
Contour Map Matching for Event Detection
in Sensor Networks

Wenwei Xue, Qiong Luo, Lei Chen, Yunhao Liu
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

{wwxue, luo, leichen, liu}@cs.ust.hk

ABSTRACT
Many sensor network applications, such as object tracking and
disaster monitoring, require effective techniques for event
detection. In this paper, we propose a novel event detection
mechanism based on matching the contour maps of in-network
sensory data distribution. Our key observation is that events in
sensor networks can be abstracted into spatio-temporal patterns of
sensory data and that pattern matching can be done efficiently
through contour map matching. Therefore, we propose simple
SQL extensions to allow users to specify common types of events
as patterns in contour maps and study energy-efficient techniques
of contour map construction and maintenance for our pattern-
based event detection. Our experiments with synthetic workloads
derived from a real-world coal mine surveillance application
validate the effectiveness and efficiency of our approach.

1. INTRODUCTION
Many sensor network applications monitor events in the physical
world, such as disaster monitoring [3][29], habitat monitoring
[19][27], industrial process control [1] and object tracking [12]
[13][21]. A typical event detection mechanism in recent work on
sensor databases is to set some thresholds for sensor readings in a
query [1][12][29]. The intuition is that, when an event occurs,
there will be changes in the readings of the sensors that are
affected by the event. For example, when an object moves, the
accelerometer attached to the object will report an increased
acceleration reading. Based on this reasoning, an application
program using thresholds will regard an event has occurred when
the sensor readings exceed the pre-defined thresholds.

Although this threshold-based approach is simple in the
implementation, it is usually difficult for users to specify suitable
threshold values for their events of interest because these values
depend on both the environment being monitored and the
application semantics. Moreover, thresholds alone may be unable
to fully specify an event for some applications. For instance, in a
coal mine surveillance application that we are involved with, a
gas leakage event is characterized as the gas_density sensor
readings at the source following a gradual decreasing trend, which

cannot be easily captured by discrete threshold values. Therefore,
we investigate a new alternative for event detection in sensor
networks.

Our proposed approach for event detection is based on the spatio-
temporal patterns in sensor readings instead of simple thresholds.
Our observation is that, since sensor networks are deployed in a
physical space and sensor readings are collected over time, the
changes in the sensor readings of networked nodes that are caused
by an event usually exhibit some spatio-temporal pattern. This
observation has been confirmed by various field studies and
analysis of real-world sensory datasets [11][14] [23][27].

Now that we convert the event detection problem into a pattern
matching one, the next question is how to solve the pattern
matching problem in sensor networks effectively and efficiently.
There has been a great wealth of literature on pattern matching
[2][28], but the challenge is to seek a solution that works for a
resource-limited network in a distributed, real-time, and energy-
efficient way. The solution we find is in contour maps of sensory
data distribution.

A contour map [5] of an attribute, e.g., temperature, for a sensor
network is a topographic map that displays the distribution of the
attribute value over the network. In the map, the geometric space
occupied by the network is partitioned into contiguous regions,
each of which contains sensor nodes of a range of similar readings.
These regions are called contour regions and the boundaries of
the regions are called contour lines or contours in short. We
define a snapshot of a contour map, or a map snapshot in short, as
the instance of the contour map at a specific point in time. Figure
1 shows a snapshot of the temp contour map (on the left) for a 2x2
network grid topology (on the right). The two contour regions in
different colors represent different temperature readings.

0

2 3

1

temp = 40 °C

temp = 30 °C

temp = 30 °C

temp = 30 °C

Figure 1: Temperature contour mapping on a 2x2 grid

Contour maps have been shown useful for a variety of sensor
network surveillance applications [12][24]. They come naturally

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGMOD 2006, June 27-29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006…$5.00.

145

to our work because they represent the sensory data distribution
over time and space. In our work, we propose energy-efficient
techniques to construct and incrementally update a number of 2-D
contour maps in a sensor network. Using these contour maps as
building blocks, we define events based on the spatio-temporal
patterns exhibited in the contour maps. More specifically, the
spatial pattern of an event is captured by the contours in a map
whereas the temporal pattern by the evolution of the contours
over time. In our approach, an event is detected when a user-
specified pattern matches the recent snapshots of a contour map
that fall in a sliding window. By this means, we solve the pattern
matching problem, in turn the problem of event detection in
sensor networks, through contour map matching.

Since events in the physical world are of a great variety, we use a
real-world coal mine surveillance application as a case study for our
work. In this application, hundreds of sensor nodes are deployed
throughout the channels in the mine to measure the density of
oxygen, gas and dust as well as the temperature, humidity and
structural integrity in the mine. For the safety of the workers, there
are two common classes of event-detection tasks in the application:

• Gas, dust and water leakage detection. The coal mine manager
wants to be notified immediately whenever the digging machines
reach a source of gas, dust or underground water in the mine and a
large amount of the substance breaks out.

• Oxygen density monitoring. A worker patrolling in the mine
needs to find a nearby spot of a high oxygen density to take a break
from time to time. In addition, the manager requires the detection of
regions of a low oxygen density.

We have identified and defined three common types of events for
this application in addition to a general pattern-based definition for
events. Each type of event is specified using a set of parameters that
describe the shapes of the contours in the map, including the
pyramids, the faults, and the islands. We have made simple SQL
extensions to specify these types of events as user-defined methods
and designed efficient algorithms to implement these methods in our
event-oriented query processor. Finally, we have evaluated our
approach using synthetic workloads that are derived from the
application.

The remainder of this paper is organized as follows. We describe
the in-network construction and incremental update of the contour
maps in Section 2. We give our pattern-based event specification in
Section 3. In Section 4, we briefly present the design of our event-
oriented query processor, mainly on the query execution and the
algorithms for contour map matching. In Section 5, we present a
performance study of our approach using synthetic workloads
derived from the real-world coal mine surveillance application. We
discuss related work in Section 6 and conclude the paper in Section
7.

2. CONTOUR MAPPING
In this section, we describe contour maps, the building blocks of our
pattern-based event specification. Our approach to contour mapping
is to construct and incrementally update a contour map hop by hop
from bottom up in the network as a special kind of data aggregation
[12][18][29], rather than collecting all sensor readings and
transmitting them to a server (i.e., the base station) to construct the
map centrally. The motivation is that, for current generation battery-
powered sensor nodes, power is the most limited resource and the

communication cost on wireless radio channel is the dominating
factor of power consumption. For instance, on the widely-used
Crossbow MICA2 motes [6], the cost of transmitting a bit is about
that of executing 1,000 instructions [19]. As a result, in-network
contour mapping is more energy-efficient than a simple, centralized
approach.

Section 2.1 describes the in-network construction of a contour map
and Section 2.2 the incremental update of the map. The spatial
interpolation on a random network topology is described in Section
2.3. In the remainder of the paper, we use the two terms “sensor
reading” and “attribute value” interchangeably.

2.1 In-Network Map Construction
In this paper, we assume a stationary sensor network and the base
station knows each node’s location in 2-D Cartesian coordinates.
This location information can be either measured manually, or
acquired by special hardware, such as a GPS module, attached to a
node. Moreover, as in the work by Hellerstein et al. [12], we
impose a rectangular m · n grid with the square cell length l on the
network topology. Each cell of the grid has at most one node inside
but not on the cell boundaries. The grid information (i.e., the values
of m, n and l) is produced at the base station and is disseminated
throughout the network. Subsequently, each node in the network
can calculate which grid cell it lies in.

Because wireless radio channels are unreliable, we adopt a multi-
path, ring-based routing scheme [4][20] for our in-network map
construction instead of using a single-path, tree-based routing
scheme [18][19][29]. In this multi-path routing scheme, the data
transmitted by a node is received by and processed on every
neighbor of the node that is one hop closer to the sink node. We call
these neighbors the parents of the node and the neighbors that are
one hop farther from the sink the children of the node. The same as
in single-path routing, a node in multi-path routing needs to transmit
its data only once in a sample period.

