schemes: TAG (TAG’s standard tree-based ap-
proach), TAG2 (the TAG approach with value-splitting
among two parents), Rings (the synopsis diffusion (SD)
algorithm over the Rings topology), Adaptive Rings (SD
over the scheme described in Section 5, called A.Rings
in the graphs) and Flood. Flood uses SD over a flat
topology—at the beginning of each epoch, each node broad-
casts its synopsis to all of its neighbors, and at the end of
each epoch, each node updates its own synopsis by ap-
plying SF () on the synopses received from its neighbors.
To ensure that all nodes contribute to the synopsis at the
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querying node, Flood runs for D + 1 epochs, where D is
the maximum distance of any node of the network from the
querying node.
In each simulation, we collect results over 500 epochs

– we collect a single aggregate value each epoch. We be-
gin data collection only after the underlying aggregation
topologies for both synopsis diffusion and TAG are stable.

Message size. We use 48-byte messages, as used by the
TinyDB system. Each sum synopsis bit-vector uses 32 bits.
However, in transmitting multiple bit-vectors, we reduce
the size of the synopsis by interleaving the bit-vectors and
applying run-length encoding [24]. In our experiments for
computing sum, we use twenty 32-bit synopses that when
compressed take around 14 bytes on average. Two sets of
sum synopses (or one set of average synopses that computes
both the sum and the count) fit in a single TinyDB packet
along with headers and extra room to handle the variation
in the compression ratio.

Transmission model. The TAG simulator supports a
realistic transmission loss model based on the wireless net-
work interfaces in the Berkeley MICA motes. This real-
istic loss model, described in [19], assigns loss probability
of links based on the distance between the transmitter and
receiver as follows: the loss probabilities are 0.05, 0.24, 0.4,
0.57, 0.92, and 0.983 within the range 1, 2, 3, 4, 5, and
6 ft respectively, and 1.0 outside the range of 6 ft.10 Note
that these are message level loss probabilities; the simulator
does not model bit-level loss probability as TOSSIM [18]
does. We do not assume any link level retransmission.

Accuracy. To quantify the performance of the schemes,
we use the relative root mean square (RMS) error—defined

as 1
V

qPT
t=1(Vt − V )2/T , where V is the actual value and

Vt is the aggregate computed at time t. The closer this
value is to zero the closer the aggregate is to the actual
value.

Power consumption. There are two main sources of
power consumption on the sensor hardware: computation
and communication. To enable our code to execute on ac-
tual sensor hardware, we have implemented the synopsis
diffusion algorithm for computing sum and some other ag-
gregates within the TinyOS and the TinyDB environment.
By analyzing the binary code compiled by TinyOS and us-
ing the data-sheet of the mote hardware [2], we found that
our code uses at most a few hundred additional CPU cycles
in comparison to the TAG implementation. This difference
was insignificant in both the overall power budget as well
as in the relative communication power consumption of the
different schemes.11 Therefore, we choose to simply use
the network communication power consumption to com-
pare the performance of different schemes. We model the
communication power consumption according to the real
measurement numbers reported in [20].

6.2 Realistic Loss Experiments
Figure 5 shows how different schemes perform in com-

puting sum with a random node placement and a realistic

10Such a high loss rate is common in practice [28, 29].
11Measurements [20] indicate that 1 bit of transmission (or
reception) is equivalent to approximately 1000 cycles of
computation.

Scheme % nodes Error(Uniform) Error(Skewed)
TAG < 15% 0.87 0.99
TAG2 N/A 0.85 0.98
Rings 65% 0.33 0.19

Adapt. Rings 95% 0.15 0.16
Flood ≈ 100% 0.13 0.13

Figure 5: Comparison of aggregation schemes
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network loss model. The last two columns show the av-
erage RMS errors of the computed aggregates when the
sensor data is uniform (column 3) and when is it skewed
(column 4) as in Figure 1. At a high level, it shows that
both TAG and TAG2 incur large RMS error because only
a small fraction of the nodes report to the querying node.
Since both TAG and TAG2 provide similar average RMS
errors, we report only the performance of TAG in the rest
of the experiments. Rings, which is as energy efficient as
TAG and TAG2, is much more robust than these two. It
also shows that the performance of Adaptive Rings is
significantly better than Rings and is very close to Flood

under this realistic setup. Note that the errors in Flood

come from only the approximation algorithm.

