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Abstract
Declarative queries are proving to be an attractive paradigm for in-
teracting with networks of wireless sensors. The metaphor that “the
sensornet is a database” is problematic, however, because sensors
do not exhaustively represent the data in the real world. In order
to map the raw sensor readings onto physical reality, amodelof
that reality is required to complement the readings. In this paper,
we enrich interactive sensor querying with statistical modeling tech-
niques. We demonstrate that such models can help provide answers
that are both more meaningful, and, by introducing approximations
with probabilistic confidences, significantly more efficient to com-
pute in both time and energy. Utilizing the combination of a model
and live data acquisition raises the challenging optimization prob-
lem of selecting the best sensor readings to acquire, balancing the
increase in the confidence of our answer against the communication
and data acquisition costs in the network. We describe an expo-
nential time algorithm for finding the optimal solution to this op-
timization problem, and a polynomial-time heuristic for identifying
solutions that perform well in practice. We evaluate our approach on
several real-world sensor-network data sets, taking into account the
real measured data and communication quality, demonstrating that
our model-based approach provides a high-fidelity representation of
the real phenomena and leads to significant performance gains ver-
sus traditional data acquisition techniques.

1 Introduction
Database technologies are beginning to have a significant im-
pact in the emerging area of wireless sensor networks (sen-
sornets). The sensornet community has embraced declarative
queries as a key programming paradigm for large sets of sen-
sors. This is seen in academia in the calls for papers for lead-
ing conferences and workshops in the sensornet area [2, 1],
and in a number of prior research publications ([21],[30],[17],
etc). In the emerging industrial arena, one of the leading ven-
dors (Crossbow) is bundling a query processor with their de-
vices, and providing query processor training as part of their
customer support. The area of sensornet querying represents
an unusual opportunity for database researchers to apply their
expertise in a new area of computer systems.
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Declarative querying has proved powerful in allowing pro-
grammers to “task” an entire network of sensor nodes, rather
than requiring them to worry about programming individ-
ual nodes. However, the metaphor that “the sensornet is a
database” has proven misleading. Databases are typically
treated as complete, authoritative sources of information; the
job of a database query engine has traditionally been to an-
swer a query “correctly” based upon all the available data.
Applying this mindset to sensornets results in two problems:

1. Misrepresentations of data: In the sensornet environ-
ment, it is impossible to gatherall the relevant data. The
physically observable world consists of a set of con-
tinuous phenomena in both time and space, so the set
of relevant data is in principle infinite. Sensing tech-
nologies acquiresamplesof physical phenomena at dis-
crete points in time and space, but the data acquired by
the sensornet is unlikely to be a random (i.i.d.) sam-
ple of physical processes, for a number of reasons (non-
uniform placement of sensors in space, faulty sensors,
high packet loss rates, etc). So a straightforward inter-
pretation of the sensornet readings as a “database” may
not be a reliable representation of the real world.

2. Inefficient approximate queries: Since a sensornet
cannot acquire all possible data, any readings from a
sensornet are “approximate”, in the sense that they only
represent the true state of the world at the discrete in-
stants and locations where samples were acquired. How-
ever, the leading approaches to query processing in sen-
sornets [30, 21] follow a completist’s approach, acquir-
ing as much data as possible from the environment at a
given point in time, even whenmost of that data provides
little benefit in approximate answer quality. We show
examples where query execution cost – in both time and
power consumption – can be orders of magnitude more
than is appropriate for a reasonably reliable answer.

1.1 Our contribution

In this paper, we propose to compensate for both of these defi-
ciencies by incorporating statisticalmodelsof real-world pro-
cesses into a sensornet query processing architecture. Models
can help provide more robust interpretations of sensor read-
ings: for example, they can account for biases in spatial sam-
pling, can help identify sensors that are providing faulty data,
and can extrapolate the values of missing sensors or sensor
readings at geographic locations where sensors are no longer
operational. Furthermore, models provide a framework for
optimizing the acquisition of sensor readings: sensors should
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be used to acquire data only when the model itself is not suf-
ficiently rich to answer the query with acceptable confidence.

Underneath this architectural shift in sensornet querying,
we define and address a key optimization problem: given a
query and a model, choose a data acquisition plan for the
sensornet to best refine the query answer. This optimization
problem is complicated by two forms of dependencies: one
in the statisticalbenefitsof acquiring a reading, the other in
the systemcostsassociated with wireless sensor systems.

First, any non-trivial statistical model will capture correla-
tions among sensors: for example, the temperatures of ge-
ographically proximate sensors are likely to be correlated.
Given such a model, the benefit of a single sensor reading can
be used to improve estimates of other readings: the tempera-
ture at one sensor node is likely to improve the confidence of
model-driven estimates for nearby nodes.

The second form of dependency hinges on the connectiv-
ity of the wireless sensor network. If a sensor nodefar is
not within radio range of the query source, then one can-
not acquire a reading fromfar without forwarding the re-
quest/result pair through another nodenear. This presents
not only a non-uniform cost model for acquiring readings, but
one with dependencies: due to multi-hop networking, the ac-
quisition cost fornear will be much lower if one has already
chosen to acquire data fromfar by routing throughnear.

To explore the benefits of the model-based querying ap-
proach we propose, we are building a prototype called BBQ1

that uses a specific model based on time-varying multivari-
ate Gaussians. We describe how our generic model-based ar-
chitecture and querying techniques are specifically applied in
BBQ. We also present encouraging results on real-world sen-
sornet trace data, demonstrating the advantages that models
offer for queries over sensor networks.

2 Overview of approach
In this section, we provide an overview of our basic architec-
ture and approach, as well as a summary of BBQ. Our archi-
tecture consists of a declarative query processing engine that
uses a probabilistic model to answer questions about the cur-
rent state of the sensor network. We denote a model as aprob-
ability density function(pdf), p(X1, X2, . . . , Xn), assigning
a probability for each possible assignment to the attributes
X1, . . . , Xn, where eachXi is an attribute at a particular sen-
sor (e.g., temperature on sensing node 5, voltage on sensing
node 12). Typically, there is one such attribute per sensor
type per sensing node. This model can also incorporatehid-
den variables(i.e., variables that are not directly observable)
that indicate, for example, whether a sensor is giving faulty
values. Such models can be learned from historical data using
standard algorithms (e.g., [23]).

Users query for information about the values of particu-
lar attributes or in certain regions of the network, much as
they would in a traditional SQL database. Unlike database
queries, however, sensornet queries request real-time infor-
mation about the environment, rather than information about
a stored collection of data. The model is used to estimate
sensor readings in the current time period; these estimates
form the answer the query. In the process of generating these

1BBQ is short for Barbie-Q: A Tiny-Model Query System
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Figure 1:Our architecture for model-based querying in sensor net-
works.

estimates, the model may interrogate the sensor network for
updated readings that will help to refine estimates for which
its uncertainty is high. As time passes, the model may also
update its estimates of sensor values, to reflect expected tem-
poral changes in the data.