2.1.1 Partial Map Aggregation
In our in-network contour map construction, the data aggregate
generated and transmitted by a node is the contour map of a sub-
network rooted at the node. We call this data a partial map. A
partial map of a node consists of a set of disjoint contour regions. As
shown in Figure 2, each contour region is an orthogonal polygon in
2-D plane in our grid setting. An orthogonal polygon is a polygon
whose edges are in parallel with either the x-axis or the y-axis. Two
contour regions overlap if their intersection has a non-zero area
[22]. Regions that do not overlap are disjoint. We say that two
disjoint regions are adjacent if they have one or more coincident
edges (Figure 2 (a)).

adjacent

overlapping

not adjacent

(a) Adjacent and overlapping regions (b) Regions with holes

Figure 2: Example contour regions

A 2-D polygonal contour region is stored as a linked list [22] in a
partial map. Each element in the linked list is an array of vertices.

146

The first array in the linked list contains the vertices on the outer
boundary of the region in a counterclockwise order. Each of the
other arrays contains the vertices in a clockwise order on an inner
boundary of the region, i.e., the boundary of a hole (Figure 2 (b)).
Each vertex in an array is stored as a pair of x-y coordinates.

The map construction starts from each node generating a partial map
of its own. The partial map contains a single contour region unit,
which is the grid cell of the node. After a node receives the partial
maps from all children, it puts each contour region in these partial
maps and its own into a new set Pw. We call Pw the working partial
map of the node. Next, the node merges each pair of
adjacent/overlapping regions in Pw that satisfies some criterion. The
merging repeats until no pair of adjacent/overlapping regions in Pw
can be merged. We call the partial map generated at the end of this
merging the final partial map of the node, denoted as Pf. Then Pf is
transmitted to the parents of the node by broadcast.

Such partial map aggregation on a node requires only simple
operations on the polygonal contour regions. Three main classes of
operations involved are [22]:

(1) Area calculation. Compute the area of a polygon using the
coordinates of the vertices.

(2) Relationship checking. Identify whether two polygons overlap
or are disjoint. If two polygons overlap, check whether they are
exactly the same, one is contained in the other, or otherwise. If two
polygons are disjoint, check whether they are adjacent.

(3) Boolean operations. Compute the union, intersection and
difference of two polygons.

There are many existing algorithms in the literature for these basic
polygon operations [22]. The small computation overhead and
storage requirement of these algorithms make them applicable to
current generation resource-limited sensor nodes.

A crucial problem we have omitted so far is what criterion we
should adopt for a node to determine whether two adjacent or
overlapping contour regions in Pw can be merged or not. The
aggregation performance will be poor if we only merge regions that
contain nodes having the same attribute value. Moreover, this
criterion is unlikely to improve the mapping accuracy because
readings sampled by physical sensors are intrinsically unreliable
[29]. Another alternative is to divide the range of attribute value into
a number of equal-width buckets and merge regions that are in the
same bucket [12].

 (a) (b)

Figure 3: Adjacent contour regions with different relative size

The major drawback of these criterions is that they only consider
the attribute value but ignore another important factor, the area of
a region. Combining region area with attribute value, we are able
to capture the users’ tradeoff between the mapping accuracy and
the communication cost in a more flexible way. For instance, it is
usually reasonable to merge a tiny contour region into a neighbor

whose area is relatively much larger (Figure 3(a)), even if there is
a large difference between the attribute values of nodes in these
two regions. This merging saves communication cost of the tiny
region without affecting the mapping accuracy much. In contrast,
from some users’ perspective, it may be undesirable to merge two
adjacent regions when each of them has already occupied a large
portion of the grid space (Figure 3(b)), even if the attribute values
of the nodes in these two regions do not differ much.

Addressing the drawback, we design a criterion for contour region
merging that takes both the attribute value and the region area into
account. The criterion uses two user-specified parameters: (1) an
error bound ε ∈ (0, 1), and (2) a merging limit p ∈ (0, 1]. ε
specifies the maximum degree of inaccuracy that the user can
tolerate for the contour map constructed. p is the maximum area
of the region to be merged in terms of the percentage of the grid
area. The values of these two parameters are provided by the user
in the query specification. ε is mandatory and p is optional with a
default value of one.

A linear regression model v = f(x, y) = c0 + c1 · x + c2 · y [25] is
built for each contour region in a partial map. In the model, v is
the sensor reading of a node at location (x, y); c0, c1, and c2 are the
model coefficients and 1, x, y are the set of basis functions of the
model. Consider a region that contains n nodes whose locations
and sensor readings are (x1, y1), (x2, y2), …, (xn, yn) and v1, v2, …,
vn (n ≥ 3) respectively. The coefficients of the model for the
region can be computed by solving the matrix equation:

bAw = (1)

where

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

==

∑∑∑

∑∑∑

∑∑

===

===

==

n

i

n

i
ii

n

i
i

n

i
ii

n

i

n

i
i

n

i
i

n

i
i

i

i

yyxy

yxxx

yx

1

2

11

11

2

1

11
1

VVA T ,

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

nn yx

yx
yx

1

1
1

22

11

MMM
V ,

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

2

1

0

c
c
c

w ,

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

==

∑

∑

∑

=

=

=

i
n

i
i

i
n

i
i

n

i
i

yv

xv

v

1

1

1

fb VT and
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

v
v
v

f .

When the initial partial map that contains a single region unit is
generated by a node, the matrices w, A and b in the linear
regression model built for the region are stored with the region in
addition to an error bound that has a value of zero. To ensure that
the matrix A is non-singular [25], the model is built using three
location-attribute pairs (x1, y1, v), (x2, y2, v) and (x3, y3, v). (x1, y1)
and v are the location and attribute value of the node; (x2, y2) and
(x3, y3) are two different locations that are randomly picked inside
the region unit and are not equal to (x1, y1). Later, in the partial
map aggregation on a node, the error bound εij of merging a pair
of adjacent/overlapping regions (Ri, Rj) in Pw is computed using
Equations (2)-(4):

)1)("'(ijijijij αεεε ++= (2)

∫∫ ∫∫

∫∫∫∫

+

−+−
=

Ri Rj
ji

Rj
jij

Ri
iij

ij
dσyxfdσyxf

dσyxfyxfdσyxfyxf

),(),(

)),(),(()),(),((
'ε (3)

147

∫∫ ∫∫+

∫∫ ∫∫+
=

••

i

i

R Rj
ji

R Rj
jjii

ij
dσyxfdσyxf

dσyxfdσyxf

),(),(

),(),(
"

εε
ε (4)

In the equations, fi(x, y), σi and εi are the regression function, area
and error bound of region Ri, and fj(x, y), σj and εj are those for
region Rj. fij(x, y) is the regression model built on Ri ∪ Rj. To
compute the coefficient vector wij of fij(x, y) using Equation (1),
we set Aij and bij in the equation as follows [25]:

Aij = Ai + Aj (5)

bij = bi + bj (6)

where Ai, bi are the matrices stored with region Ri , and Aj, bj are
those of Rj. αij in Equation (2) is a penalty factor computed using
Equation (7). σgrid = l2

 · m · n is the area of the grid.

)),min(,0max(
grid

gridji

σp
σpσσ

•

•−
=α (7)

Note that ∫∫
R

dσyxf),(corresponds to the volume of the 3-D

cylindroid that is beneath the surface f(x, y) over region R [15].
Consequently, Equation (2) estimates the error bound εij of
merging the pair of regions (Ri, Rj) as the accumulation of the
errors derived from two sources: the percentage of variation in the
cylindroid volume over each region (εij' in Equation (3)), and the
previous degree of error inherited from each region (εij" in
Equation (4)). In the worse case, the value of εij for some pair of
regions (Ri, Rj) computed using Equation (2) may exceed one.
However, in this case the two regions are impossible to be merged
so that no problem is incurred.

