A Macroscope in the Redwoods

Gilman Tolle,
Joseph Polastre,
Robert Szewczyk, and
David Culler
Computer Science Division,
University of California,
Berkeley
Berkeley, CA 94720

ABSTRACT

The wireless sensor network “macroscope” offers the po-
tential to advance science by enabling dense temporal and
spatial monitoring of large physical volumes. This paper
presents a case study of a wireless sensor network that recorded
44 days in the life of a 70-meter tall redwood tree, at a
density of every 5 minutes in time and every 2 meters in
space. Each node measured air temperature, relative humid-
ity, and photosynthetically active solar radiation. The net-
work captured a detailed picture of the complex spatial vari-
ation and temporal dynamics of the microclimate surround-
ing a coastal redwood tree. This paper describes the de-
ployed network and then employs a multi-dimensional anal-
ysis methodology to reveal trends and gradients in this large
and previously-unobtainable dataset. An analysis of system
performance data is then performed, suggesting lessons for
future deployments.
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1. INTRODUCTION

Wireless sensor networks offer the potential to dramati-
cally advance several scientific fields by providing a new kind
of instrument with which to perceive the natural world. As
the telescope allowed us to perceive what is far away and
the microscope what is very small, some refer to sensor net-
works as “macroscopes” [5] because the dense temporal and
spatial monitoring of large volumes that they provide offers
a way to perceive complex interactions. As the technology
has progressed, we have gotten ever closer to obtaining such
macroscopic views of previously unrecorded phenomena (9,
11}, |15]. This paper reports on a case study of microclimatic
monitoring of a coastal redwood canopy, a case study that
we believe has clearly crossed that threshold. Using a large
number of wireless micro-scale weather stations we have ob-
tained an unprecedented picture of environmental dynamics
over such a large organism. Here we describe the study,
present an overview of the data that has been obtained, and
use a multidimensional analysis methodology to more deeply
understand the dense and wide-ranging spatiotemporal data
obtained from the macroscope.

2. MOTIVATION

In meeting with a collection of local biologists, we began
with the question of what would they like to observe that
they simply cannot measure today. The responses covered
a wide array of interests, including the dispersal patterns of
wind-borne seeds, the water profiles experienced by spawn-
ing salmon, insect densities across riparian environments,
and the microclimate of meadow and woodland transects.
In classifying these desires against the requirements they
place on the underlying technology and the state of the art
in the measurement and analysis techniques, we arrived at
an initial choice of studying the ecophysiology of coastal
redwood forests.

The microclimate over the volume of an entire redwood
tree is known to have substantial variation and to have sub-
stantial temporal dynamics. When you walk in the forest
it is temperate and moist, despite the wide variation in
weather conditions. The top of the tree experiences wide
variation in temperature, humidity, and, of course, light,
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structure of the tree. For example, as the sun rises, the top
of the canopy warms quickly. This warm front moves down
the tree over time until the entire structure stabilizes or until



cooling at the canopy surface causes the process to reverse.
Humidity fronts also move through the canopy, but the pro-
cess is complicated by the tree moving so much water up
from the soil and into the air. At some point, the observed
humidity is driven by the transpiration process and decou-
pled from the prevailing climate conditions. The biologists
working in this area had substantial experience with sensors
for measuring the relevant climatic factors and had devised
methods for instrumenting trees using conventional technol-
ogy. They would climb the tree to attach a winch near the
top, typically 50m to 70m up, and haul a suite of weather
monitoring instruments up the vertical transect with a very
long serial cable connecting to a battery powered data logger
at the base. With this limited apparatus, they were able to
validate that there was substantial variation, but they could
not get a detailed picture of the entire structure over time.
This defined our challenge.

Together we designed a wireless micro-weather station
based on the Berkeley Motes manufactured by Crossbow.
The requirements and design of the node are described in
Section[f.I] We built upon the established system, network-
ing, and data access technology provided by TinyOS [7],
MintRoute |18], and TinyDB [8]. This provided a flexible
basis for both the ad hoc multihop routing and the range
of query processing the biologists might want to explore.
However, as this provided much more complex functionality
than, for example, the dedicated sense-and-send capability
deployed on Great Duck Island [17], we provided a simple
internal data logging backup. We also had to develop a
GPRS base-station to provide the transit link between the
deployment site and the Internet. The requirements and de-
sign of the network and software architecture are described
in Section In addition to the base technology, we found
that we needed to create an experimental methodology that
described how to calibrate a large collection of instruments
en masse, deploy them, and collect the data. This aspect is
outlined in Section 4.3

Having carried out a 44-day study of trees in a study area
in Sonoma California, the main thrust of this paper is show-
ing the data we were able to obtain: a month in the life of a
redwood tree. After the initial excitement of seeing that the
data really showed the kinds of dynamic gradients that the
biologists were hoping to see, we spent months figuring out
how to analyze and present the data systematically. Here
we illustrate one such methodology. We start out by viewing
the entire network as a single instrument. This allows us to
summarize the overall climatic distribution with a substan-
tial sampling over space and time. Then we examine time
series data using the entire network as a distributed instru-
ment. We also examine the spatial characteristics, summa-
rized over the duration of the study. After understanding
these overall characteristics, it is much more enlightening to
examine the detailed dynamics over space and time. Ideally,
this is done by movies, but we present snapshots here.