6.3 Effect of Communication Losses
In this set of experiments, we use a simpler loss model in

which each packet is dropped with a fixed probability. Fig-
ure 6 shows the impact of changing this loss probability on
the accuracy of the different schemes. Even with loss rates
as low as 10%, the RMS error for TAG is 0.36, whereas
the RMS errors for Rings, Adaptive Rings, and Flood

are only around 0.15. More importantly, Adaptive Rings

perform as well as Flood even when the loss rate is as
high as 60%.12 We also note that the performance of TAG

degrades much more quickly with increasing loss rate than
any of the synopsis diffusion approaches. From Figure 7,
we can see that this degradation is directly related to the
fact that the readings of fewer and fewer nodes are incor-
porated into the reported aggregate. In addition, we can
see that the impact of excluding sensor nodes dominates
the impact of any approximation errors.

12At high loss rate, Flood fails to provide 100% contribut-
ing nodes since we allow the flood to run for a limited
number of epochs.
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6.4 Effect of Deployment Densities
The placement of sensors can influence the loss rates ob-

served as well as the topology used to aggregate sensor
readings. Here, we consider two different variations in the
distribution of sensors: the density of sensors and the shape
of the sensor deployment region.
To evaluate the impact of sensor density, we vary the

number of total sensors while keeping the region (size and
shape) in which the sensors are deployed constant. In ad-
dition, we employ the realistic packet loss model described
earlier.
Figure 8 shows the impact of changes in density on the

accuracy of TAG, Rings, Adaptive Rings and Flood.
As the sensor network becomes more sparse, the aggre-
gation schemes are forced to use longer, more error-prone
links. This has little impact on Flood, which has a high
degree of redundancy in its data collection. Rings and
Adaptive Rings, having limited redundancy compared to
Flood, perform worse with very low sensor density. How-
ever, in reasonably dense networks, Adaptive Rings per-
forms as well as Flood due to the large amount of redun-
dancy it can take advantage of. Sparse networks surpris-
ingly also have little impact on TAG. TAG prefers to con-
struct short trees since deep trees combined with packet
losses result in very poor performance. As a result, the
average parent-child link distance does not change signif-
icantly with density. This results in a similar percentage
of sensors readings being omitted from the aggregate and,
therefore, similar error performance regardless of density.
The added redundancy of Flood and Adaptive Rings

comes at a cost in terms of overhead. Figure 9 plots the
impact of density on our overhead metric, communication
power consumption (the breakdown of the power consumed

to transmit and receive messages can be found in [23]). Be-
cause the nodes in TAG and Rings remain awake for re-
ceiving messages for roughly the same amount of time [19],
and roughly the same number of transmissions occur in
both schemes, the nodes’ network interfaces in both schemes
receive approximately the same number of messages. Thus,
both TAG and Rings have the optimal overhead for trans-
mission power. Adaptive Rings consumes slightly more
transmission energy due to the use of redundant transmis-
sions in ring 1 (see Section 5) and the reception of the im-
plicit acknowledgment. Note that, however, the Rings and
Adaptive Rings approach force each node to process all of
the received packets, in contrast to a TAG node processing
a smaller subset of these message per epoch. Fortunately,
the cost of processing a message is far less than receiving
the message. Finally, as expected, Flood has the highest
overhead for transmission and reception of the schemes.
In addition to density, the rough shape of a sensor de-

ployment can also affect the performance of the different
aggregation schemes. To evaluate this effect, we varied the
width and height of the rectangular deployment area while
keeping the size and the number of sensors constant. Our
results show that while the performance of TAG degrades
as the diameter of the network increases (i.e., the height
of the tree increases), the performance of Rings degrades
only slightly. The details can be found in [23].

6.5 Effect of Asymmetric Links
Asymmetric links are common in real sensor networks

and cause significant problems for topology creation. The
problems arise from the fact that if node u1 hears from node
u2, it may choose node u2 to be its parent. However, with
asymmetric links, there is no guarantee that node u2 hears
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messages from node u1. To see the impact of this factor, we
model asymmetric links in our simulation based on realistic
measurements [28]. With such links, the accuracy of TAG
drops by 15% and Rings by 10%. The implicit acknowl-
edgments of synopsis diffusion help avoid this problem by
identifying asymmetric links. As a result, the performance
of Adaptive Rings degrades only slightly (< 3%) with such
links.