The regression model can be easily extended to use polynomial of
a higher degree if necessary [25]. Moreover, we can adopt any
model that is guaranteed to be continuous over an arbitrary
contour region and can be incrementally recomputed in a way
similar to Equations (5)-(6).

After giving the equations to estimate the merging error bound,
we present the procedure of contour region merging in the partial
map aggregation on a node in Algorithm 1. The algorithm calls
the function checkMerging to examine whether a pair of regions
in Pw can be merged or not. In this function, the error caused by a
merging must not exceed the user-specified ε, and the size of the
union of the two regions must be smaller than the sum of their
sizes (Line 2 in Function checkMerging). This is because a large
final partial map Pf requires a large communication cost so that its
size should be reduced as much as possible to save the energy.
sizeof(R) returns the total number of bytes of R stored in the
partial map. This size is proportional to the total number of
vertices on all boundaries of R.

Algorithm 1 merges regions in Pw pair by pair in a decreasing
order of the merging benefit. The benefit of merging a pair of
regions (Ri, Rj) is the inverse of εij / Δij. The intuition is that, the
smaller the error bound εij of the merged region and the larger the
size reduction Δij achieved by the merging, the larger the merging
benefit. After two regions are merged into a new region, the new
region is immediately checked to see whether it can be further
merged with other regions in Pw (Line 9). The process repeats
until no more adjacent/overlapping regions in Pw can be merged.

Algorithm 1 Contour Region Merging
Input: the working partial map Pw
Output: the final partial map Pf

1: build an empty balanced binary search tree T;
2: for each Ri (1 ≤ i < n) in Pw do /* n is the number of regions in Pw */
3: for each Rj (i < j ≤ n) in Pw do checkMerging(Ri, Rj, T);
4: while T is not empty do
5: extract node a from T that has the smallest key value;
6: merge the pair of regions (Ri, Rj) that a points to into a region R;
7: delete all nodes in T that point to either Ri or Rj;
8: remove Ri and Rj from Pw;
9: for each Rk in Pw do checkMerging(R, Rk, T);

10: insert R into Pw; /* the linear regression model and error bound of
11: while true do R are fij(x, y) and εij correspondingly */
12: randomly select a pair of overlapping regions (Ri, Rj) in Pw;
13: if there is no such pair then break; /* exit the loop */
14: ri = sizeof(Ri – Rj) + sizeof(Rj); rj = sizeof(Rj – Ri) + sizeof(Ri);
15: if ri < rj then Ri = Ri – Rj; else Rj = Rj – Ri;
16: return Pf = Pw;
Function checkMerging(Ri, Rj, T)

1: if Ri and Rj overlap or are adjacent then
2: if εij ≤ ε and (Δij = sizeof(Ri) + sizeof(Rj) – sizeof(Ri ∪ Rj)) > 0 then
3: insert a node in T that has key value of εij / Δij;
4: store a pointer to each of Ri and Rj with the node;

There may be overlapping regions in Pw that cannot be merged with
each other according to our merging criterion. However, we need to
ensure every two regions in Pf are disjoint so that there is no
duplicate in the contour map constructed. To solve this problem, we
remove the intersection of two overlapping regions that are non-
mergeable from one of them so that the total size of the two regions
is smaller after such removal (Lines 11-15 in the algorithm). The
intersection is randomly removed from a region if the size reduction
is the same for both regions.

2.1.2 Size Reduction of Partial Maps
The final partial map Pf output by Algorithm 1 on a node is usually
of a large size. Each boundary of a contour region in the map
consists of a sequence of (x, y) value pairs and all these lengthy
pieces of information must be encapsulated into the radio packets
and transmitted to the parent of the node in multi-path routing. In
order to save the communication cost in this transmission, we adopt
two techniques to reduce the size of Pf on each node. One technique
is a scheme to compress the contours in the map and the other an
optimization of the map transmission based on packet snooping.
They both trade more computation cost for potentially less
communication cost.

First, we use a scheme on each node to compress Pf before the node
transmits it to the parents. The compression scheme includes two
steps. In the first step, the node checks each contour region with
holes in Pf to see whether any inner boundary of the region is the
outer boundary of another region in Pf. If this is true, the inner
boundary of the first region is replaced by a pointer to the outer
boundary of the second region. By this means, only one copy of
every contour line in the map needs to be transmitted.

The second step of the compression scheme is based on a nice
property of the contour regions in our scenario, which is all edges of
a region are orthogonal. Suppose there are totally n vertices V1, V2,
…, Vn (n ≥ 4) on a region boundary. Because the vertices are stored

148

in a specific order, we can reduce one half of the size of the
boundary by storing the vertices V1, V3, …, Vn-1 only. Later when
the whole boundary needs to be recovered in the contour region
merging, the vertex v2i (1 ≤ i ≤ n/2) can be uniquely identified by v2i-1
and v2i+1 based on the counterclockwise or clockwise order of the
triple of vertices (v2i-1, v2i, v2i+1) [22].

In addition to the contour compression scheme, we adopt a simple
optimization based on packet snooping [18] for the transmission of
Pf on a node. The motivation of this optimization is that the packet
size in a sensor network has a limit L that is determined by the
hardware or network protocols. Consequently, if the size of Pf on a
node is larger than L, the node has to divide the map into multiple
packets for transmission. This case is very likely to happen when the
sensor readings vary significantly along space, which causes the
final partial map on a node to consist of many small regions that
cannot be merged. Note that a variable number of packets per
partial map does not affect the synchronization of the multi-path
routing ring [4][20], because all packets for a partial map on a node
are still transmitted within the fixed epoch allocated for the level in
the ring that the node belongs to.

The snooping-based optimization is executed in parallel with the
data transmission on each node. A node transmits its whole Pf in a
single packet if the size of Pf is not larger than L. Otherwise, the
node sorts the contour regions in Pf in an increasing order of their
areas and transmits as many regions ahead in the order as possible in
a packet. The node then removes all transmitted regions from Pf and
snoops on the packets that are transmitted by the neighbors in the
same hop. For each such packet Pnf snooped, the node removes
each untransmitted region in Pf that is contained in some region in
Pnf. Next the node begins a second round of transmission and the
transmission iteration repeats until Pf becomes empty on the node.
In each round of the iteration, if L is smaller than the size of any
region in Pf, the node transmits a region with the smallest size in
multiple packets.

This technique is feasible because multiple-path routing produces
duplicate packets. As a result, small contour regions in the final
partial map of a node may have been aggregated into larger ones on
the same-hop neighbors. The transmission of these small regions on
a node can be suppressed if the node detects that they are contained
in some large regions on the same-hop neighbors of the node and
that they have been transmitted by the neighbors.

2.2 Incremental Map Update
Our compression techniques reduce the size of a partial map, but it
is still considerable. Moreover, in real-world surveillance
applications, events are rare [9] and sensor readings are mostly
unchanged or only slightly changed over time [14]. Consequently,
consecutive map snapshots constructed for these events are
extremely similar and incremental updates of the maps could save a
large amount of energy. In contrast, if we blindly reconstruct a new
map snapshot in every sample period of a continuous query, the
energy of the nodes in the network will be depleted quickly due to
the heavy communication cost.

Motivated by this observation, we propose an incremental update
scheme to maintain a contour map after the first map snapshot has
been constructed. This scheme is shown in Algorithm 2. In the
algorithm, each node stores its working partial map Pwo and final
partial map Pfo in the previous sample period. The node then

generates its final partial map Pfn in the current sample period based
on Pwo, Pfo and its working partial map Pwn in this period.