3. RELATED WORK

Several prototype sensor networks have been used to mon-
itor environmental parameters within a well-defined spatial
region.

Researchers at the Center for Embedded Networked Sens-
ing deployed a sensor network called the Extensible Sens-
ing System into the James Reserve Forest |4]. The ESS
has been organized into various topologies, with up to 40

nodes. Directed Diffusion and Tiny Diffusion are used as a
reliable publish-subscribe middleware system to enable run-
time queries for data collection and sensor reconfiguration
|14]. Microclimate sensors, and soil temperature, moisture,
and nitrate sensors are all present within the ESS. The ESS
has been used to monitor temperature and humidity in six
bird nesting boxes for a period of several days.

Cardell-Oliver et al. measured waterflow through soil dur-
ing periods of active rainfall |3]. This sensing task required
a network that could react to the beginning of a rainstorm
by beginning to sample at a high temporal frequency, then
return to an infrequent monitoring mode after the end of the
storm. Their work shows readings taken from 3 soil moisture
sensors over 15 days.

In a system called GlacsWeb, researchers at the University
of Southampton deployed 9 sensor nodes inside a glacier
|11]. The nodes monitored pressure, temperature, and tilt,
in order to monitor glacier melting behavior. Their work
showed the pressure on a single sensor falling over the course
of seven days as the temperature and tilt remained the same.
Additionally, the system was able to track changes in the
tilt of the base station over several months as warm weather
caused the shape of the glacier to change.

As an experiment in adaptive sampling methods, a hang-
ing autonomous vehicle was deployed into the James Reserve
by researchers at UCLA and USC [1]. The hanging vehicle
monitored microclimate over a plane perpendicular to the
ground instead of over a flat area. Using this technology,
the researchers interpolated and plotted solar radiation in-
tensity over a 70m by 15m transect of the James Reserve
forest.

To study the movements of nesting birds, researchers at
the University of California, Berkeley deployed 2 networks
with a total of 147 nodes onto an island on the coast of
Maine, called Great Duck Island [|9]. The GDI deployment
used a combination of ground-emplaced motes to monitor
microclimate, and motes placed in burrows to detect the
presence of birds. The size of this network was steadily in-
creased until it covered an 221m by 71m ellipsoidal pattern.
The occupancy data collected by this network was verified
by a superimposed network of cameras. The researchers
showed 16 days worth of temperature readings from a single
bird burrow, and correlated the rises in temperature with
the presence of a nesting bird [9]. Two years later, the re-
searchers demonstrated a interpolation of surface tempera-
ture and burrow temperature at a single instant in time over
the complete deployment area [16].

There is, of course, a wealth of biological studies that used
small collections of data loggers and remote sensing to study
temporal and spatial gradients in forest microclimate |10}
12, 13]. We apply some of their analysis methods to data
obtained from our wireless sensor network.

4. DESIGN

Gathering data on the environmental dynamics around
70-meter tall redwood tree for 44 days requires robust sys-
tem design and a careful deployment methodology. We se-
lected a suite of sensors, integrated them with an existing
wireless sensor node platform, and designed a package that
both resists the elements and allows the sensors access to
the environment. We used the latest TinyOS and TASK
software for the node operating system, networking stack,
and data collection framework. Finally, we performed two



separate calibration procedures to test the system prior to
placing it in the field, and then spent a day in the forest
with ropes, harnesses, and a notebook.

We decided on the following envelope for our deployment:

Time: One month during the early summer, sampling all
sensors once every 5 minutes. The early summer con-
tains the most dynamic microclimatic variation. We
decided that sampling every 5 minutes would be suffi-
cient to capture that variation.

Vertical Distance: 15m from ground level to 70m from
ground level, with roughly a 2-meter spacing between
nodes. This spatial density ensured that we could cap-
ture gradients in enough detail to interpolate accu-
rately. The envelope began at 15m because most of
the foliage was in the upper region of the tree.

Angular Location: The west side of the tree. The west
side had a thicker canopy and provided the most buffer-
ing against direct environmental effects.

Radial Distance: 0.1-1.0m from the trunk. The nodes
were placed very close to the trunk to ensure that we
were capturing the microclimatic trends that affected
the tree directly, and not the broader climate.

Figure 1] shows the final placement of each mote in the
tree. We also placed several nodes outside of our angular
and radial envelope in order to monitor the microclimate in
the immediate vicinity of other biological sensing equipment
that had previously been installed.
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Figure 1: The placement of nodes within the tree

4.1 Hardware and Network Architecture

The sensor node platform was a Mica2Dot, a repackaged
Mica2 mote produced by Crossbow, with a 1 inch diameter
form factor. The mote used an Atmel ATmegal28 micro-
controller running at 4 MHz, a 433 MHz radio from Chip-
con operating at 40Kbps, and 512KB of flash memory. The
mote was connected to digital sensors using 12C and SPI
serial protocols and to analog sensors using the on-board
ADC.

The choice of measured parameters was driven by the bio-
logical requirements. We measured traditional climate vari-
ables — temperature, humidity, and light levels. Tempera-
ture and relative humidity feed directly into transpiration
models for redwood forests. Photosynthetically active radi-
ation (PAR, wavelength from 350 to 700 nm) provides infor-
mation about energy available for photosynthesis and tells
us about drivers for the carbon balance in the forest. We
measure both incident (direct) and reflected (ambient) levels
of PAR. Incident measurements provide insight into the en-
ergy available for photosynthesis, while the ratio of reflected
to incident PAR allows for eventual validation of satellite
remote sensing measurements of land surface reflectance.
The Sensirion SHT11 digital sensor provided temperature
(£ 0.5°C) and humidity (+ 3.5%) measurements. The in-
cident and reflected PAR measurements were collected by
two Hamamatsu S1087 photodiodes interfaced to the 10-bit
ADC on Mica2Dot.