6.6 Effect of Correlated Node Failures
Figure 10 shows the effectiveness of Adaptive Rings

using a scenario where at time t = 300, we disable all
the sensors within a 6 ft × 8 ft rectangular region of the
20 ft × 20 ft grid, which causes a loss of 13% of the total
sensors. To separate out the effects of two key components,
nodes in ring 1 transmitting twice and all nodes adapting
their rings to cope with the network dynamics, we compare
Adaptive Rings with a scheme called Rings2. Rings2 is
basically the Rings scheme with the nodes in ring 1 send-
ing their synopses twice (i.e., Adaptive Rings without the
topology adaptation).
As the graph shows, Adaptive Rings performs better

(with higher % nodes and lower variance) than the other
schemes even when there is no drastic network dynamics
(i.e., t < 300). Rings2 performs better than Rings show-
ing the effectiveness of having the nodes in ring 1 send
twice. Immediately after t = 300, all the schemes suffer be-
cause the dead sensors break all the paths to the querying
node from a significant portion of the live sensors. How-
ever, Adaptive Rings gradually adapts its routing around
the dead sensors and, thus, lets almost all the live sensors
communicate again with the querying node. In contrast, in
Rings2, 12% of the nodes who could contribute to the com-
puted aggregate before t = 300 fail to do so after t = 300.
The convergence time of Adaptive Rings after t = 300 de-
pends on the parameters of the adaptation heuristic. This
result shows the contributions of both the ring adaptation
and ring 1’s retransmissions to the robustness of the Adap-

tive Rings scheme.
We have observed a similar result in scenarios where a

large number of randomly chosen sensors fail within a short
period of time (details are in [23]).

6.7 Effect of Synopsis Size
Synopsis diffusion provides the opportunity to select a

desired approximation accuracy based on the affordable en-
ergy overhead (as determined by the message size). For
example, in the approximate sum algorithm a larger synop-
sis enables additional independent bit-vectors to be used,
reducing the approximation error.
To see how the relative error of synopsis diffusion changes

with the size of the synopsis, we increase the number of
bit-vectors in the sum synopsis (and hence the total num-
ber of bits in the compressed synopsis). Figure 11 shows
the average of the relative errors of the final answer for
the realistic loss rate and for no loss rate. The x-axis of
the graph shows the number of bits of the compressed bit-
vectors (we increase the number of bit-vectors by four and
report the length of the compressed synopsis, thus the use
of 20 bit-vectors in our other simulations corresponds to
the use of around 100 bits). The graph also shows the
95% confidence interval of the computed answers with no

loss rate. The graph shows that both the average approxi-
mation error and the confidence interval can be decreased
significantly by using more bits (i.e., more bit-vectors) in
the synopsis.

6.8 Beyond Sum
Uniform Sample. Figure 12 compares the sampling algo-
rithm described in Section 4 running overAdaptive Rings

with an existing random sampling algorithm known as Ran-
Sub [17] running over TAG. The algorithms compute a
sample of size 5, and the graph shows the histograms of
the node ids included in 10,000 samples. Note that Ran-
Sub must be run over a tree topology because its synopsis
is not ODI. Moreover, both RanSub and our sampling al-
gorithm provide a uniform sample when there is no mes-
sage loss. However, with a realistic loss model, RanSub
with TAG provides a distribution far from uniform, while
the synopsis diffusion algorithm, using Adaptive Rings,
closely approximates a uniform distribution.

Top-k. We have also simulated the synopsis diffusion al-
gorithm to find the 5 most frequent values in the network,
where the value of a sensor is the integer part of its distance
from the querying node (this creates a slightly skewed dis-
tribution of the popularity of the data). We use 10 synopses
from which SE() estimates the 5 most popular items. We
quantify the accuracy of our estimation {x1, . . . , xk} by us-
ing the metric relative rank-error (RRE) = 1

k

Pk
i=1(|i−ri|),

where ri is the actual rank of xi in the descending order of
frequency of all the unique items. With the realistic loss
model and a random placement of the sensors, our algo-
rithm provides very small (≈ 0.6) relative rank-error.
6.9 Discussion
Our results have quantified a number of advantages that