Algorithm 2 computes Pfn on a node by calling Algorithm 1 with a
partial map P as the input (Line 15). P consists of three sets of
contour regions: (1) the regions in Pwo that correspond to the update
units in Pwn (Lines 2-6), (2) the regions in Pwn (Line 7), and (3) the
regions in Pwo that do no overlap any of those in (1) and (2) sent by
the same child (Lines 8-14). It contains all information a parent
node gets from its children in the current sample period, and the
information obtained in the previous sample period that can be
reused.

If a node detects a region in Pfn is the same as a region in Pfo, the
region in Pfn is replaced by an update unit before the transmission of
Pfn. The update unit contains the new error bound, regression model
and the leftmost vertex on the outer boundary of the region (Lines
21-22). By this means, we save the communication cost of the
lengthy boundaries of the region. The leftmost vertex on a
polygonal boundary is the one that has the smallest x-coordinate
among all vertices on the boundary. If there are multiple vertices
have the same smallest x-coordinate, we define the leftmost vertex
as the upper one among them. The update unit can even be
removed if the regression model of the corresponding region has not
changed and the error bound has not increased (Line 23).

Algorithm 2 Incremental Update of Partial Map
Input: the working and final partial maps Pwo and Pfo in the previous sample
 period, the working partial map Pwn in the current sample period
Output: the final partial map Pfn in the current sample period

1: P = ∅;
2: for each update unit U in Pwn do
3: find Ri in Pwo sent by the same child Ch as U that U.p is the leftmost

 vertex on the outer boundary of Ri;
4: if Ri is missing in Pwo then request Ri from Ch;
5: εi = U.ε; fi(x, y) = U.f; /* εi and fi(x, y) are the error bound and
6: insert Ri into P; linear regression model of Ri */
7: for each region Ri in Pwn do insert Ri into P;
8: for each region Ri in Pwo do
9: missing = true;

10: for each region Rj in P do
11: if Ri and Rj are not sent by the same child then continue;
12: if Ri ∩ Rj ≠ ∅ then
13: missing = false; break;
14: if missing then insert Ri into P;
15: Pwo = P; call Algorithm 1 using P as the input;
16: for each region Ri in Pfn do
17: origin = false;
18: for each region Rj in Pfo do
19: if Ri = = Rj then
20: origin = true; create a new update unit U;
21: U.ε = εi; U.f = fi(x, y);
22: U.p = the leftmost vertex on the outer boundary of Ri;
23: if Ri.f ≠ Rj.f or Ri.ε > Rj.ε then insert U into Pfn;
24: break;
25: if origin then remove Ri from Pfn;
26: Pfo = Pfn; return Pfn;

When a parent node receives an update unit from a child, the
corresponding region of the unit is located from the parent’s Pwo
via the leftmost vertex stored in the update unit. It is possible that
the region cannot be found in Pwo of the parent, because of the

149

transmission failure from the child to the parent in the previous
sample period. In this case, the parent gets back the region from
the child by a request message (Line 4). Note that a parent node
can easily identify which region in its Pwo is from which child by
attaching the id of the child that sent the region to the node. The
algorithm finally updates Pwo and Pfo to P to Pfn, respectively.

2.3 Spatial Interpolation on Random Network
Topologies

The topology of a sensor network in practice is usually a random
connected graph instead of a grid. When we establish a grid on
top of a random topology, some cells in the grid may be empty.
These empty cells will not be involved in the in-network contour
map construction, because none of them have a node inside. This
absence of some cells makes the final partial map Psf output by
the sink incomplete, i.e., the union of all regions in Psf covers only
part of the entire grid. This problem will also occur on a grid
topology if the partial maps of some nodes are lost due to the
unreliability of radio transmission.

To make Psf, the final partial map at the sink, always complete
regardless of the network topology and packet loss, we perform
spatial interpolation on Psf. The interpolation is an iterative
process. In each iteration, a grid cell c that is not contained in any
region in Psf but is adjacent to some region in Psf is identified.
Then for each region R in Psf adjacent to c, the value d = max(0,
|maxn – minn| – |maxo – mino|) is computed for R. maxo and mino are
the maximum and minimum values of the regression function of R
over region R; maxn and minn are those of the function over region
R ∪ c. c is finally merged into the adjacent region in Psf that has
the smallest d value. The merged region inherits the regression
model and error bound of the original region in Psf. The iteration
stops when each cell in the grid is contained in some region in Psf.

3. PATTERN-BASED EVENT
SPECIFICATION

Having presented the construction and maintenance of contour
maps, we define the events and event-driven queries studied in
our work.

3.1 Definitions
In our pattern-based approach, an event is specified as a kind of
spatio-temporal pattern in a contour map of an attribute, as given
in Definition 1.

Definition 1. [Event] An event is a time series E = ((t1, P1), (t2,
P2), …, (tn, Pn)) with an equal time interval Δt between any two
consecutive elements. Each element Pi = (Ri1, Ri2, …, Rim) in the
time series is a user-specified partial map of attribute A on a
sensor network topology (1 ≤ i ≤ n). Each contour region Rij in Pi
is associated with a single attribute value vij (1 ≤ j ≤ im). T = tn – t1
is called the event duration.

We say a snapshot C of the contour map of A matches Pi if and
only if every region in Pi matches its overlapping regions in C
within a user-specified confidence level (1 – α) ∈ (0, 1).

We say the contour map of A matches E at time t if and only if for
each Pi, it matches the snapshot Ci of the contour map of A at time
t – Δt · (n – i). t is called the time of event detection.■

This definition requires a user to give a specific time series of
partial maps as the spatio-temporal pattern generated by an event.
In each sample period of the query that monitors the event, this
use-specified pattern is compared with the snapshots of a contour
map to determine whether the event has occurred. Δt in the
definition is the length of the query sample period. The reason we
only consider a contour map of one attribute in the definition is to
make the structure of an event as simple as possible. Moreover,
we only require partial maps instead of complete map snapshots
from the user so that the user does not need to consider the
regions in the grid that are of no interest.

A drawback of our event definition is that, if a user does not have
perfect knowledge about an event, the user may not be able to
specify the value distribution of an attribute over space and the
variation of this distribution over time incurred by the event. As a
first attempt to address this limitation, we further define three
common types of events that we observe in several sensor
network applications, especially the coal mine application that we
described in the Introduction. Each type of event corresponds to a
rough shape in a contour map and is specified using a set of
parameters to fix the relative positions and values of the contour
regions in the shape. To distinguish from these common events,
we call the events defined by Definition 1 “general events” in the
remainder of the paper.

Figure 4 shows the shapes in the contour map incurred by the
three types of events, which we call the pyramid, the fault, and
the island respectively.

(a) Pyramid (b) Fault (c) Island
Figure 4: Illustration of three common types of events

Intuitively, a pyramid event generates a continuous, gradual
increasing or decreasing trend of attribute value in all directions
originated from a small region in the space. For instance, when
the gas begins to leak in the coal mine, the contour map of the
gas_density attribute matches a decreasing pyramid event, with
the inmost region of the event in each map snapshot containing
the source of the leakage.

Different from a pyramid event, a fault event corresponds to a
sudden and large change in the level of the attribute value in the
space. For instance, when the underground water begins to leak
in the coal mine, the humidity map matches a fault event. One
region involved in the event definition suffers from the water
leakage but the other does not. Note that water leakage is different
from gas leakage in that the change in humidity does not occur in
all directions as that in the gas_density attribute does.

Different from both pyramids and faults, an island event
corresponds to a region in the space that has a consistently large
or small level of the attribute value. For instance, when a worker
in the coal mine wants to find a place of a high oxygen level to
take a break, it corresponds to detecting a large-valued island
event in the oxy_density map.

In the following, we give the formal definitions of these three
types of events.