The platform also included a TAOS TSL2550 sensor to
measure total solar radiation (300nm - 1000nm), and an
Intersema MS5534A to measure barometric pressure, but
we chose not to use them in our deployment. During cali-
bration, we found that the TSR sensor was overly sensitive,
and would not produce useful information in direct sunlight.
Because TSR and PAR would have told roughly the same
story, and because PAR was more useful from the biology
viewpoint, we decided not to gather data on total solar ra-
diation. As for the pressure sensor, barometric pressure is
simply too diffuse a phenomenon to show appreciable differ-
ences over the height of a single redwood tree. A standard
pressure gradient would exist as a direct function of height,
but any pressure changes due to weather would affect the
entire tree equally. Barometric pressure sensing should be
useful in future large-scale climate studies.

The package for such a deployment needs to protect the
electronics from the weather while safely exposing the sen-
sors. Our chosen sensing modalities place specific require-
ments on the package. Standardized temperature and hu-
midity sensing should be performed in a shaded area with
adequate airflow, implying that the enclosure must provide
such a space while absorbing little radiated heat. The out-
put of the sensors that measure direct radiation is dependent
on the sensor orientation, so the enclosure must expose these
sensors and level their sensing plane. The sensors measuring
ambient levels of PAR must be shaded but need a relatively
wide field of view.

The package designed for this deployment is shown in [Fig]
The mote, the battery, and two sensor boards fit in-
side the sealed cylindrical enclosure. The enclosure is milled
from white HDPE, and reflects most of the radiated heat.
The endcaps of the cylinder form two sensing surfaces — one
captures direct radiation, the other captures all other mea-
surements. The white “skirt” provides extra shade, protec-



tion of the bottom sensing surface from wind and water, and
it serves as an attachment point to the tree.

Top sensing surface:
incident PAR and TSR

O-rings

Cylindrical enclosure

Protective Skil’l\

Bottom endcap

Bottom sensing surface
temperature, humidity,
barometric pressure,
reflected PAR & TSR

Figure 2: Sensor node and packaging

The gateway between the sensor network and the wider
world was the Stargate system developed by Intel Research
— a PC-class node intended to run from batteries and solar
panels, housed in a sealed package for protection from the
elements. Data from the sensor network nodes was collected
over an Mica2 node attached to RS232 serial, stored in a
local database, and then transmitted over a GPRS cellular
modem to an offsite database.

4.2 Software Architecture

Instead of building a custom application, we chose to use
the publicly available TASK system developed by UCB and
Intel Research Berkeley [2]. It provides a query-based frame-
work linking a network of sensors to a database running on
a gateway. TASK supports duty cycling of the nodes for
power conservation and robust routing for data collection.

To meet the lifetime requirements of our deployment enve-
lope, we needed to perform power management on the node.
TASK uses a duty-cycling approach in which the network
wakes up periodically, takes sensor readings, stays awake
for a defined period of time to transfer the data back to the
base station, and then returns to sleep. Our network was
awake for 4 seconds every 5 minutes — a duty cycle of 1.3%.
Time synchronization was needed to schedule this network
wakeup, and TASK provided this service as well.

Collecting data from each node in the mesh network re-
quires a routing tree between the gateway and the nodes.
TASK builds upon MintRoute [18], which uses beacon mes-
sages to build an estimate of the number of transmissions
required to successfully send a packet to each neighbor.
MintRoute then selects the neighbor that minimizes the to-
tal number of expected transmissions required to forward a
packet to the base station, recursively constructing a routing
tree.

Because of the diversity of sensors in our sensing platform,
we desired a flexible data collection package. TASK includes
the TinyDB data collection framework, which presents the
metaphor of a database table in which each column repre-
sents a particular sensor and each row represents readings
taken at a particular time. Node ID, sample number, and
sample reception time are also represented as columns in
this virtual table. The data collection process begins with
a query over the table, using a SQL-like language called
TinySQL. TinyDB does support the computation of aggre-

gation functions over table columns, but for this deployment,
we used a simple selection query:

SELECT result_time, epoch, nodeid,
parent, voltage, depth,

humidity, humid_temp, hamatop, hamabot
FROM sensors

SAMPLE PERIOD 5 min

To provide a backup in case of network failure and to
establish a basis for analyzing the performance of the net-
work, we extended the TASK framework to include a local
data logging system. The data logger recorded every reading
taken by every query before the readings were passed to the
multi-hop routing layer, and stopped recording once the 512
kB flash chip was full. After the deployment, we attached
each mote to a serial connection, and then installed a new
program to transmit the contents of the flash over the serial
link. We chose to include a complete data logger because
we knew that the capacity of the flash was sufficient for the
duration of our deployment. Longer deployments should
consider including a storage system that supports multiple
resolutions [6], or one that can be partially retrieved over
the network.