In BBQ, we use a specific model based on time-varying
multivariate Gaussians; we describe this model below. We
emphasize, however, that our approach is general with re-
spect to the model, and that more or less complex models
can be used instead. New models require no changes to the
query processor and can reuse code that interfaces with and
acquires particular readings from the sensor network. The
main difference occurs in the algorithms required to solve the
probabilistic inference tasks described in Section 3. These
algorithms have been widely developed for many practical
models (e.g., [23]).

Figure 1 illustrates our basic architecture through an ex-
ample. Users submit SQL queries to the database, which
are translated into probabilistic computations over the model
(Section 3). The queries include error tolerances and tar-
get confidence bounds that specify how much uncertainty the
user is willing to tolerate. Such bounds will be intuitive to
many scientific and technical users, as they are the same as the
confidence bounds used for reporting results in most scientific
fields (c.f., the graph-representation shown in the upper right
of Figure 1). In this example, the user is interested in esti-
mates of the value of sensor readings for nodes numbered 1
through 8, within .1 degrees C of the actual temperature read-
ing with 95% confidence. Based on the model, the system de-
cides that the most efficient way to answer the query with the
requested confidence is to read battery voltage from sensors 1
and 2 and temperature from sensor 4. Based on knowledge of
the sensor network topology, it generates anobservation plan
that acquires samples in this order, and sends the plan into the
network, where the appropriate readings are collected. These
readings are used to update the model, which can then be used
to generate query answers with specified confidence intervals.

Notice that the model in this example chooses to observe
the voltage at some nodes despite the fact that the user’s query
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Figure 2:Trace of voltage and temperature readings over a two day
period from a single mote-based sensor. Notice the close correlation
between the two attributes.

was over temperature. This happens for two reasons:

1. Correlations in Value: Temperature and voltage are
highly correlated, as illustrated by Figure 2 which shows
the temperature and voltage readings for two days of
sensor readings from a pair of Berkeley Mica2 Motes [6]
that we deployed in the Intel Research Lab in Berkeley,
California. Note how voltage tracks temperature, and
how temperature variations across motes, even though
of noticeably different magnitudes, are very similar. The
relationship between temperature and voltage is due to
the fact that, for many types of batteries, as they heat
or cool, their voltages vary significantly (by as much as
1% per degree). The voltages may also decrease as the
sensor nodes consume energy from the batteries, but the
time scale at which that happens is much larger than the
time scale of temperature variations, and so the model
can use voltage changes to infer temperature changes.

2. Cost Differential: Depending on the specific type of
temperature sensor used, it may be much cheaper to
sample the voltage than to read the temperature. For
example, on sensor boards from Crossbow Corporation
for Berkeley Motes [6], the temperature sensor requires
several orders of magnitude more energy to sample as
simply reading battery voltage (see Table 1).

One of the important properties of many probabilistic mod-
els (including the one used in BBQ) is that they can capture
correlations between different attributes. We will see how we
can exploit such correlations during optimization to generate
efficient query plans in Section 4.

2.1 Confidence intervals and correlation models

The user in Figure 1 could have requested 100% confidence
and no error tolerance, in which case the model would have
required us to interrogate every sensor. The returned result
could still include some uncertainty, as the model may not
have readings from particular sensors or locations at some
points in time (due to sensor or communications failures, or
lack of sensor instrumentation at a particular location). These
confidence intervals computed from our probabilistic model
provide considerably more information than traditional sen-
sor network systems like TinyDB and Cougar provide in this
setting. With those systems, the user would simply get no
data regarding those missing times and locations.

Conversely, the user could have requested very wide confi-
dence bounds, in which case the model may have been able to
answer the query without acquiring any additional data from
the network. In fact, in our experiments with BBQ on sev-
eral real-world data sets, we see a number of cases where
strong correlations between sensors during certain times of
the day mean that even queries with relatively tight confi-
dence bounds can be answered with a very small number of
sensor observations. In many cases, these tight confidences
can be provideddespite the fact that sensor readings have
changed significantly. This is because known correlations be-
tween sensors make it possible to predict these changes: for
example, in Figure 2, it is clear that the temperature on the
two sensors is correlated given the time of day. During the
daytime (e.g., readings 600-1200 and 2600-3400), sensor 25,
which is placed near a window, is consistently hotter than sen-
sor 1, which is in the center of our lab. A good model will be
able to infer, with high confidence that, during daytime hours,
sensor readings on sensor 25 are 1-2 degrees hotter than those
at sensor 1 without actually observing sensor 25. Again, this
is in contrast to existing sensor network querying systems,
where sensors are continuously sampled and readings are al-
ways reported whenever small absolute changes happen.

Typically in probabilistic modeling, we pick a class of
models, and use learning techniques to pick the best model in
the class. The problem of selecting the right model class has
been widely studied (e.g., [23]), but can be difficult in some
applications. Before presenting the specific model class used
in BBQ, we note that, in general, a probabilistic model is only
as good at prediction as the data used to train it. Thus, it may
be the case that the temperature between sensors 1 and 25
would not show the same relationship during a different sea-
son of the year, or in a different climate – in fact, one might
expect that when the outside temperature is very cold, sensor
25 will read less than sensor 1 during the day, just as it does
during the night time. Thus, for models to perform accurate
predictions they must be trained in the kind of environment
where they will be used. That does not mean, however, that
well-trained models cannot deal with changing relationships
over time; in fact, the model we use in BBQ uses different
correlation data depending on time of day. Extending it to
handle seasonal variations, for example is a straightforward
extension of the techniques we use for handling variations
across hours of the day.

2.2 BBQ

In BBQ, we use a specific probabilistic model based on time-
varying multivariate Gaussians. A multivariate Gaussian
(hereafter, just Gaussian) is the natural extension of the famil-
iar unidimensional normal probability density function (pdf),
known as the “bell curve”. Just as with its 1-dimensional
counterpart, a Gaussian pdf overd attributes,X1, . . . , Xd can
be expressed as a function of two parameters: a length-d vec-
tor of means,µ, and ad × d matrix of covariances,Σ. Fig-
ure 3(A) shows a three-dimensional rendering of a Gaussian
over two attributes,X1 andX2; the z axis represents thejoint
densitythatX2 = x andX1 = y. Figure 3(B) shows a con-
tour plot representation of the same Gaussian, where each cir-
cle represents a probability density contour (corresponding to
the height of the plot in (A)).
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Intuitively, µ is the point at the center of this probability
distribution, andΣ represents the spread of the distribution.
Theith element along the diagonal ofΣ is simply the variance
of Xi. Each off-diagonal elementΣ[i, j], i 6= j represents
the covariance between attributesXi andXj . Covariance is
a measure of correlation between a pair of attributes. A high
absolute covariance means that the attributes are strongly cor-
related: knowledge of one closely constrains the value of the
other. The Gaussians shown in Figure 3(A) and (B) have a
high covariance betweenX1 andX2. Notice that the contours
are elliptical such that knowledge of one variable constrains
the value of the other to a narrow probability band.