150

Definition 2. [Pyramid Event] Given a user-specified bucket
size k, a snapshot C of the contour map of attribute A matches an
increasing pyramid event if and only if a list of contour regions P
= (R1, R2, …, Rn) in C satisfies the following four conditions:

(1) Each region Ri in P is associated with a bucket, i.e., it
corresponds to a range of attribute values [bi · k, (bi + 1) · k) (1 ≤ i ≤
n). bi ≥ 0 is an integer and bi+1 – bi ≥ 1. R1 is called the inmost
region and Rn the outmost region of the pyramid event.

(2) Ri is a hole in Ri+1 and the ratio of their areas σi / σi+1 ≤ sf. sf ∈
(0, 1) is a user-specified scaling factor.

(3) σ1 ≥ σ. σ > 0 is a user-specified area bound.

(4) n ≥ N. N > 1 is a user-specified nesting level.

Given a user-specified event duration T, we say the contour map
of A matches an increasing pyramid event at time t if and only if
every snapshot of the contour map falling into the interval [t – T, t]
matches an increasing pyramid event, and the inmost regions of
the event found in any two consecutive map snapshots have an
overlapping area of at least σ · (1 – α). (1 – α) ∈ (0, 1) is a user-
specified confidence level. t is called the time of event detection.

A decreasing pyramid event is defined symmetrically by
replacing “bi+1 – bi ≥ 1” with “bi+1 – bi ≤ 1” in Condition (1).■

Note that we do not require the value of each bi in Definition 2 to
be fixed by the user. It can be any integer as long as the condition
bi+1 – bi ≥ 1 (1 ≤ i ≤ n) is satisfied.

Definition 3. [Fault Event] Given a user-specified bucket size k,
a snapshot C of the contour map of attribute A matches a fault
event if and only if two contour regions R1 and R2 in C satisfy the
following three conditions:

(1) R1 is associated with the bucket [b1 · k, (b1 + 1) · k) and R2 the
bucket [b2 · k, (b2 + 1) · k). b1, b2 ≥ 0 are two integers and b2 – b1
≥Δ. Δ ≥ 1 is a user-specified degree of difference.

(2) R1 and R2 are adjacent. The coincident polygonal curve on
their outer boundaries has a length of at least N · l. N ≥ 1 is a user-
specified number of coincident cell edges. l is the width of a cell.

(3) The areas of the two regions σ1 ≥ σ and σ2 ≥ σ. σ > 0 is a user-
specified bound of area.

Given a user-specified event duration T, we say the contour map
of A matches a fault event at time t if and only if every snapshot
of the contour map falling into the interval [t – T, t] matches a
fault event, and the corresponding regions of the event in any two
consecutive map snapshots have an overlapping area of at least σ ·
(1 – α). (1 – α)∈ (0, 1) is a user-specified confidence level. t is
called the time of event detection.■

Definition 4. [Island Event] Given a user-specified threshold
value τ > 0, a snapshot C of the contour map of attribute A
matches a large-valued island event if and only if a contour region
R can be found in C that satisfies the following two conditions:

(1) R is associated with a range of attribute values [τ, +∞).

(2) The area of R is not smaller than σ. σ > 0 is a user-specified
area bound.

Given a user-specified event duration T, we say the contour map
of A matches a large-valued island event at time t if and only if

every snapshot of the contour map falling into the interval [t – T, t]
matches a large-valued island event, and the regions of the event
in any two consecutive map snapshots have an overlapping area
of at least σ · (1 – α). (1 – α) ∈ (0, 1) is a user-specified confidence
level. t is called the time of event detection.

A small-valued island event is defined symmetrically by replacing
“[τ, +∞)” with “(–∞, τ]” in Condition (1).■

Finally, we note that even though there are a number of user-
specified parameters in the definitions, most of the parameters
have default values in our implementation. As a result, when
users use these events in the form of system-provided functions,
their effort is minimized.

3.2 Event-Driven Queries
Based on the definitions of the events, we extend an existing
SQL-style sensor query language [19][29] to support the
specification of our pattern-based event detection.

We encapsulate the general events and the three common types of
events as system built-in Boolean methods. The four methods are
event(mapSnapshot, confFile), pyramid(mapSnapshot, confFile),
fault(mapSnapshot, confFile) and island(mapSnapshot, confFile),
correspondingly. The first parameter of each method is a snapshot
of a contour map. The second parameter is the pathname of an
XML configuration file given by the user. This file lists the
sequence of partial maps that define a general event, or the values
of the parameters that define a common event. A method returns
true when the contour map matches the use-specified pattern at
the current time; otherwise it returns false.

All of these methods are used in the WHERE clause of an SQL
query. Multiple methods that are evaluated on different contour
maps can be connected by the AND/OR SQL keywords to specify
complex relationships between events. We call queries that are
embedded with one or more of these methods event-driven
queries. The SELECT clause of an event-driven query may
contain attributes, SQL aggregates as well as user-defined
functions. Two example event-driven queries are listed as follows:

Query 1:
SELECT c.snapshot
FROM contour_map(temp,0.2, 0.5) c
WHERE event(c.snapshot, “fire_emergency.xml”)
SAMPLE PERIOD 10 sec

Query 2:
SELECT alarm()
FROM contour_map(gas_density,0.3) c
WHERE pyramid(c.snapshot, “gas_leakage.xml”)

As shown in these two example queries, the construction of a
contour map used by some event is specified in the FROM clause
using the table-valued function contour_map(attribute,ε, p). The
first parameter of this function is the attribute of the map, and the
latter two are the user-specified parameters ε and p for the map
construction. Note that p is optional, as shown in Query 2.
Similar to the sensors table [19], each contour_map function
defines a virtual table for the query. The table contains two main
fields, timestamp and snapshot. snapshot is the map snapshot at
timestamp. A list of contour_map functions, possibly on different
attributes, can appear in the FROM clause of a single query.

151

4. EVENT-ORIENTED QUERY
PROCESSING

Given the pattern-based event specification, we now present our
event-oriented query processing framework. We focus on how
the system built-in methods are handled during the execution of
continuous queries (Section 4.1) and the algorithms for contour
map matching (Section 4.2).

4.1 Query Execution
Query execution in our framework is event-oriented. When a new
event-driven query is issued by a user, the query text and the
parameters for each contour_map function in the query are parsed
into a query message. The message is then injected into the sensor
network. When the query message is received by a node, the
distributed query processor on the node generates a sub-query
evaluation plan based on the information encapsulated in the
message and begins to execute the plan.

The sub-plan of a query on a node is in charge of the in-network
contour map construction. After the query has been installed on
the nodes, the contour maps in the query are constructed in the
first sample period and are incrementally updated in the
subsequent periods. In the case that a map of the same attribute is
already being used by other running queries, one snapshot of the
map will be aggregated in the network every minimum sample
period of these multiple queries, and the aggregation uses the
minimum ε and p values of those of the multiple event methods.
By this means, multiple concurrent queries share a single
construction and maintenance procedure of a contour map.

This contour map sharing among multiple queries saves the
energy consumption significantly while preserving the requirement
of all queries on event detection accuracy. This benefit is achieved
by using a linear regression model for contour region merging
rather than using equal-width buckets [12] in the in-network
contour mapping. For example, if two queries share a contour
map using equal-width buckets of sizes k1 and k2, the map must be
constructed using a bucket size k = gcd(k1, k2). However, even if
both k1 and k2 are large, k may be small so that the aggregation
performance will be poor (e.g., k1 = 30, k2 = 100, and k = 10). In
contrast, using a linear regression model, the map is constructed
in a way independent of the bucket size of each query.

In addition to the sub-query plans on the nodes, a main evaluation
plan is generated for a query at the base station. The main plan is
responsible for event detection according to the configuration
files of the methods in the query. Each method is implemented as
a data structure in this main plan. The structure contains following
fields: (1) a flag indicating whether the method defines a general
event or a common event, (2) the user-provided partial maps for a
general event or parameter values for a common event, and (3) a
copy of each snapshot of M that falls in the sliding window [tc – T,
tc]. Here M is the contour map that the method is evaluated on, tc
is the current system time and T is the event duration. For brevity,
in the following we call these map snapshots stored with a method
in the main query plan “the map snapshots of the method”.