Every reading received from the multihop network was
stored into a DBMS running on the Stargate gateway node,
as a staging area before we retrieved the results. We re-
trieved some results directly over the GPRS cellular modem
connection in real time, and we periodically attached a lap-
top computer to the Stargate in order to download the rest.
The GPRS connection was also used to remotely reboot the
gateway node in the event of failure.

4.3 Deployment Methodology

Collecting high-quality real-world data with a wireless
sensor network requires a comprehensive deployment strat-
egy that carefully tests and calibrates the sensors prior to
deployment. Our strategy used two calibration phases: roof
and chamber. Each phase provided performance data on
different subsets of the sensors installed on the mote. We
built several racks that could hold the motes in a known po-
sition and orientation, making it easier to move and install
the nodes for each phase.

The roof calibration provided a real-world data source for
the PAR sensors: direct sunlight. Direct sunlight provides
a much wider range of readings than can be achieved in an
environmental chamber, and using sunlight made it possible
to study the response of the upper PAR sensor to varying
incident light angles as the sun moved overhead. We chose
to use a roof for this calibration phase because it provided
a clear, unobstructed view of the sky. The sensors were left
on the roof in their racks for two days as we collected PAR
readings every 30 seconds. Reference data was collected by
a high-quality well-established PAR sensor. We established
that the PAR sensors were producing acceptable readings.

The purpose of the chamber calibration phase was to un-
derstand the response of the temperature and humidity sen-
sors to a wide range of phenomena. We placed the racks
of motes into a controllable weather chamber, and cycled
it between 5 and 30 °C and between 20 and 90 %RH as
the temperature and humidity sensors were sampled every
30 seconds. We then used this data to perform a two-point
calibration for each humidity and temperature sensor. The
results of this chamber calibration are shown in Section



After installing batteries, we placed racks of nodes in the
chamber, cycled it through several hours for a second cali-
bration, and without turning off the nodes, drove the racks
to the Grove of the Old Trees in Sonoma, California. With
the nodes still in the calibration racks, we issued a reset
command and then issued the query that would run for the
duration of the deployment. We started the query before
installing the nodes for two reasons: to check that each
node could synchronize with the gateway installed at the
site and to ensure that all nodes were operating correctly in
the event that connectivity was lost during the installation
process. Individual nodes were then installed in the tree.
A written log was kept of each node’s height in the tree,
distance from the trunk and compass orientation (North,
South, East, West). As a final step, we verified that the
gateway was receiving data from at least some of the nodes
before departing.

After the end of our deployment envelope, we brought the
nodes down from the tree and returned them to the calibra-
tion racks. Because the TASK persistent log could only be
accessed over a local serial connection, we had to dismantle
each mote before downloading the log. We also used this
opportunity to inspect each mote for weather damage, and
found even though a few nodes had been infiltrated by water
and dirt, the packaging was successful on most of the nodes.

5. ANALYSIS

When sampling for long periods of time at the high spa-
tial and temporal densities described in Section@7 very large
quantities of data are acquired. Our first reading was taken
on Tuesday, April 27th 2004, at 5:10pm, and our last reading
was taken on Thursday, June 10th 2004, at 2:00pm, nearly
44 days later. By taking a reading every five minutes from
four different sensors: temperature, humidity, incident pho-
tosynthetically active solar radiation (PAR), and reflected
PAR, the maximum number of readings we could have ac-
quired is 50,540 real-world data points per mote. With 33
motes deployed into the tree, we could have recorded 1.7
million data points. Extracting meaning from the resulting
set of 820,700 data points, a 49% overall yield, requires a
combination of expressive visualization and careful analysis.

5.1 Multi-Dimensional Analysis

Each data point collected by this sensor network can be
viewed as having a location in a three-dimensional space: a
time dimension, a height dimension, and a dimension cor-
responding to the sensor value itself. Even though the de-
ployment envelope did include a small amount of variation in
the radial location and distance from the trunk, the range of
possible locations were not covered densely enough to justify
considering these to be separate dimensions. Understanding
820,700 data points that lie in four different 3-dimensional
spaces, one for each sensor, is a daunting task. However,
analyzing the data becomes simpler if we project the points
onto a subset of the dimensions. We start by projecting all of
the points onto the value dimension, which will be referred
to as “stage 1”7. This transforms each 3-dimensional dataset
into a simpler 1-dimensional dataset that we can use to un-
derstand the range and distribution of the data independent
of space and time. We then begin to add dimensions back.
In stage 2, we project onto the 2-dimensional subspace de-
fined by time X value and use this projection to study the
temporal trends in the data values. In stage 3, we project

Sensor Min | Median+Quartile | Max
Temperature (°C) | 6.6 | 14.1 £ 3.7 32.6
Humidity (%RH) 16.4 | 65.5 £ 17.9 100.2
Incident PAR 0 384 £ 84.8 2154
Reflected PAR 0 0£0 180

Table 1: Range for each sensor

onto the 2-dimensional subspace defined by height x value
and look for spatial trends in the distribution of data values.
The 2-dimensional subspace of time x height offered little in-
formation, so it is omitted from this analysis. Once we have
examined the 1-D and 2-D subspaces, we have a better un-
derstanding of the trends in the data. Being aware of these
trends allows us to more effectively grasp the complexity in
the full 3-D dataset in stage 4.