In BBQ, we use historical data to construct the initial rep-
resentation of this pdfp. In the implementation described
in this paper, we obtained such data using TinyDB (a tradi-
tional sensor network querying system)2. Once our initial
p is constructed, we can answer queries using the model,
updating it as new observations are obtained from the sen-
sor network, and as time passes. We explain the details of
how updates are done in Section 3.2, but illustrate it graph-
ically with our 2-dimensional Gaussian in Figures 3(B) -
3(D). Suppose that we have an initial Gaussian shown in Fig-
ure 3(B) and we choose to observe the variableX1; given
the resulting single value ofX1 = x, the points along the
line {(x,X2) | ∀X2 ∈ [−∞,∞]} conveniently form an (un-
normalized) one-dimensional Gaussian. After re-normalizing
these points (to make the area under the curve equal 1.0), we
can derive a new pdf representingp(X2 | X1 = x), which is
shown in 3(C). Note that the mean ofX2 given the value of
X1 is not the same as the prior mean ofX2 in 3(B). Then, af-
ter some time has passed, our belief aboutX1’s value will be
“spread out”, and we will again have a Gaussian over two
attributes, although both the mean and variance may have
shifted from their initial values, as shown in Figure 3(D).

2.3 Supported queries

Answering queries probabilistically based on a distribution
(e.g., the Gaussian representation described above) is con-
ceptually straightforward. Suppose, for example, that a query
asks for anε approximation to the value of a set of attributes,
with confidence at least1 − δ. We can use our pdf to com-
pute the expected value,µi, of each attribute in the query.
These will be our reported values. We can the use the pdf
again to compute the probability thatXi is within ε from the
mean,P (Xi ∈ [µi − ε, µi + ε]). If all of these probabili-
ties meet or exceed user specified confidence threshold, then
the requested readings can be directly reported as the means
µi. If the model’s confidence is too low, then the we require
additional readings before answering the query.

Choosing which readings to observe at this point is an opti-
mization problem: the goal is to pick the best set of attributes
to observe, minimizing the cost of observation required to
bring the model’s confidence up to the user specified thresh-
old for all of the query predicates. We discuss this optimiza-
tion problem in more detail in Section 4.

In Section 3, we show how our query and optimization
engine are used in BBQ to answer a number of SQL queries,

2Though these initial observations do consume some energy up-front, we
will show that the long-run energy savings obtained from using a model will
be much more significant.
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Figure 3: Example of Gaussians: (a) 3D plot of a 2D Gaussian
with high covariance; (b) the same Gaussian viewed as a contour
plot; (c) the resulting Gaussian overX2 after a particular value of
X1 has been observed; finally, (d) shows how, as uncertainty about
X1 increases from the time we last observed it, we again have a 2D
Gaussian with a lower variance and shifted mean.

including (i) simple selection queries requesting the value of
one or more sensors, or the value of all sensors in a given
geographic region, (ii) whether or not a predicate over one
or more sensor readings is true, and (iii) grouped aggregates
such as AVERAGE.

For the purposes of this paper, we focus on multiple one-
shot queries over the current state of the network, rather than
continuous queries. We can provide simple continuous query
functionality by issuing a one-shot query at regular time in-
tervals. In our experimental section, we compare this ap-
proach to existing continuous query systems for sensor net-
works (like TinyDB). We also discuss how knowledge of a
standing, continuous query could be used to further optimize
our performance in Section 6.

In this paper, there are certain types of queries which we
do not address. For example, BBQ is not designed for out-
lier detection – that is, it will not immediately detect when a
single sensor is reading something that is very far from its
expected value or from the value of neighbors it has been
correlated with in the past. We suggest ways in which our
approach can be amended to handle outliers in Section 6.

2.4 Networking model and observation plan format

Our initial implementation of BBQ focuses on static sensor
networks, such as those deployed for building and habitat
monitoring. For this reason, we assume that network topolo-
gies change relatively slowly. We capture network topology
information when collecting data by including, for each sen-
sor, a vector of link quality estimates for neighboring sensor
nodes. We use this topology information when constructing
query plans by assuming that nodes that were previously con-
nected will still be in the near future. When executing a plan,
if we observe that a particular link is not available (e.g., be-
cause one of the sensors has failed), we update our topology
model accordingly.We can continue to collect new topology
information as we query the network, so that new links will
also become available. This approach will be effective if the
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topology is relatively stable; highly dynamic topologies will
need more sophisticated techniques, which is a problem we
briefly discuss in Section 6.

In BBQ, observation plans consist of a list of sensor nodes
to visit, and, at each of these nodes, a (possibly empty) list
of attributes that need to be observed at that node. The possi-
bility of visiting a node but observing nothing is included to
allow plans to observe portions of the network that are sepa-
rated by multiple radio hops. We require that plans begin and
end at sensor id 0 (theroot), which we assume to be the node
that interfaces the query processor to the sensor network.

2.5 Cost model

During plan generation and optimization, we need to be able
to compare the relative costs of executing different plans in
the network. As energy is the primary concern in battery-
powered sensornets [15, 26], our goal is to pick plans of min-
imum energy cost. The primary contributors to energy cost
are communication and data acquisition from sensors (CPU
overheads beyond what is required when acquiring and send-
ing data are small, as there is no significant processing done
on the nodes in our setting).

Our cost model uses numbers obtained from the data
sheets of sensors and the radio used on Mica2 motes with
a Crossbow MTS400 [6] environmental sensor board. For
the purposes of our model, we assume that the sender and re-
ceiver are well synchronized, so that a listening sensor turns
on its radio just as a sending node begins transmitting3. On
current generation motes, the time required to send a packet
is about 27 ms. The ChipCon CC1000 radio on motes uses
about 15 mW of energy in both send and receive modes,
meaning that both sender and receiver consume about .4 mJ
of energy. Table 1 summarizes the energy costs of acquiring
readings from various sensors available for motes. In this pa-
per, we primarily focus on temperature readings, though we
briefly discuss other attributes as well in Section 5. Assum-
ing we are acquiring temperature readings (which cost .5 J
per sample), we compute the cost of a plan that visitss nodes
and acquiresa readings to be(.4× 2)× s+.5× a if there are
no lost packets. In Section 4.1, we generalize this idea, and
consider lossy communication. Note that this cost treats the
entire network as a shared resource in which power needs to
be conserved equivalently on each mote. More sophisticated
cost models that take into account the relative importance of
nodes close to the root could be used, but an exploration of
such cost models is not needed to demonstrate the utility of
our approach.

3 Model-based querying

As described above, the central element in our approach is
the use of a probabilistic model to answer queries about the
attributes in a sensor network. This section focuses on a few
specific queries: range predicates, attribute-value estimates,

3In practice, this is done by having the receiver periodically sample the
radio, listening for a preamble signal that indicates a sender is about to begin
transmission; when this preamble is heard, it begins listening continuously.
Though this periodic radio sampling uses some energy, it is small, because
the sampling duty cycle can be 1% or less (and is an overhead paid by any
application that uses the radio).