At the end of a sample period of a query, each method in the
query is evaluated using the map snapshots of the method. The
core of the evaluation procedure is a corresponding algorithm for
contour map matching we design. The algorithms are described

in Section 4.2. If the combination of all methods in the WHERE
clause is evaluated to true at this time, the data acquisition,
aggregation or user-defined functions specified in the SELECT
clause of the query are performed.

4.2 Algorithms for Contour Map Matching
We have designed and implemented four algorithms for contour
map matching in our framework, one for the general events and
each of the other three for a common type of events. These
algorithms strictly follow the definition of their corresponding
events in Section 3.1. Consequently, we only give the algorithm
for matching a general event, Algorithm 3, as an example and
omit those for the common events.

We point out that the matching of a common event defined in a
method requires further post-processing of the map snapshots of
the method. Such post-processing is conducted before each map
snapshot is stored with the method. Specifically, we associate
each grid cell with a bucket based on the mean value of the
regression function [15] on this region in the map snapshot. How
the whole range of the attribute value is divided into a number of
buckets is specified by the user in the configuration file of the
method. After associating a bucket with each grid cell, adjacent
cells that are in the same bucket are merged and a different
version of snapshot is obtained.

Algorithm 3 Matching of a General Event
Input: the general event E defined in method m
Output: the current return value of m

1: for each partial map Pi (1 ≤ i ≤ n) in E do
2: Ci = the map snapshot of m at the time tc – (n – i) · sp; p = 0;
3: for each region Rj (1 ≤ j ≤ im) in Pi do
4: for each region Rk (1 ≤ k ≤ l) in Ci do
5: if (Rh = Rj ∩ Rk) ≠ ∅ then
6: p + = (σh / σj) · (| dσyxf

Rh
j∫∫),(– vj · σh | / (vj · σh));

7: if 1 – p < (1 – α) then return false; else p = 0;
8: return true;

5. EXPERIMENTS
In this section, we evaluate the performance of our proposed
pattern-based event detection mechanism using a homegrown
sensor network simulator.

5.1 Experimental Setup
We simulated the event detection scenario of a coal mine
surveillance application in our experiments. As we have described
in the previous sections, this application involves several event
detection tasks, such as gas leakage detection, water leakage
detection and oxygen density monitoring. The sensor readings and
the coefficients of the regression model are all 2 bytes in the
experiments. We set the size limit of a packet in our simulator to
be 49 bytes based on our application development experiences on
the Crossbow MICA2 motes [6]. We use the GPCJ library [10] for
the polygon operations in in-network contour mapping.

5.1.1 Data Generation
We have conducted field studies in a coal mine and collected a
small amount of real-world sensory data. This real-world dataset
mainly contains three attributes: gas_density, oxy_density and
humidity. However, due to the resource and environment

152

constraints, the collected data is coarse-grained in both temporal
and spatial granularity. The sample period of the nodes was set at
the minute level and there were only a few nodes deployed in the
mine. Consequently, we generated synthetic datasets based on the
settings and the sensory data characteristics revealed in the real-
world dataset, and used the synthetic datasets in the experiments.

Each synthetic dataset we generated contains the three attributes.
The nodes form an N · N grid with a cell length of 10 meters.
There is a node at the center of each grid cell and the sink node is
at the upper-left corner of the grid. The dataset contains 1000
tuples from each node, with one tuple generated every second.
The initial value vi0 for an attribute on a node i in the dataset is
randomly selected from a set of seed values that we found most
common for that attribute in the real-world dataset. The attribute
value on the node in a subsequent second is randomly picked
from the range [vi0· (1 – d), vi0· (1 + d)] with a probability of Pi, or
remains unchanged from the previous second with the probability
of 1 – Pi. The value of Pi for a node i is uniformly chosen from
the range (0, 0.3]. d ∈ (0, 1) is the maximum variation percentage
of the attribute value in the real-world dataset.

Finally, we change the synthetic dataset to embed event data for
each query workload. The event data contain spatial-temporal
patterns that the query is supposed to detect. They are embedded
into the dataset by replacing the attribute values of the tuples in
the dataset. The locations of these patterns in the dataset are
randomly selected. The details of the query workload are given in
Section 5.1.2.

5.1.2 Query Workload
For each synthetic dataset, we generated a query workload
consisting of four classes of queries QC1-QC4 and ran the
workload over the dataset in our experiments. Each class in a
workload contains 30 queries embedded with a kind of event
detection method. QC1-QC4 contain the event, pyramid, fault and
island methods, respectively. Each query in a class is to detect a
randomly generated event instance of the corresponding type.

In a query workload, the queries in QC2, QC3 and QC4 involve
the gas_density, humidity and oxy_density attributes respectively,
so that they correspond to gas leakage detection, water leakage
detection and oxygen density monitoring. In contrast, each 10 out
of the 30 queries in QC1 involve one of these three attributes so
that QC1 can evaluate the performance of our mechanism in
detecting general events that produce arbitrary spatio-temporal
patterns in sensory data. All of the 120 queries in the workload
use the parameter values ε = 0.2 and p = 1 for the contour map
construction and has a sample period of 1 second. The bucket size
of a query in QC2-QC4 is uniformly picked from (0, 1000].

5.1.3 Performance Metrics
We used accuracy of event detection and network traffic as the
two metrics for performance evaluation. The accuracy of event
detection measures the effectiveness of our approach and the
network traffic reflects the power efficiency. Both metrics are
important for sensor network surveillance applications.

The accuracy of event detection includes two sub-metrics similar
to those used in Information Retrieval: (1) precision, which is the
percentage of real events detected over all events reported by a
query, and (2) recall, which is the percentage of events in the

synthetic dataset that are successfully detected by a query. The
network traffic is defined as the total number of bytes transmitted
by all nodes in the network during the execution of a query for a
fixed period of time.

5.1.4 Approaches Compared
The main idea of our pattern-based event detection mechanism is
to convert the problem of event detection in sensor networks into
pattern matching and then contour map matching. Therefore, the
approach to contour map construction and maintenance is most
important to the performance of our mechanism. Consequently, in
our experiments we focused on evaluating the effectiveness of our
linear regression based approach to in-network contour mapping.

We compared the performance of our approach with two other
alternative approaches: (1) equal-width bucket based in-network
contour mapping [12], and (2) server-side contour mapping using
our proposed regression model for contour region merging
without in-network aggregation. The first alternative is for
comparing equal-width bucket with linear regression in contour
mapping whereas the second for comparing a centralized
approach against in-network aggregation. We denote these
approaches as INLR (In-Network Linear Regression), INEB (In-
Network Equal-width Bucket) and SSLR (Server-Side Linear
Regression), correspondingly.

For a fair comparison, all three approaches used multi-path
routing for data transmission. Moreover, similar to INLR we
applied simple techniques for duplicate elimination and
incremental update on each node for INEB and SSLR.

5.1.5 Parameters Considered
We varied a number of system parameters in our simulator when
comparing the performance of the three approaches of contour
map construction. These parameters are listed as follows:

(1) Event Frequency (F). It is the frequency at which the spatio-
temporal pattern of the event appears in the dataset. For instance,
suppose a pattern appears at 100 positions of a 1000-tuple dataset,
the event frequency is computed as (100/1000) · 100% = 10%.

(2) Network Diameter (D). It is the width in meters of the square
N · N grid.

(3) Transmission Range (T). It is the maximum distance between
two nodes in a grid topology that can communicate with each
other directly.

(4) Link Loss Rate (R). It is the probability with which a packet
from a child node to its parent will be dropped in our simulator.