The trends revealed in each stage of analysis are best
shown in a particular graph for that stage. The purpose
of stage 1 is to examine the overall range of the measure-
ments, and so we show a histogram. In stage 2, we see that
there are many more points in the time dimension than in
the height dimension. Thus, we use the day as a natural
grouping unit, and then present the distribution of readings
on each day using a collection of box plots. In stage 3, we
are focusing on spatial trends over many fewer points, so
we do not perform any grouping. We show one box plot
for each different height. In both stages, related box plots
will be shown on the same axis so that their medians and
spreads can be compared visually.

As is common to experimental sensor network deploy-
ments, missing values are scattered throughout time and
height. In response, our methodology works in spite of
missing values because it studies distributions. Missing val-
ues may shift the distributions, but they will not make the
analysis impossible to complete. The analysis of how much
the distributions can be shifted by missing values is left
for future work. In the fourth stage, when the analysis fo-
cuses on individual readings that have been localized in both
space and time, careful interpolation will be used to produce
cleaner trends.

In the first two stages, we show that even without explic-
itly considering spatial information, a collection of sensors
can produce more detailed information on the range of a
temporal phenomenon. When we include the spatial infor-
mation in the third and fourth stages, we will present new
data that can only be attained with a dense network of wire-
less sensors.

5.2 Range Analysis

The first step of the analysis is the simplest, but provides
a grounding for future work and can highlight the presence
of bad data. We can study the range of each microclimatic
variable by projecting onto value, removing the effects of
both time and height. The ranges are shown in Table
This first step lets us sanity-check the data by ensuring that
the readings are within the normal ranges for the phenomena
under study. Both temperature and humidity are normal,
and the maximum readings collected by the two PAR sensors
are the expected values for direct and reflected sunlight. We
also examined the raw ADC values and determined that
none of the sensors were being saturated.



Then, we can examine the distribution of the readings.
Figure shows the distribution of the sensor readings for
each of the four sensor types. Temperature shows a uni-
modal distribution, while humidity shows a bimodal distri-
bution. We attribute the extra peak at 100 %RH to the
fog that is so common on the California coast in the early
summer. In the incident PAR readings we see a bimodal
distribution, because full sun and no sun are present for
more time than the transitions in between. The reflected
PAR readings do not show the same bimodal distribution,
because the direct sunlight is diffused by the reflection pro-
cess.

5.3 Temporal Trends

By projecting onto the time and wvalue dimensions, we
collapse the readings taken by different motes at the same
timestep. We can then extract the purely temporal trends in
the local microclimate. Figureshows the distribution of
the sensor readings taken on each of the 44 days. Each box
shows the median of the data and the interquartile range be-
tween the 25th and the 75th percentile. The dashed whisker
lines contain all the data values that fall within 3 multiples
of the interquartile range, and the outlying points show all
data outside of that range. In the incident PAR box plots,
the high density of outlying points appears to be a solid
line, but these are still outliers. In the reflected PAR box
plots, the extremely low sensor readings were quantized in
such a way that the outliers appear to be dashed lines, but
these are outliers as well. By looking at the daily median
readings, we can see weather movement in the large. Week
one includes warm, dry days and cold, wet days, but the
three following weeks contain predominantly cold, wet days.
Weather slowly improves in the fifth week, only to return to
cold and wet in the final week.

Each daily distribution contains a collection of readings
taken from a large number of sensors spread over many dif-
ferent points. Thus, the range of readings seen on a given
day accurately captures the range of microclimatic parame-
ters experienced by the whole tree on that day. On May 7th,
for example, we see that the bulk of the relative humidity
readings lie above 95 %RH, and at no time during the day
is the relative humidity lower than 75 %RH. This suggests
that the entire tree is encased in fog, for nearly all of the
day. If we examine the range of the incident PAR readings
on the same day, we can see that the distribution is skewed
much lower than on the neighboring days, confirming our
earlier hypothesis. A single weather sensor near the top of
the tree would show a very different range of readings than
one placed near the bottom, but by combining readings from
spatially-distributed sensors, we can better understand the
overall temporal trends.

5.4 Spatial Trends

By projecting onto the height and value dimensions, we
collapse the temporal effects and can then look for spatial
trends. Figureshows the distribution of all the readings
taken by each sensor at each height. In the PAR readings, we
can see a spatial trend in both the mass of the distributions
and in the outliers. Light is absorbed by the canopy leaf
mass as it propagates downward, which lessens the amount
of light that reaches the lower portions of the tree. By ex-
amining the distribution of the readings, we can understand
whether this is an absolute relationship or a tendency. In

the mass of the PAR readings, we can see that lower sensors
receive less light. However, though the mass of the distribu-
tion at each height moves closer to zero as height decreases,
we see in the outliers that the incident PAR sensors still see
almost the full range of light readings at every height. Even
the lowest node still receives full sun occasionally, due to
gaps in the leaf mass. In contrast, we see that the reflected
PAR sensors at the lower levels of the tree never do receive
the same amount of light as the higher sensors. These trends
in the falloff of light over height and in the changing ratios
of incident light to reflected light can help to ground the
theoretical models of canopy density.

We see a very different spatial trend in the temperature
and humidity readings: nothing. Every sensor reached prac-
tically every point in the space of possible temperature and
humidity readings. This suggests that the amount of vari-
ation over time overwhelmed the amount of variation over
space. However, instead of just collapsing the temporal vari-
ation, we can explicitly remove it and focus more closely on
the spatial trends. At every timestep, we take the mean of
all the sensor readings. We can subtract the timestep mean
from each sensor reading, and examine the distributions of
the differences (Figure B(d)).