Sensor Energy Per
Sample (@3V), mJ

Solar Radiation [29] .525
Barometric Pressure [16] 0.003
Humidity and Temperature[28] 0.5
Voltage 0.00009

Table 1: Summary of Power Requirements of Crossbow MTS400
Sensorboard (From [20]). Certain sensors, such as solar radiation
and humidity (which includes a temperature sensor) require about a
second per sample, explaining their high per-sample energy cost.

and standard aggregates. We provide a review of the stan-
dard methodology required to use a probabilistic model to
answer these queries. This probabilistic model can answer
many other significantly more complex queries as well; we
outline some of these directions in Section 6.

3.1 Probabilistic queries

A probability density function(pdf), or prior density,
p(X1, . . . , Xn) assigns a probability for each joint value
x1, . . . , xn for the attributesX1, . . . , Xn.

Range queries: We begin by considering range queries
that ask if an attributeXi is in the range[ai, bi]. Typically, we
would need to query the sensor network to obtain the value of
the attribute and then test whether the query is true or false.
Using a probabilistic model, we can compute the probability
P (Xi ∈ [ai, bi]). If this probability is very high, we are con-
fident that the predicateXi ∈ [ai, bi] is true. Analogously, if
the probability is very low, we are confident that the predicate
is false. Otherwise, we may not have enough information to
answer this query with sufficient confidence and may need to
acquire more data from the sensor network. The probability
P (Xi ∈ [ai, bi]) can be computed in two steps: First, we
marginalize, or project, the pdfp(X1, . . . , Xn) to a density
over only attributeXi:

p(xi) =
∫

p(x1, . . . , xn)dx1 . . . dxi−1dxi+1 . . . dxn.

Marginalization gives us the pdf over onlyXi. We can then
computeP (Xi ∈ [ai, bi]) simply by:

P (Xi ∈ [ai, bi]) =
∫ bi

ai

p(xi)dxi. (1)

Range queries over multiple attributes can be answered by
marginalizing the joint pdf to that set of attributes. Thus, we
can use the joint probability densityp(X1, . . . , Xn) to pro-
vide probabilistic answers to any range query. If the user
specifies a confidence level1−δ, for δ ∈ [0, 1], we can answer
the query if this confidence is eitherP (Xi ∈ [ai, bi]) > 1− δ
or P (Xi ∈ [ai, bi]) < δ. However, in some cases, the com-
puted confidences may be low compared to the ones required
by the query, and we need to make new observations, that is,
to acquire new sensor readings.

Suppose that we observe the value of attributeXj to be
xj , we can now use Bayes’ rule tocondition our joint pdf
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p(X1, . . . , Xn) on this value4, obtaining:

p(X1, . . . , Xj−1, Xj+1, . . . , Xn | xj) =
p(X1, . . . , Xj−1, xj , Xj+1, . . . , Xn)

p(xj)
.

The conditional probability density function
p(X1, . . . , Xj−1, Xj+1, . . . , Xn | xj), also referred as the
posterior densitygiven the observationxj , will usually lead
to a more confident estimate of the probability ranges. Using
marginalization, we can computeP (Xi ∈ [ai, bi] | xj),
which is often more certain than the prior probability
P (Xi ∈ [ai, bi]). In general, we will make a set of observa-
tionso, and, after conditioning on these observations, obtain
p(X | o), the posterior probability of our set of attributesX
giveno.

Example 3.1 In BBQ, the pdf is represented by a multivari-
ate Gaussian with mean vectorµ and covariance matrixΣ.
In Gaussians, marginalization is very simple. If we want to
marginalize the pdf to a subsetY of the attributes, we sim-
ply select the entries inµ and Σ corresponding to these at-
tributes, and drop the other entries obtaining a lower dimen-
sional mean vectorµY and covariance matrixΣYY. For a
Gaussian, there is no closed-form solution for Equation (1).
However, this integration problem is very well understood,
called theerror function(erf), with many well-known, simple
approximations.

Interestingly, if we condition a Gaussian on the value of
some attributes, the resulting pdf is also a Gaussian. The
mean and covariance matrix of this new Gaussian can be
computed by simple matrix operations. Suppose that we ob-
serve valueo for attributesO, the meanµY|o and covariance
matrixΣY|o of the pdfp(Y | o) over the remaining attributes
are given by:

µY|o = µY + ΣYOΣ−1
OO(o− µO),

ΣY|o = ΣYY − ΣYOΣ−1
OOΣOY,

(2)

whereΣYO denotes the matrix formed by selecting the rows
Y and the columnsO from the original covariance matrix
Σ. Note that the posterior covariance matrixΣY|o does not
depend on the actual observed valueo. We thus denote this
matrix byΣY|O. In BBQ, by using Gaussians, we can thus
compute all of the operations required to answer our queries
by performing only basic matrix operations.2

Value queries: In addition to range queries, a probability
density function can, of course, be used to answer many other
query types. For example, if the user is interested in the value
of a particular attributeXi, we can answer this query by using
the posterior pdf to compute the meanx̄i value ofXi, given
the observationso:

x̄i =
∫

xi p(xi | o)dxi.

4The expressionp(x|y) is read “the probability ofx giveny”, and repre-
sents the pdf of variablex given a particular value ofy. Bayes’ rule allows
conditional probabilities to be computed in scenarios where we only have

data on the inverse conditional probability:p(x|y) =
p(y|x)p(x)

p(y)
.

We can additionally provide confidence intervals on this esti-
mate of the value of the attribute: for a given error boundε >
0, the confidence is simply given byP (Xi ∈ [x̄i−ε, x̄i +ε] |
o), which can be computed as in the range queries in Equa-
tion (1). If this confidence is greater than the user specified
value1 − δ, then we can provide a probably approximately
correct value for the attribute, without observing it.

AVERAGE aggregates: Average queries can be an-
swered in a similar fashion, by defining an appropriate pdf.
Suppose that we are interested in the average value of a set
of attributesA. For example, if we are interested in the av-
erage temperature in a spatial region, we can defineA to be
the set of sensors in this region. We can now define a random
variableY to represent this average byY = (

∑
i∈A Xi)/|A|.

The pdf forY is simply given by appropriate marginalization
of the joint pdf over the attributes inA:

p(Y = y | o) =∫
p(x1, . . . , xn | o) 1

[(∑
i∈A

xi/|A|

)
= y

]
dx1 . . . dxn,

where1[·] is the indicator function.5 Oncep(Y = y | o) is
defined, we can answer an average query by simply defining
a value query for the new random variableY as above. We
can also compute probabilistic answers to more complex ag-
gregation queries. For example, if the user wants the average
value of the attributes inA that have value greater thant, we
can define a random variableZ:

Z =
∑

i∈A Xi1(Xi > c)∑
i∈A 1(Xi > c)

,

where0
0 is defined to be0. The pdf ofZ is given by:

p(Z = z | o) =∫
p(x1, . . . , xn | o) 1

[(∑
i∈A,xi>c xi∑
i∈A,xi>c 1

)
= y

]
dx1 . . . dxn.

In general, this inference problem,i.e., computing these in-
tegrals, does not have a closed-form solution, and numerical
integration techniques may be required.