5.2 Efficiency of Our Approach
Before comparing the performance of our INLR with the other
two approaches of contour mapping, we first validated the
usefulness of the techniques it adopts. These techniques include:
(1) the contour compression scheme (Section 2.1.2), (2) the
snooping based optimization of partial map transmission (Section
2.1.2), and (3) the incremental update scheme (Section 2.2).
Because none of these techniques affect the accuracy of event
detection, we only show the results on network traffic.

Figure 5 shows the network traffic of five variants of our INLR.
The parameter setting we used in this experiment was F = 10%, D

153

= 100m, T = 15m and R = 0%. A value in the figure was the
average of those of the 30 queries in a class when each of the
queries was run individually over the dataset. This is the same for
all figures we showed in the following.

0

10

20

30

40

QC1 QC2 QC3 QC4
Query Class

N
et

w
or

k
Tr

af
fic

 (M
B

)

ORI
CCS
SNP
IUS
INLR

Figure 5: Network traffic of different INLR variants

In Figure 5, ORI is the original version with none of the three
techniques enabled in our approach. CCS, SNP and IUS are the
variants with only the contour compression scheme, the snooping
based transmission optimization and the incremental update
scheme enabled, respectively. Finally, INLR is the full version
with all three techniques enabled.

As shown in the figure, for the query workload we used, CCS,
SNP and IUS saved about 25%, 55-70%, 65-75% communication
cost in comparison with ORI. This saving indicates that the
incremental update scheme is most beneficial in energy
conservation among the three techniques, the next the snooping
based transmission optimization, and then the contour
compression scheme. When all three techniques are adopted
together, they can save nearly 90% communication cost over ORI.

5.3 Comparison of Three Approaches
In this section, we varied each of the four system parameters while
keeping the other parameters fixed to investigate the effect of the
parameter on the performance of the three approaches. Because
there is no concept of bucket involved in the definition of general
events, INEB was excluded for QC1 in the experiments due to its
inapplicability to this class of queries. For each query in QC2-
QC4, INEB used the same bucket size for the contour map
construction as that used in INLR and SSLR for event detection.

Our experimental results showed that QC1-QC4 revealed a
similar performance trend among the three approaches for all
parameter settings. As a result, we only provide the results of
QC2 as examples. In all runs of the experiments, the three
approaches consistently achieved a 100% precision no matter how
each of the four system parameters was varied. Also, the accuracy
of event detection was hardly affected by the variation of the
other three parameters except for the link loss rate. Therefore, we
only report the results on recall when the link loss rate varied.

Figure 6 shows the recall of the three approaches when the
network link loss rate was varied from 0 to 30%. In the figure we
see that, all three approaches failed to report several occurrences
of the event when the link loss rate became large. The accuracy
of event detection achieved by our INLR was as good as SSLR
and both of them outperformed INEB by 10-20% when the link
loss rate is not zero. The poor recall of INEB is mainly because
the packet loss makes an original large region in a bucket become
individual small pieces, so those regions that satisfy the area
bound requirement of our event definition can not be found.

40%

60%

80%

100%

0% 10% 20% 30% 40%
Link Loss Rate

R
ec

al
l INLR

INEB
SSLR

Figure 6: Recall of the three approaches with different link

loss rate (F = 10%, D = 100m, T = 15m)

As for the network traffic, Figure 7 shows the metric values of the
three approaches when the event frequency, network diameter,
transmission range and link loss rate were varied in the range of
5-20%, 50-200m, 10-30m and 0-30% respectively. The other
parameters fixed for each sub-figure are listed in the figure title.
The results in each of these sub-figures are described in order.

As illustrated in Figure 7(a), both INLR and INEB consumed only
10% more communication cost when the events appeared more
frequently. This indicates that frequent occurrences of an event
will not cause significant increase in network traffic of in-network
contour mapping; the network traffic of an in-network approach
remained small compared with a server-side approach. We limited
the event frequency to be under 20% because events are usually
rare in the physical world [9].

Figure 7(b) demonstrates that in-network contour mapping was
more scalable in large networks than the naïve sever-side
approach. INLR was slightly more scalable than INEB even
though the difference between the two was small.

In Figure 7(c) we see that, the network traffic in INLR decreased
almost linearly and that of INEB increased almost linearly with
the increase of the transmission range. This is because when the
transmission range of the nodes is large, the data from a node can
be received by more nodes in the network that are far away from
the node. However, the small regions from two distant nodes was
very likely to be in different buckets so that the communication
cost in INEB for data forwarding throughout the network
increased. INLR could still merge these regions into large ones
using the linear regression model so that its performance
benefited from the increase of the transmission range.

Figure 7(d) shows that the network traffic of SSLR decreased
linearly when the link loss rate increased. This is because many
packets were dropped at the first few hops of the multi-hop
routing and the upper hop nodes that are near the sink did not
need to forward these packets any more. INLR was most
indifferent to the link loss rate in terms of network traffic among
the three. However, the network traffic of INLR still slowly
decreased when the link loss rate became larger.

Interestingly, the network traffic of INEB increased when more
packets were dropped. The reason was that when some contour
regions transmitted from a child node to its parent were lost in the
transmission, the probability that on the parent node two regions
in the same bucket would become adjacent or overlapping was
lowered due to the missing of the region that connects them in
space. Consequently, the aggregation performance of INEB got
poor since many small, disjoint regions had to be transmitted
instead of a single, large one.

154

0

2

4

6

8

10

0% 10% 20% 30%
Event Frequency

N
et

w
or

k
Tr

af
fic

 (M
B

)

INLR
INEB
SSLR

0

4

8

12

16

0 10 20 30 40
Transmission Range (meter)

N
et

w
or

k
Tr

af
fic

 (M
B

)

INLR
INEB
SSLR

0

20

40

60

80

100

0 100 200 300
Network Diameter (meter)

N
et

w
or

k
Tr

af
fic

 (M
B

)

INLR
INEB
SSLR

0

2

4

6

8

0% 10% 20% 30% 40%
Link Loss Rate

N
et

w
or

k
Tr

af
fic

 (M
B

)

INLR
INEB
SSLR

Figure 7: Network traffic of the three approaches with different parameters varying (a) event frequency (D = 100m, T = 15m, R =
0%) (b) network diameter (F = 10%, T = 15m, R = 0%) (c) transmission range (F = 10%, D = 100m, R = 0%) (d) link loss rate (F =

10%, D = 100m, T = 15m)

As a summary of the results in Figure 7, our proposed INLR
consistently outperformed the other two approaches in network
traffic. The network traffic of INLR is indifferent to the event
frequency, scales well with a large network size and decreases
properly when the transmission range gets larger.

6. RELATED WORK
There have been a number of recent publications on event-
oriented query processing for sensor databases. The Cougar
sensor database encapsulates the logic of threshold-based event
detection into asynchronous functions in the system [3]. TinyDB
[12][19] processes events generated from a threshold-based query,
a module hand-coded in the operating system, or an interrupt from
some hardware component such as a switch or a motion detector.
REED [1] extends TinyDB to support efficient in-network join
operations, which are useful for event detection in industrial
process control applications. In comparison, our approach does
not require the existence of any hand-coded OS modules or
hardware equipment. Instead, we define an event based on the
spatio-temporal pattern it generates in sensor readings and
perform pattern-based event detection by contour map matching.

In the networking community, Directed Diffusion [13] detects the
emergence of an animal by matching the sensor readings of a
node with the pattern libraries stored on the node. This pattern-
based event detection is similar to our approach. A difference is
that, instead of considering temporal pattern matching on
individual nodes, we study the spatial pattern incurred by an event
throughout the network and the evolution of this pattern over
time. Another piece of work on event detection in sensor
networks is DSWare [17], a sensor network middleware that
provides event detection services based on node grouping. A new
event is registered to DSWare by inserting a tuple that specifies
the semantics of the event into a system-level event table.
Nevertheless, none of this line of work employs contour map
matching as the means for event detection.