We now see that the lowest sensors in the tree are colder
than average, in a way that is never seen at the top of the
tree. As a side note, the anomalously wide-ranging sensor
in the middle of the tree was actually placed 3 meters out
from the trunk, outside of the deployment envelope. Thus,
it was less insulated by the canopy and saw a wider range
of temperatures. In the relative humidity readings, we see
the opposite trend: the bottom of the tree can be up to 40
%RH more humid than average, the top of the tree can be up
to 30 %RH less humid than average, and these deviations
are never reached by the opposing regions. Interestingly
enough, we also see that the higher sensors can be up to 10
%RH more humid than average and that the lower sensors
can be up to 7 %RH less humid than average. These results
suggest that spatial gradients may be present over the height
of the tree, but we cannot confirm this without correlating
the readings in time.

5.5 Combined Analysis

When considering both time and space, we can start to
understand just how dynamic the microclimate surrounding
a coastal redwood truly is. We focus on a single day, May
1st, because it contains a wide range of temperature and
humidity readings throughout the course of the day, and
many different amounts of spread over space. At this stage
of the analysis, we no longer study distributions. Rather,
we now consider the individual data points in order to ex-
tract dynamic behavior. Because the dataset is now fully
three-dimensional, we must worry about an additional pro-
jection: onto two-dimensional paper. First, we use a fig-
ure that shows the actual data points in time X value and
height x value on two separate plots. Then, we show a com-
bined plot that uses color to represent the value dimension.

Figure 4 shows a day in the life of a redwood tree, as seen
through our network. The charts on the left show the tem-
poral trends of all the sensors, but they discard information
about each sensor’s location in space. The charts on the
right place each sensor in its correct spatial location, and
show the spatial gradients at a single moment in time.
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Figure 3: Multidimensional analysis reveals distributions and trends
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We can see the effects of solar movement in the two bottom-
left charts. The dots represent individual light readings,
while the line represents the mean of the light readings at
each timestep. Incident PAR clearly follows the normal
movement of the sun as it rises and then sets, but reflected
PAR is more noisy because the absolute level of the read-
ings is much lower, and the sunlight must take a more com-
plicated path to reach the sensor. One would expect the
mean illumination in the morning and in the afternoon to
be roughly the same, but the increased quantity of light in
the afternoon can be accounted for the placement of our sen-
sors on the western side of the trunk. For PAR, we choose
not to show each sensor’s individual trend because the in-
dividual sensors do not move in unison, even though the
general trend reflects the solar movement. We explore this
effect more thoroughly in Section [f]

In the two upper-left charts, we can see the movement
of temperature and relative humidity throughout the day.
Each line represents the readings taken by an individual
sensor. We see that both the temperature and the spread of
temperatures throughout the tree increase as the sun rises.
Using only this graph, we cannot see whether the increased
spread represents a particular trend over space or whether
it is due to random local variations in air movement and
solar access. Temperature peaks in the afternoon, and then
descends after the sun has set. The setting of the sun also
drastically reduces the differences between the sensors, con-
firming that the temperature spread is due to solar influence.

The movement of relative humidity tells an entirely dif-
ferent story. Prior to sunrise, the humidity around the tree
changes very quickly, and over a notably wide range. In 30
minutes, we see a change of 50 %RH. One would normally
expect relative humidity to move inversely with tempera-
ture, because cooler air can hold less water and therefore
presents a higher %RH for the same absolute amount of wa-
ter present in the air. We see this effect in the matched
peaks at about 2pm. However, the humidity movements in
the morning are not matched by corresponding temperature
movements. Thus, they must represent changes in the local
absolute humidity. Moving forward, we see that the rising
sun is correlated with similarly drastic humidity changes,
unmatched by temperature changes. Once the sun has risen,
we see that temporal variability is reduced, but that spatial
variability remains high. However, the highlighted dip in
humidity occurred during the day, and suggests that every
microclimatic trend has its own exceptions. In the after-
noon, humidity decreases overall, and after the sun sets, the
spread in humidity reaches its lowest point. The tree’s mi-
croclimate has entered the still, calm night.

On the right side of the figure, we can see a new way to
visualize the local microclimate — a view that can only be
obtained through a sensor network. The stick represents
an instantaneous gradient over the height of the tree, taken
at the timestep shown by the vertical marker line on the
time-series charts. We have chosen to highlight an extremely
rapid dip in humidity — a dip uncorrelated with temperature
or PAR. Examining the lower-right PAR charts, we see that
the top of the tree is receiving more light, both incident and
reflected, at this moment. However, the incident light falls
off less quickly than the reflected light does, matching the
spatial trend seen in Section [5.41 The individual sensors
are scattered around the trend line, but the correct trend is
present.

In the two upper-right charts, we can see the presence of
instantaneous temperature and relative humidity gradients.
At this time, the top of the tree is 5 °C warmer and 40 %RH
less humid than than the bottom of the tree. We can also
see that temperature and humidity change in a nonlinear
fashion over height, and we have modeled the gradient with a
quadratic equation instead of with a linear equation. Unlike
in the PAR gradient, the individual sensors are very close to
the trend line. The rightward-facing arrows indicate sensors
that were placed on the east side of the tree, outside of the
deployment envelope. Because this snapshot was taken in
the morning, we can see that the eastern sensors are warmer
than the gradient line would suggest.