Example 3.2 BBQ focuses on Gaussians. In this case, each
posterior mean̄xi can be obtained directly from our mean
vector by using the conditioning rule described in Exam-
ple 3.1. Interestingly, the sum of Gaussian random variables
is also Gaussian. Thus, if we define an AVERAGE query
Y = (

∑
i∈A Xi)/|A|, then the pdf forY is a Gaussian. All

we need now is the variance ofY , which can be computed in
closed-form from those of eachXi by:

E[(Y − µY )2] = E[(
∑

i∈A Xi − µi)2/|A|2],
= 1

|A|2
(∑

i∈A E[(Xi − µi)2]
+2
∑

i∈A
∑

j∈A,j 6=i

E[(Xi − µi)(Xj − µj)]) .

Thus, the variance ofY is given by a weighted sum of the

5The indicator function translates a Boolean predicate into the arithmetic
value 1 (if the predicate is true) and 0 (if false).
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variances of eachXi, plus the covariances betweenXi and
Xj , all of which can be directly read off the covariance ma-
trix Σ. Therefore, we can answer an AVERAGE query over a
subset of the attributesA in closed-form, using the same pro-
cedure as value queries. For the more general queries that
depend on the actual value of the attributes, even with Gaus-
sians, we require a numerical integration procedure.2

3.2 Dynamic models

Thus far, we have focused on a single static probability den-
sity function over the attributes. This distribution represents
spatialcorrelation in our sensor network deployment. How-
ever, many real-world systems include attributes that evolve
over time. In our deployment, the temperatures have both
temporal and spatial correlations. Thus, the temperature val-
ues observed earlier in time should help us estimate the tem-
perature later in time. Adynamic probabilistic modelcan
represent such temporal correlations.

In particular, for each (discrete) time indext, we should
estimate a pdfp(Xt

1, . . . , X
t
n | o1...t) that assigns a prob-

ability for each joint assignment to the attributes at time
t, given o1...t, all observations made up to timet. A dy-
namic model describes the evolution of this system over time,
telling us how to computep(Xt+1

1 , . . . , Xt+1
n | o1...t) from

p(Xt
1, . . . , X

t
n | o1...t). Thus, we can use all measurements

made up to timet to improve our estimate of the pdf at time
t + 1.

For simplicity, we restrict our presentation toMarkovian
models, where given the value ofall attributes at timet, the
value of the attributes at timet + 1 are independent of those
for any time earlier thant. This assumption leads to a very
simple, yet often effective, model for representing a stochas-
tic dynamical system. Here, the dynamics are summarized by
a conditional density called thetransition model:

p(Xt+1
1 , . . . , Xt+1

n | Xt
1, . . . , X

t
n).

Using this transition model, we can compute
p(Xt+1

1 , . . . , Xt+1
n | o1...t) using a simple marginaliza-

tion operation:

p(xt+1
1 , . . . , xt+1

n | o1...t) =Z
p(xt+1

1 , . . . , xt+1
n | xt

1, . . . , xt
n)p(xt

1, . . . , xt
n | o1...t)dxt

1 . . . dxt
n.

This formula assumes that the transition modelp(Xt+1 | Xt)
is the same for all timest. In our deployment, for example,
in the mornings the temperatures tend to increase, while at
night they tend to decrease. This suggests that the transition
model should be different at different times of the day. In our
experimental results in Section 5, we address this problem by
simply learning a different transition modelpi(Xt+1 | Xt)
for each houri of the day. At a particular timet, we simply
use the transition modelmod(t, 24). This idea can, of course,
be generalized to other cyclic variations.

Once we have obtainedp(Xt+1
1 , . . . , Xt+1

n | o1...t), the
prior pdf for timet + 1, we can again incorporate the mea-
surementsot+1 made at timet + 1, as in Section 3.1, obtain-
ing p(Xt+1

1 , . . . , Xt+1
n | o1...t+1), the posterior distribution

at timet + 1 given all measurements made up to timet + 1.

This process is then repeated for timet + 2, and so on.
The pdf for the initial timet = 0, p(X0

1 , . . . , X0
n), is ini-

tialized with the prior distribution for attributesX1, . . . , Xn.
This process of pushing our estimate for the density at time
t through the transition model and then conditioning on the
measurements at timet + 1 is often calledfiltering. In con-
trast to the static model described in the previous section, fil-
tering allows us to condition our estimate on the complete
history of observations, which, as we will see in Section 5,
can significantly reduce the number of observations required
for obtaining confident approximate answers to our queries.

Example 3.3 In BBQ, we focus on Gaussian distributions;
for these distributions the filtering process is called a
Kalman filter. The transition modelp(Xt+1

1 , . . . , Xt+1
n |

Xt
1, . . . , X

t
n) can be learned from data with two simple steps:

First, we learn a mean and covariance matrix for the joint
densityp(Xt+1

1 , . . . , Xt+1
n , Xt

1, . . . , X
t
n). That is, we form

tuples
〈
Xt+1

1 , . . . , Xt+1
n , Xt

1, . . . , X
t
n

〉
for our attributes at

every consecutive timest and t + 1, and use these tuples to
compute the joint mean vector and covariance matrix. Then,
we use the conditioning rule described in Example 3.1 to
compute the transition model:

p(Xt+1 | Xt) =
p(Xt+1,Xt)

p(Xt)
.

Once we have obtained this transition model, we can answer
our queries in a similar fashion as described in Examples 3.1
and 3.2. 2

4 Choosing an observation plan

In the previous section, we showed that our pdfs can be condi-
tioned on the valueo of the set of observed attributes to obtain
a more confident answer to our query. Of course, the choice
of attributes that we observe will crucially affect the result-
ing posterior density. In this section, we focus on selecting
the attributes that are expected to increase the confidences in
the answer to our particular query at minimal cost. We first
formalize the notion of cost of observing a particular set of
attributes. Then, we describe the expected improvement in
our answer from observing this set. Finally, we discuss the
problem of optimizing the choice of attributes.

4.1 Cost of observations

Let us denote a set of observations byO ⊆ {1, . . . , n}. The
expected costC(O) of observing attributesO is divided addi-
tively into two parts: the data acquisition costCa(O), repre-
senting the cost of sensing these attributes, and the expected
data transmission costCt(O), measuring the communication
cost required to download this data.

The acquisition costCa(O) is deterministically given by
the sum of the energy required to observe the attributesO, as
discussed in Section 2.5:

Ca(O) =
∑
i∈O

Ca(i),

whereCa(i) is the cost of observing attributeXi.
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The definition of the transmission costCt(O) is somewhat
trickier, as it depends on the particular data collection mech-
anism used to collect these observations from the network,
and on the network topology. Furthermore, if the topology is
unknown or changes over time, or if the communication links
between nodes are unreliable, as in most sensor networks, this
cost function becomes stochastic. For simplicity, we focus on
networks with known topologies, but with unreliable com-
munication. We address this reliability issue by introducing
acknowledgment messages and retransmissions.