synopsis diffusion provides over previous tree-based and
ring-based aggregation schemes. First, we have shown how
synopsis diffusion reduces answer errors in lossy environ-
ments. Second, we have shown how synopsis diffusion helps
address the challenges imposed by correlated node failures.
Finally, we have shown that synopsis diffusion can achieve
these gains without a significant increase in power con-
sumption.
While our measurements have shown that synopsis dif-

fusion is preferable to tree-based approaches, they may not
have made the choice of aggregation topology as clear.
Our comparisons show that the Adaptive Rings topol-
ogy, made possible by implicit acknowledgments, incurs
approximately the same overhead as the Rings topology
while providing much better accuracy/robustness. Adap-

tive Rings is especially superior in the face of node fail-
ures. The trade-offs between Adaptive Rings and Flood

are more subtle. Adaptive Rings collects about 90%
of the sensor readings in most reasonable settings while
Flood collects 100%. However, in practice, one might de-
ploy extra sensors to compensate for the lost readings and
to decrease their number. The lower power consumption of
Adaptive Rings would significantly reduce the frequency
of sensors replacement. In situations where deployments
are short-lived, every sensor reading is critical, sensors are
sparsely deployed, or network conditions fluctuate dramat-
ically, Flood may be an appropriate choice. Otherwise,
Adaptive Rings provides a much better set of trade-offs.
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7. RELATED WORK
Computing aggregates in sensor networks has been stud-

ied in a number of recent papers [19, 20, 21, 29]. The pro-
posed approaches use a tree or DAG topology (with value
splitting), and hence are not robust against node and link
failures.
To achieve robustness, Zhao et al. [29] focus on dynami-

cally maintaining a relatively robust aggregation tree. The
approach is orthogonal to ours and requires each node to
maintain statistics on link quality (to choose a stable par-
ent). For duplicate-insensitive aggregates, they propose a
technique called digest diffusion, based on flooding.
Directed diffusion [15] provides a scalable and robust

paradigm for communication in sensor networks, focusing
on robustly moving specific pieces of information from one
place in the network to another. Techniques are presented
for establishing and maintaining the diffusion gradients that
are used to guide data collection. Note that SG() and SF ()
of a synopsis diffusion algorithm may be implemented as
filters within directed diffusion.
Gupta et al. [14] propose a gossip-based fault-tolerant ap-

proach for computing aggregates over large process groups.
However, the solution is not energy-efficient, relies on even-
tual convergence, and some of the assumptions (e.g., all the
processes are synchronized with different phases of the al-
gorithm) are impractical for real sensor deployments.
Bawa et al. [5] have independently proposed duplicate-

insensitive approaches for estimating certain aggregates in
peer-to-peer networks. However, the work mainly focuses
on the different semantics of the computed aggregates and
the required topology and algorithms to achieve that. They
do not address the formal requirements of the algorithms;
they use a peer-to-peer network for evaluation and do not
consider many of the sensor-relevant issues addressed in
this paper.
There has been a flurry of recent work in the data stream

community devising clever synopses to answer aggregate
queries on data streams (see [3, 22] for surveys). This work
has not focused on the ODI synopses required for synopsis
diffusion. Note that synopsis diffusion introduces two com-
plications beyond traditional data streams. First, the data
is not presented as a sequential stream to a single party.
Instead, the data is spread among multiple parties and the
aggregation must occur in-network. Specifically, our synop-
sis fusion function merges two synopses, not just a current
synopsis with a next stream value. More closely related is
work on distributed streams algorithms [11, 12], which also
requires the merging of multiple synopses. Second, previ-
ous data streams work has not focused on duplicate insen-
sitivity. (Although it has focused on aggregates that are by
definition duplicate-insensitive, such as Count Distinct.)
One exception is a recent paper by Tao et al. [26] that uses
duplicate-insensitive counting in mobile environments.
SIA [25] uses similar algorithms (e.g., a variant of FM

for counting, sampling for computing holistic aggregates)
as ours. However, it focuses mainly on the security aspects
of the algorithms. It assumes aggregation over a tree, and
does not address the duplicate-insensitive properties of the
algorithms.
Considine et al. [6] is the most closely related work to

ours. As mentioned in Section 1, they independently pro-
posed using duplicate-insensitive sketches for robust aggre-

gation in sensor networks and demonstrated the advan-
tages of the Rings topology over previous tree-based ap-
proaches. Our work extends their work in a number of
important ways: we present the first formal definition of
duplicate-insensitive synopses; we prove powerful theorems
characterizing ODI synopses and their error guarantees—
their paper has no analogous result; we present solutions
for a wider range of aggregates; we consider techniques for
adaptive rings that reduce message loss; and our simula-
tion results use a more realistic communication loss model,
and consider scenarios not addressed in their paper such as
correlated node failures.