Even with these instantaneous snapshots of spatial gradi-
ents, we still cannot see how the gradient changes over time.
We know that the top of the tree is less humid than the bot-
tom, but we do not know how much more humid it was in
the last timestep. Fortunately, our data allow us to exam-
ine the temporal movement of spatial gradients as well. A
plot like that of Figure [5|is one way of showing these trends.
This figure shows time on the horizontal axis, height on the
vertical axis, and the magnitude of the reading with color.
The color at each height actually represents the interpolated
gradient line, as was performed on the right side of Figure
El For reference, this figure has a vertical line marking the
time shown in Figure [

This figure allows us to see the spatial gradients, and how
they change over time. At the marked time on the humid-
ity graph, the gradient is shown by the contrast between
the dark top of the figure and the bright bottom. Now, we
can see that the highly-curved humidity gradient persists for
only a short while after the snapshot time and then disap-
pears just as quickly as it arrived. We could see this brief
movement in Figure[d] but now we can see that the dip only
affects the upper sensors. Even though several other rapid
changes in humidity can be seen to affect all heights of the
tree equally, the presence of at least one such humidity gra-
dient suggests that the dense canopy can have a buffering
effect on the lower regions of the forest.

Looking at the rest of the data, we see that the top of
the tree usually leads in any movement of temperature or
humidity. However, as predicted by the spatial trend data
in Section the top of the tree can lag and the expected
gradient can reverse. The reasons for these movements, and
the effects of the newly-observable microclimate trends on
the life of a redwood tree, are left as future work for plant
biologists.

5.6 Ouitlier Rejection

When we first examined the data, we found many anoma-
lous readings. Some sensors never produced readings in the
normal range, or produced readings that did not track the
other sensors. Other sensors performed normally, but pro-
duced erroneous readings prior to dying. After investigating
many outlier detection methods, we found that battery fail-
ure was correlated with most of the outliers in the data.
Figure [f] shows the death of 4 sensors and the effect on their
temperature readings. Once the battery voltage falls from
a maximum of 3 volts to a minimum of about 2.4 volts, a
node’s temperature reading begins to rise far out of the nor-
mal range. Other nodes that did not produce any correct
data at all were also running on very low batteries.



Height (m)

Height (m)

Height (m)

Height (m)

Temperature (°C)

18:00

Relative Humidity (%RH)

12:00 18:00
Time

Incident PAR (umol/m?/s)

1500
1000
500
0
0:00 6:00 12:00 18:00
Time

Reflected PAR (pmollmzls)

0:00 6:00 12:00 18:00
Time

Figure 5: Change in spatial gradient over time



150

100

50

Temperature (°C)

5 6 7 8 91011121314 1516 17 18 19 20
Day

3

Voltage (V)

15
5 6 7 8 9 1011121314 1516 17 18 19 20
Day

Figure 6: Temperature outliers are correlated with
battery failure

The dependence of the reading on the battery voltage pro-
vided an excellent opportunity for automatic outlier rejec-
tion. Prior to performing the analysis whose results are dis-
played above, we removed all readings that were taken when
the node’s voltage was higher than 3 volts or lower than 2.4
volts. This removed nearly all of the outlying points in our
dataset. If the voltage reading is wrong, either the node
is sensing incorrectly or the battery is dying. Either one
suggests that the node’s data should not be trusted.

We also removed one node by hand after visually deter-
mining that its humidity sensor did not track the other
nodes, and removed 3 other humidity readings that were
above 100 %RH but did not correspond to voltage prob-
lems. Finally, we removed all sensors that did not produce
any readings at all, which included some sensors whose read-
ings had been entirely removed by the voltage screening.

5.7 Calibration Analysis

In this deployment, we found that calibrating the tem-
perature and humidity sensors on the nodes offered a large
relative increase in accuracy, but also found that the abso-
lute increase was small enough to be of minimal benefit. As
described in Section |4} we placed the motes in a controlled
weather chamber prior to placing them in the tree. For each
sensor, we gathered a range of temperature and humidity
readings, then used linear regression to derive a two-point
calibration equation. The mean of the temperature devi-
ations from the mean of the sensors was 0.35 ° C prior to
calibration, which suggests that the sensors are already quite
accurate “out of the box”. Applying the calibration equa-
tions to the chamber data resulted in an improvement in the
mean deviation from 0.35 °C to 0.18 °C. A similarly small
improvement was seen in the relative humidity sensors, as
the mean deviation improved from 1.24 %RH to 0.60 %RH.
These results suggest that the accuracy of the sensors used
in a network should be studied, but the calibration itself
may not dramatically improve the data quality for certain
mature sensor types.

5.8 Data Yield Analysis

We can also use a multi-dimensional analysis technique to
study the data delivery performance of the sensor network.
For each mote at each timepoint, consider it to report a 1
if it reports any data at all, and to report a 0 if it does not

report any data. We can then calculate a yield for each time
point by summing and dividing by the number of installed
motes. We can also calculate a yield for each node by sum-
ming and dividing by the number of time points. It then
becomes possible to examine the range of yields, and how
the yield varies over time and space. Figure shows a
multi-dimensional analysis of the data yield.