More specifically, we define our network graph by a set of
edgesE , where each edgeeij is associated two link qual-
ity estimates,pij and pji, indicating the probability that a
packet fromi will reach j and vice versa. With the sim-
plifying assumption that these probabilities are independent,
the expected number of transmission and acknowledgment
messages required to guarantee a successful transmission be-
tweeni andj is 1

pijpji
. We can now use these simple values

to estimate the expected transmission cost.
There are many possible mechanisms for traversing the

network and collecting this data. We focus on simply choos-
ing a single path through the network that visits all sensors
that observe attributes inO and returns to the base station.
Clearly, choosing the best such path is an instance of the
traveling salesman problem, where the graph is given by
the edgesE with weights 1

pijpji
. Although this problem is

NP-complete, we can use well-known heuristics, such as k-
OPT [19], that are known to perform very well in practice.
We thus defineCt(O) to be the expected cost of this (subop-
timal) path, and our expected total cost for observingO can
now be obtained byC(O) = Ca(O) + Ct(O).

4.2 Improvement in confidence

Observing attributesO should improve the confidence of our
posterior density. That is, after observing these attributes, we
should be able to answer our query with more certainty6. For
a particular valueo of our observationsO, we can compute
the posterior densityp(X1, . . . , Xn | o) and estimate our
confidence as described in Section 3.1.

More specifically, suppose that we have a range query
Xi ∈ [ai, bi], we can compute the benefitRi(o) of observ-
ing the specific valueo by:

Ri(o) = max [P (Xi ∈ [ai, bi] | o), 1− P (Xi ∈ [ai, bi] | o)] ,

that is, for a range query,Ri(o) simply measures our confi-
dence after observingo. For value and average queries, we
define the benefit byRi(o) = P (Xi ∈ [x̄i − ε, x̄i + ε] | o),
wherex̄i in this formula is the posterior mean ofXi given the
observationso.

However, the specific valueo of the attributesO is not
knowna priori. We must thus compute theexpected benefit
Ri(O):

Ri(O) =
∫

p(o)Ri(o)do. (3)

This integral may be difficult to compute in closed-form, and
we may need to estimateRi(O) using numerical integration.

6This is not true in all cases; for range predicates, the confidence in the
answer maydecreaseafter an observation, depending on the observed value.

Example 4.1 The descriptions in Examples 3.1-3.3 describe
how the benefitsRi(o) can be computed for a particular ob-
served valueo in the Gaussian models used in BBQ. For gen-
eral range queries, even with Gaussians, we need to use nu-
merical integration techniques to estimate the expected re-
wardRi(O) in Equation (3).

However, for value and AVERAGE queries we can com-
pute this expression in closed-form, by exploiting the fact de-
scribed in Example 3.1 that the posterior covarianceΣY|O
does not depend on the observed valueo. Note that for these
queries, we are computing the probability that the true value
deviates by more thanε from the posterior mean value. This
probability is equal to the probability that a zero mean Gaus-
sian, with covarianceΣY|O, deviates by more thanε from
0. This probability can be computed using the error function
(erf) and the covariance matrixΣY|O. Thus, for value and
AVERAGE queriesRi(O) = Ri(o),∀o, allowing us to com-
pute Equation (3) in closed-form.2

More generally, we may have range or value queries over
multiple attributes. Semantically, we define this type of query
as trying to achieve a particular marginal confidence over
each attribute. We must thus decide how to trade off con-
fidences between different attributes. For a query over at-
tributesQ ⊆ {1, . . . , n}, we can, for instance, define the to-
tal benefitR(o) of observing valueo as either the minimum
benefit over all attributes,R(o) = mini∈Q Ri(o), or the av-
erage,R(o) = 1

|Q|
∑

i∈Q Ri(o). In this paper, we focus on
minimizing the total number of mistakes made by the query
processor, and use the average benefit to decide when to stop
observing new attributes.

4.3 Optimization

In the previous sections, we defined the expected benefit
R(O) and costC(O) of observing attributesO. Of course,
different sets of observed attributes will lead to different ben-
efit and cost levels. Our user will define a desired confidence
level1− δ. We would like to pick the set of attributesO that
meet this confidence at a minimum cost:

minimizeO⊆{1,...,n} C(O),
such that R(O) ≥ 1− δ.

This general optimization problem is known to be NP-hard.
Thus, efficient and exact optimization algorithms are unlikely
to exist (unless P=NP).

We have developed two algorithms for solving this opti-
mization problem. The first algorithm exhaustively searches
over the possible subsets of possible observations,O ⊆
{1, . . . , n}. This algorithm can thus find the optimal subset
of attributes to observe, but has an exponential running time.

The second algorithm uses a greedy incremental heuris-
tic. We initialize the search with an empty set of attributes,
O = ∅. At each iteration, for each attributeXi that is not in
our set (i 6∈ O), we compute the new expect benefitR(O∪ i)
and costC(O ∪ i). If some set of attributesG reach the de-
sired confidence, (i.e., for j ∈ G, R(O ∪ j) ≥ 1 − δ), then,
among the attributes inG, we pick the one with lowest total
costC(O∪j), and terminate the search returningO∪j. Oth-
erwise, ifG = ∅, we have not reached our desired confidence,
and we simply add the attribute with the highest benefit over
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cost ratio to our set of attributes:

O = O ∪
(

arg max
j 6∈O

R(O ∪ j)
C(O ∪ j)

)
.

This process is then repeated until the desired confidence is
reached.

5 Experimental results
In this section, we measure the performance of BBQ on sev-
eral real world data sets. Our goal is to demonstrate that BBQ
provides the ability to efficiently execute approximate queries
with user-specifiable confidences.

5.1 Data sets

Our results are based on running experiments over two real-
world data sets that we have collected during the past few
months using TinyDB. The first data set,garden, is a one
month trace of 83,000 readings from 11 sensors in a single
redwood tree at the UC Botanical Garden in Berkeley. In this
case, sensors were placed at 4 different altitudes in the tree,
where they collected collected light, humidity, temperature,
and voltage readings once every 5 minutes. We split this data
set into non-overlapping training and test data sets (with 2/3
used for training), and build the model on the training data.

The second data set,lab, is a trace of readings from 54 sen-
sors in the Intel Research, Berkeley lab. These sensors col-
lected light, humidity, temperature and voltage readings, as
well as network connectivity information that makes it possi-
ble to reconstruct the network topology. Currently, the data
consists of 8 days of readings; we use the first 6 days for
training, and the last 2 for generating test traces.

5.2 Query workload

We report results for two sets of query workloads:
Value Queries: The main type of queries that we antici-

pate users would run on a such a system are queries asking
to report the sensor readings at all the sensors, within a spec-
ified error boundε with a specified confidenceδ, indicating
that no more than a fraction1−δ of the readings should devi-
ate from their true value byε. As an example, a typical query
may ask for temperatures at all the sensors within 0.5 degrees
with 95% confidence.

Predicate Queries:The second set of queries that we use
are selection queries over the sensor readings where the user
asks for all sensors that satisfy a certain predicate, and once
again specifies a desired confidenceδ.