8. CONCLUSIONS
In this paper, we present synopsis diffusion, a general

framework for designing energy-efficient, highly-accurate
in-network aggregation schemes for sensor networks. Syn-
opsis diffusion enables aggregation algorithms and message
routing to be optimized independently, through its use of
order- and duplicate-insensitive (ODI) synopses. Our pa-
per is the first to define and study this important class of
synopses; previous work only considered isolated examples
of such synopses. We prove the powerful and somewhat
surprising result that four easy-to-check properties on the
synopsis generation and fusion functions characterize ODI
synopses. We give a number of examples of aggregates
that can be computed in-network using ODI synopses. We
have shown how ODI synopses can provide the implicit ac-
knowledgments for network transmissions. In addition, we
show that the light-weight monitoring of transmissions us-
ing these acknowledgments can be exploited to create an
energy efficient and adaptive aggregation topology. Finally,
we provide an extensive performance study on a realistic
simulator demonstrating the significant robustness, accu-
racy, and energy-efficiency improvements achieved by an
ODI-synopsis based approach running over our adaptive
aggregation topology.
Our ongoing efforts on synopsis diffusion include imple-

menting and evaluating it by using real sensor deployments,
studying the effects of sensor mobility on synopsis diffusion
overAdaptive Rings (see [23] for preliminary results), and
developing ODI synopses for additional aggregates.
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Appendix
Proof of Theorem 1. (sketch) Consider an arbitrary
execution of synopsis diffusion, producing a synopsis s. Let
G be the aggregation DAG corresponding to this execution
(Figure 3(a)), and let u be the node in G that outputs s.
In this proof, we will perform a series of transformations
to G that, by properties P1–P4, will not change the out-
put of u, and yet will result in the canonical left-deep tree
(Figure 3(b)).
First, let G1 (Figure 13) be the tree rooted at u cor-

responding to G, resulting from replacing each node in G
with outdegree k > 1 with k nodes of outdegree 1, replicat-
ing the entire subgraph under the original node for each of
the k nodes. This may create many duplicate SF and SG
nodes. Also, any node in G without a path to x is discarded
(it did not affect the computation of s). G1 corresponds to
a valid execution because SF is deterministic (so applying
it in independent nodes results in the same output, given
the same inputs), and likewise SG(r) = SG(r) is a special
case of property P1. Note that there is exactly one leaf in
G1 for each tuple in the synopsis label SL(s).
Second, by properties P2 and P3, we can reorganize G1

into an equivalent tree G2 where the leaves of G2 are sorted
by Πq({r}) values: leaf SG(ri) precedes leaf SG(rj) only if
Πq({ri}) ≤ Πq({rj}).
Third, for each pair of adjacent leaves SG(ri), SG(rj)

such that Πq({ri}) = Πq({rj}), we can reorganize G2 (by
applying P2 and P3) such that they are the two inputs to an
SF node. By property P1, both inputs are the same synop-
sis s′, so by property P4, this SF node outputs s′. Replace
the three nodes (the SF node and its two leaf children)
with one of the leaf nodes (say the left one). Repeat until
all adjacent leaf nodes are such that Πq({ri}) < Πq({rj}).
Call this G3. Note that there is exactly one leaf in G3 for
each value in Πq(SL(s)).
Finally, reorganize the tree G3 using P2 and P3 into a

left-deep tree G4 (Figure 3(b)); this is precisely the canoni-
cal binary tree. In particular, there is exactly one leaf node
in G4 for each value in V = Πq(SL(s)), and the left-deep
tree corresponds to the definition of SG∗(V ). Since per-
forming the SG and SF functions as indicated by G4 pro-
duces the original output s (i.e., the transformations have
not changed the output), the algorithm is ODI-correct.
It is not difficult to show that each of the properties is

necessary by considering aggregation DAGs with at most
four sensor readings (omitted due to page limitations). For
example, if property P4 were not true, then SF (SG(r1),
SG(r1)) would not produce the synopsis that the canonical
tree SG(r1) does.
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