As seen in many other deployments, data yield over the
sensor network is often less than desirable, although the
technology is clearly maturing. The most common yield
percentage is, unfortunately, zero, though the distribution
is bimodal with a second mode at 40% yield. In the second
graph, we can see that all the times that have data have a
median around 40%. We also see that all of the timepoints
without any data are concentrated into 2 week-long peri-
ods. The period at the beginning resulted from an outage
at the gateway, while the period at the end resulted from
our process of periodically downloading the data stored in
the gateway. June 2nd is simply the last day on which we
took a snapshot of the data, as we had gone past the end
of our original deployment envelope. In the third graph, we
can determine that per-node yield is not at all correlated
with height. In the fourth graph, we examine the lifespan of
each individual node. Five nodes stopped functioning in the
second week, and four more nodes died thereafter. However,
the dying nodes only had the effect of lowering the maximum
yield, and the median yield was unaffected.

Previous deployments have shown that there is often a
large difference between the data yield received over the
network and the data yield offered by the nodes. We used
the data recorded by the data logger to capture the offered
yield so that we could make the comparison, and Figure
[7(b)| shows the same analysis applied to the data received
from the log. In the log data, we see a strongly bimodal
distribution, with peaks from 0-20% and 50-80%. The yield
does not vary within any given day, indicating that each log
was reliably recording data until the day on which the node
died. We see that most nodes seem to “die” on May 26th.
Actually, the logs filled up, and this explains the bimodality
in the earlier distribution. In the third and fourth graphs,
however, we can see that four nodes achieved higher than
65% yield because their logs did not fill up on May 26th.

The logs filled up early because each node was also record-
ing data during the testing and calibration phases, lowering
the amount of space available for deployment data. In addi-
tion, we did not clear the logs for all nodes prior to placing
them in the tree, fearing that the effort required to disas-
semble each node, attach it to a PC, download a log-clearing
program, and reassemble it would increase the likelihood of
later node failure. However, some nodes received more test-
ing than others, and thus had less available space at the start
of the real deployment. This lesson suggests that logfile ma-
nipulation and other such node and network management
functions should be accessible through the network itself.

It would have been possible to treat this deployment as
a storage-free network of sensors in which all data is imme-
diately transferred to the gateway. It would also have been
possible to treat it as a collection of independent battery-
powered data loggers with no communications capability,
but neither design would have provided the best yield. We
see that for the week after the log filled up, the nodes con-
tinued to return data over the network. However, once the
network portion was finished, we obtained still more data
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Figure 7: The network and the log perform differently, but neither one is perfect

from several of the logs. These effects both extended the us-
able range of the deployment data, suggesting that a well-
designed sensor network should not just be a distributed
data logger, but should not just be a network either.

6. DISCUSSION

Many lessons were learned from this close collaboration
with biologists. We discuss two such lessons, and then out-
line some future work that can be performed with this data.

6.1 Lessons Learned

When the sensors get small enough and the phenomenon
gets directional enough, tiny differences in positioning get
magnified into large effects on the resulting data. This is
especially noticeable in our PAR data. During an otherwise
clear day, each mote’s PAR readings fluctuated between full
sun and minimal light, and the pattern of each mote’s fluc-
tuations were different. At first, we attributed this to the
wind moving the foliage and blocking solar access to dif-
ferent motes at different times. In Figure [8] we actually
see that the fluctuation pattern is nearly the same on two
different days. This suggests that our nodes were actually
seeing consistent patterns of light and shadow as the sun
moved through subsequent days. Slightly different orienta-
tions for each light sensor resulted in different fluctuation
patterns for each node, resulting in the seemingly “random”
appearance of the light data. Our noisy data was actually a
deterministic response by a highly focused sensor.

In addition to the challenge of physical installation, the
success of a deployment depends crucially on the the man-
agement of the network. In the Section [5.8] we saw that
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local logging compensated for failures in the network. Un-
fortunately, the local logs on most of the nodes ran out of
space during the run, which was not discovered until the
nodes were brought in from the tree. The TASK architec-
ture did include the ability to remotely reboot the base sta-
tion, but did not provide for comparable failure detection
and response in the sensor network itself. More broadly,
any long-term sensor network deployment should include a
network monitoring component that can provide real-time
information about the performance of the system, and can
alert the researchers when the system begins to behave ab-
normally. The network can then provide a means to detect
and compensate for failures in the logging, while the logging
provides a means to compensate for failures in the network.

6.2 Enabling Biological Study

Having verified the existence of spatial gradients in the
microclimate around a redwood tree, and having captured
enough data to track the changes in these gradients over
time, we can begin using this data to validate biological
theories. For example, plant biologists know that the rate
of sap flow through a tree varies over time, in response to
humidity, air temperature, and PAR. This newly-obtained
data from the macroscope could be used to build a quantita-
tive model of the effect of microclimatic gradients on the sap
flow rate. With a more detailed understanding of sap flow
and transpiration, biologists can work toward understand-
ing the large-scale processes of carbon and water exchange
within a forest ecosystem.

7. CONCLUSION

The sensor network macroscope offers the potential to ad-
vance the state of science by enabling dense temporal and
spatial monitoring of large volumes. We have demonstrated
a real-world sensor network deployment that delivers on this
promise. This particular instance of the macroscope has
captured the complex environmental dynamics of the mi-
croclimate surrounding a coastal redwood tree. Extracting
meaningful information from the large amount of data that
can be produced by a successful sensor network deployment
can be a challenging task, but a consistent framework of
multi-dimensional data analysis helps to make the problem
tractable.
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