We also looked ataverage queriesasking for averages
over the sensor readings. Due to space constraints, we do
not present results for these queries.

5.3 Comparison systems

We compare the effectiveness of BBQ against two simple
strategies for answering such queries :

TinyDB-style Querying: In this model, the query is dis-
seminated into the sensor network using an overlay tree struc-
ture [22], and at each mote, the sensor reading is observed.
The results are reported back to the base station using the
same tree, and are combined along the way back to minimize
communication cost.

Approximate-Caching: The base-station maintains a
view of the sensor readings at all motes that is guaranteed
to be within a certain interval of the actual sensor readings
by requiring the motes to report a sensor reading to the base-
station if the value of the sensor falls outside this interval.
Note that, though this model saves communication cost by
not reporting readings if they do not change much, it does not
save acquisition costs as the motes are required to observe the
sensor values at every time step. This approach is inspired by
work by Olstonet al. [24].

5.4 Methodology

BBQ is used to build a model of the training data. This model
includes a transition model for each hour of the day, based on
Kalman filters described in Example 3.3 above. We gener-
ate traces from the test data by taking one reading randomly
from each hour. We issue one query against the model per
hour. The model computes thea priori probabilities for each
predicate (orε bound) being satisfied, and chooses one or
more additional sensor readings to observe if the confidence
bounds are not met. After executing the generated observa-
tion plan over the network (at some cost), BBQ updates the
model with the observed values from the test data and com-
pares predicted values for non-observed readings to the test
data from that hour.

To measure the accuracy of our prediction with value
queries, we compute the average number of mistakes (per
hour) that BBQ made,i.e., how many of the reported val-
ues are further away from the actual values than the specified
error bound. To measure the accuracy for predicate queries,
we compute the number of predicates whose truth value was
incorrectly approximated.

For TinyDB, all queries are answered “correctly” (as we
are not modeling loss). Similarly, for approximate caching, a
value from the test data is reported when it deviates by more
thanε from the last reported value from that sensor, and as
such, this approach does not make mistakes either

We compute a cost for each observation plan as described
above; this includes both the attribute acquisition cost and
the communications cost. For most of our experiments, we
measure the accuracy of our model at predicting temperature.

5.5 Garden dataset: Value-based queries

We begin by analyzing the performance of value queries on
thegardendata set in detail to demonstrate the effectiveness
of our architecture. The query we use for this experiment re-
quires the system to report the temperatures at all motes to
within a specified epsilon, which we vary. In these experi-
ments we keep confidence constant at 95%, so we expect to
see no more than 5% errors. Figure 4 shows the relative cost
and number of errors made for each of the three systems. We
varied epsilon from between 0 and 1 degrees Celsius; as ex-
pected, the cost of BBQ (on the left of the figure) falls rapidly
as epsilon increases, and the percentage of errors (shown on
the right) stays well below the specified confidence threshold
of 5% (shown as the horizontal line). Notice that for reason-
able values of epsilon, BBQ uses significantly less commu-
nication than approximate caching or TinyDB, sometimes by
an order of magnitude. In this case, approximate caching al-
ways reports the value to within epsilon, so it does not make
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Figure 4: Figure illustrating the relative costs of BBQ versus
TinyDB and Approximate Queries, with varying epsilons and a con-
fidence interval of 95%.
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Figure 5:Figure showing the number of sensors observed over time
for varying epsilons.

“mistakes”, although the average observation error in approx-
imate caching is close to BBQ (for example, in this experi-
ment, with epsilon=.5, approximate caching has a root-mean-
squared error of .46, whereas BBQ this error is .12; in other
cases the relative performance is reversed).

Figure 5 shows the percentage of sensors that BBQ ob-
serves by hour, with varying epsilon, for the same set of gar-
den experiments. As epsilon gets small (less than .1 degrees),
it is necessary to observe all nodes on every query, as the vari-
ance between nodes is high enough that it cannot infer the
value of one sensor from other sensor’s readings with such
accuracy. On the other hand, for epsilons 1 or larger, very
few observations are needed, as the changes in one sensor
closely predict the values of other sensors. For intermedi-
ate epsilons, more observations are needed, especially during
times when sensor readings change dramatically. The spikes
in this case correspond to morning and evening, when tem-
perature changes relatively quickly as the sun comes up or
goes down (hour 0 in this case is midnight).

5.6 Garden Dataset: Cost vs. Confidence

For our next set of experiments, we again look at the garden
data set, this time comparing the cost of plan execution with
confidence intervals ranging from 99% to 80%, with epsilon
again varying between 0.1 and 1.0. The results are shown in
Figure 6(a) and (b). Figure 6(a) shows that decreasing confi-
dence intervals substantially reduces the energy per query, as
does decreasing epsilon. Note that for a confidence of 95%,
with errors of just .5 degrees C, we can reduce expected per-
query energy costs from 5.4 J to less than 150 mJ – a factor
of 40 reduction. Figure 6(b) shows that we meet or exceed
our confidence interval in almost all cases (except 99% confi-
dence). It is not surprising that we occasionally fail to satisfy
these bounds by a small amount, as variances in our training
data are somewhat different than variances in our test data.
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Figure 6:Energy per query (a) and percentage of errors (b) versus
confidence interval size and epsilon.

We also ran experiments comparing (1) the performance
of the greedy algorithm vs. the optimal algorithm, and (2) the
performance of the dynamic (Kalman Filter) model that we
use vs. a static model that does not incorporate observations
made in the previous time steps into the model. As expected,
the greedy algorithm performs slightly worse that the optimal
algorithm, whereas using dynamic models results in less ob-
servations than using static models. Due to space constraints,
we omit those experiments from this paper.

5.7 Garden Dataset: Range queries

We ran a number of experiments with range queries (also over
thegardendata set). Figure 7 summarizes the average num-
ber of observations required for a 95% confidence with three
different range queries (temperature in [17,18], temperature
in [19,20], and temperature in [20,21]). In all three cases, the
actual error rates were all at or below 5% (ranging from 1.5-
5%). Notice that different range queries require observations
at different times – for example, during the set of readings
just before hour 50, the three queries make observations dur-
ing three disjoint time periods: early in the morning and late
at night, the model must make lots of observations to deter-
mine whether the temperature is in the range 16-17, whereas
during mid-day, it is continually making observations for the
range 20-21, but never for other ranges (because it can be sure
the temperature is above 20 degrees, but not 21!)
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Figure 7: Graph showing BBQ’s performance on three different
range queries, for the garden data set with confidence set to 95%.

5.8 Lab dataset

We also ran similar experiments on thelab dataset, which
because of the higher number of attributes in it, is a more
interesting dataset. Contrary to our initial expectation, tem-
peratures in the lab are actually harder to predict compared
to the outdoors; human intervention (in particular, turning the
air conditioning on and off) introduces a lot of randomness in
this data. We report one set of experiments for this dataset,
but defer a more detailed study to future work.
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Figure 8(a) shows the cost incurred in answering a value
query on this dataset, as the confidence bound is varied. For
comparative purposes, we also plot the cost of answering the
query using TinyDB. Once again, we see that the as the re-
quired confidence in answer drops, BBQ is able to answer the
query more efficiently, and is significantly more cost-efficient
than TinyDB for larger error bounds. Figure 8(b) shows that
BBQ was able to achieve the specified confidence bounds in
almost all the cases.