Our in-network contour mapping has been influenced by the
previous work of Hellerstein et al. [12]. Their work was to use
the TinyDB query processor to construct contour maps for sensor

network applications whereas ours is to use contour maps in our
query processor as the means for event detection. Furthermore,
we have presented a systematic solution to the event detection
problem, with emphasis on the multi-path routing, the linear
regression model for contour region merging, and the size
reduction and incremental update of the partial maps.

Both Hellerstein et al. and we establish the grid topology for
contour maps. This regularity eases the event specification in our
approach, because it is more complex for the users to specify
contour regions if the boundaries are not straight lines but
arbitrary planar curves. In contrast, Solis and Obraczka have
studied using isoclines as the basis for contour map construction
instead of using polygonal regions [26]. In addition, they divided
the range of attribute values into equal-width buckets and used
single-path data routing.

Deshpande et al. proposed to use a centralized probabilistic model
to optimize the processing of various types of sensor queries [8].
The model captures the spatio-temporal correlations between the
readings of multiple types of sensors on a node. Although the
authors commented that the model could be extended to a
distributed version with continuous sampling for event detection,
no detailed techniques have been presented in this regard yet.

Linear regression has been shown effective for data compression
[7] or redundancy suppression [16] in sensor networks to reduce
the communication cost of sensory data acquisition. We use linear
regression to construct the contour maps that represent the sensor
reading distribution over a network.

Finally, the detection of the common types of events that we
define bears some similarity to the shape matching queries in
traditional [2] or streaming [28] time series databases. Since our
work is targeted at sensor network surveillance applications, we
focus on enabling the detection of these events in a simple but
effective way via in-network contour mapping.

7. CONCLUSION
In this paper, we have proposed a pattern-based approach to event
detection in sensor networks. Our approach is implemented by

155

matching user-specified patterns with the contour maps of sensory
data distribution. We give a general pattern-based definition for
the events, and propose simple SQL extensions to allow users to
specify several common types of events as patterns in contour
maps. We propose a number of energy-efficient techniques for
in-network contour mapping, including a linear regression based
criterion for contour region merging, two techniques for size
reduction of the partial map transmitted by a node, and an
incremental update scheme. Our experimental results with
synthetic workloads derived from a real-world coal mine
surveillance application shows that our approach of in-network
contour mapping can achieve a good accuracy. Moreover, it
greatly saves the network traffic in comparison with an existing
equal-width bucket based approach and a server-side approach
with contour map matching.

We are working on a prototype implementation of our proposed
in-network contour mapping techniques on a kind of sensor nodes
that are similar to the MICA2 motes. The algorithms implemented
in the current prototype, including multi-path routing, regression-
based contour region merging and contour compression, are
simplified from those presented in the paper, due to the resource
constraints of the current generation motes. Preliminary results
on this prototype in our lab show that the computation cost of the
current prototype is suitable for MICA2-grade sensor nodes when
the network size is small (tens of nodes). Moreover, we have
deployed a 27-node network in a coal mine in the mainland China
and plan to install and test the prototype on this real deployment
after a robust version is finished. Documentation and source code
packages of this work are publicly available at our project web
site www.cs.ust.hk/aorta.

Other on-going work includes revising the pattern-based event
specification to be more user-friendly, evaluating the performance
of our mechanism using patterns of events from real-world
datasets, and re-implementing and evaluating our approach,
including the libraries required for polygon operations, on PDA-
grade micro-server sensor nodes.

8. ACKNOWLEDGMENTS
Funding for this work was provided in part by the NSFC Key
Project Grant No. 60533110, and the Hong Kong RGC grants
AoE/E-01/99, HKUST6158/03E, HKUST6263/04E and
DAG05/06.EG03.

9. REFERENCES
[1] Abadi, D., Madden, S., and Lindner, W. REED: Robust,

efficient filtering and event detection in sensor networks.
VLDB, 2005.

[2] Agrawal, R., Psaila, G., Wimmers, E., and Zaït, M. Querying
shapes of histories. VLDB, 1995.

[3] Bonnet, P., Gehrke, J., and Seshadri, P. Querying the
physical world. IEEE Personal Communications, 7(5), 2000.

[4] Considine, J., Li, F., Kollios, G., and Byers, J. Approximate
aggregation techniques for sensor databases. ICDE, 2004.

[5] Contour Map. http://en.wikipedia.org/wiki/Contour_map.
[6] Crossbow Inc. www.xbow.com.
[7] Deligiannakis, A., Kotidis, Y., and Roussopoulos, N.

Compressing historical information in sensor networks.
SIGMOD, 2004.

[8] Deshpande, A., Guestrin, C., and Madden, S. Model-driven
data acquisition in sensor networks. VLDB, 2004.

[9] Dutta, P., Grimmer, M., Arora, A., Bibyk, S., and Culler, D.
Design of a wireless sensor network platform for detecting
rare, random, and ephemeral events. IPSN, 2005.

[10] GPCJ. http://www.seisw.com/GPCJ/GPCJ.html.
[11] Guralnik, V., and Srivastava, J. Event detection from time

series data. SIGKDD, 1999.
[12] Hellerstein, J. M., Hong, W., Madden, S., and Stanek, K.

Beyond average: Towards sophisticated sensing with
queries. IPSN, 2003.

[13] Intanagonwiwat, C., Govindan, R., and Estrin, D. Directed
diffusion: A scalable and robust communication paradigm
for sensor networks. MOBICOM, 2000.

[14] Intel Lab Data. http://berkeley.intel-research.net/labdata/.
[15] Kaplan, W. Advanced Calculus. Addison-Wesley, Boston,

MA, USA.
[16] Kotidis, Y. Snapshot queries: Towards data-centric sensor

networks. ICDE, 2005.
[17] Li, S., Lin, Y., Son, S., Stankovic, J., and Wei, Y. Event

detection services using data service middleware in
distributed sensor networks. Telecommunication Systems,
26(2-4), 2004.

[18] Madden, S, Franklin, M. J., Hellerstein, J. M., and Hong, W.
TAG: A tiny aggregation service for ad-hoc sensor networks.
OSDI, 2002.

[19] Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W.
The design of an acquisitional query processor for sensor
networks. SIGMOD, 2003.

[20] Manjhi, A., Nath, S., and Gibbons, P. Tributaries and deltas:
Efficient and robust aggregation in sensor network streams.
SIGMOD, 2005.

[21] Ni, L. M., Liu, Y., Lau, Y., and Patil, A. LANDMARC:
Indoor location sensing using active RFID. Wireless
Networks, 10(6), 2004.

[22] O’Rourke, J. 1998. Computational Geometry in C.
Cambridge University Press, New York, NY, USA.

[23] Papadimitriou, S., Brockwell, A., and Faloutsos, C.
Adaptive, hands-off stream mining. VLDB, 2003.

[24] Rahimi, M., Pon, R., Kaiser, W., Sukhatme, G., Estrin, D.,
and Srivastava, M. Adaptive sampling for environmental
robotics. ICRA, 2004.

[25] Ruppert, D., Wand, M. P., and Carroll, R. J. Semiparametric
Regression. Cambridge University Press, New York, NY,
USA.

[26] Solis, I., and Obraczka, K. Efficient continuous mapping in
sensor networks using isolines. Mobiquitous, 2005.

[27] Szewczyk, R., Mainwaring, A., Polastre, J., Anderson J., and
Culler, D. Lessons from a sensor network expedition.
EWSN, 2004.

[28] Wu, H., Salzberg, B., and Zhang, D. Online event-driven
subsequence matching over financial data streams.
SIGMOD, 2004.

[29] Yao, Y., and Gehrke, J. Query processing for sensor
networks. CIDR, 2003.

156

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