Figure 9 shows an example traversal generated by execut-
ing a value based query with confidence of 99% and epsilon
of .5 degrees C over thelab data. The two paths shown are
amongst the longer paths generated – one is the initial set of
observations needed to improve the model’s confidence, and
the other is a traversal at 8am just as the day is starting to
warm up.
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Figure 8:Energy per query (a) and percentage of errors (b) versus
confidence interval size and epsilon for the Lab Data.

6 Extensions and future directions

In this paper, we focused on the core architecture for unifying
probabilistic models with declarative queries. In this section
we outline several possible extensions.

Conditional plans: In our current prototype, once an ob-
servation plan has been submitted to the sensor network, it
is executed to completion. A simple alternative would be
to generate plans that include early stopping conditions; a
more sophisticated approach would be to generate conditional
plans that explore different parts of the network depending on
the values of observed attributes. We have begun exploring
such conditional plans in a related project [8].

More complex models:In particular, we are interested in
building models that can detect faulty sensors, both to answer
fault detection queries, and to give correct answers to general
queries in the presence of faults. This is an active research
topic in the machine learning community (e.g., [18]), and we
expect that these techniques can be extended to our domain.

Outliers: Our current approach does not work well for
outlier detection. To a first approximation, the only way to
detect outliers is to continuously sample sensors, as outliers
are fundamentally uncorrelated events. Thus, any outlier de-
tection scheme is likely to have a high sensing cost, but we
expect that our probabilistic techniques can still be used to
avoid excessive communication during times of normal oper-
ation, as with the fault detection case.

Support for dynamic networks: Our current approach
of re-evaluating plans when the network topology changes
will not work well in highly dynamic networks. As a part
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Figure 9: Two traversals of the lab network. An observation is
made at every circle. The query was a value-query over all 54 sen-
sors withε = .1 andδ = .99. These paths correspond to times when
the model’s variance is high – e.g., when the system is first started,
and at around 8am when the sun begins to heat the lab, so many
observations are needed. For other hours, very few observations are
needed.

of our instrumentation of our lab space, we are beginning a
systematic study of how network topologies change over time
and as new sensors are added or existing sensors move. We
plan to use this information to extend our exploration plans
with simple topology change recovery strategies that can be
used to find alternate routes through the network.

Continuous queries: Our current approach re-executes
an exploration plan that begins at the network root on every
query. For continuous queries that repeatedly request data
about the same sensors, it may be possible to install code in
the network that causes devices to periodically push readings
during times of high change (e.g., every morning at 8 am).

7 Related work
There has been substantial work on approximate query pro-
cessing in the database community, often using model-like
synopsesfor query answering much as we rely on probabilis-
tic models. For example, the AQUA project [12, 10, 11]
proposes a number of sampling-based synopses that can pro-
vide approximate answers to a variety of queries using a frac-
tion of the total data in a database. As with BBQ, such an-
swers typically include tight bounds on the correctness of
answers. AQUA, however, is designed to work in an envi-
ronment where it is possible to generate an independent ran-
dom sample of data (something that is quite tricky to do in
sensor networks, as losses are correlated and communicating
random samples may require the participation of a large part
of the network). AQUA also does not exploit correlations,
which means that it lacks thepredictivepower of representa-
tions based on probabilistic models. [7, 9] propose exploiting
data correlations through use of graphical model techniques
for approximate query processing, but neither provide any
guarantees in the answers returned. Recently, Considineet
al. have shown that sketch based approximation techniques
can be applied in sensor networks [17].

Work on approximate caching by Olstonet al., is also re-
lated [25, 24], in the sense that it provides a bounded approx-
imation of the values of a number of cached objects (sensors,
in our case) at some server (the root of the sensor network).
The basic idea is that the server stores cached values along
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with absolute bounds for the deviation of those values; when
objects notice that their values have gone outside the bounds
known to be stored at the server, they send an update of our
value. Unlike our approach, this work requires the cached
objects to continuously monitor their values, which makes
the energy overhead of this approach considerable. It does,
however, enable queries that detect outliers, something BBQ
currently cannot do.

There has been some recent work on approximate, prob-
abilistic querying in sensor networks and moving object
databases [3]. This work builds on the work by Olstonet al.
in that objects update cached values when they exceed some
boundary condition, except that a pdf over the range defined
by the boundaries is also maintained to allow queries that es-
timate the most likely value of a cached object as well as an
confidence on that uncertainty. As with other approximation
work, the notion of correlated values is not exploited, and the
requirement that readings be continuously monitored intro-
duces a high sampling overhead.

Information Driven Sensor Querying (IDSQ) from Chuet
al. [4] uses probabilistic models for estimation of target po-
sition in a tracking application. In IDSQ, sensors are tasked
in order according to maximally reduce the positional uncer-
tainty of a target, as measured, for example, by the reduction
in the principal components of a 2D Gaussian.

Our prior work presented the notion ofacquisitional query
processing(ACQP) [21] – that is, query processing in environ-
ments like sensor networks where it is necessary to be sensi-
tive to the costs of acquiring data. The main goal of an ACQP
system is to avoid unnecessary data acquisition. The tech-
niques we present are very much in that spirit, though the
original work did not attempt to use probabilistic techniques
to avoid acquisition, and thus cannot directly exploit correla-
tions or provide confidence bounds.

BBQ is also inspired by prior work on Online Aggrega-
tion [14] and other aspects of the CONTROL project [13].
The basic idea in CONTROL is to provide an interface that al-
lows users to see partially complete answers with confidence
bounds for long running aggregate queries. CONTROL did
not attempt to capture correlations between the different at-
tributes, such that observing one attribute had no effect on the
systems confidence on any of the other predicates.

The probabilistic querying techniques described here are
built on standard results in machine learning and statistics
(e.g., [27, 23, 5]). The optimization problem we address is a
generalization of thevalue of informationproblem [27]. This
paper, however, proposes and evaluates the first general ar-
chitecture that combines model-based approximate query an-
swering with optimizing the data gathered in a sensornet.

8 Conclusions

In this paper, we proposed a novel architecture for integrat-
ing a database system with a correlation-aware probabilistic
model. Rather than directly querying the sensor network, we
build a model from stored and current readings, and answer
SQL queries by consulting the model. In a sensor network,
this provides a number of advantages, including shielding the
user from faulty sensors and reducing the number of expen-
sive sensor readings and radio transmissions that the network
must perform. Beyond the encouraging, order-of-magnitude

reductions in sampling and communication cost offered by
BBQ, we see our general architecture as the proper platform
for answering queries and interpreting data from real world
environments like sensornets, as conventional database tech-
nology is poorly equipped to deal with lossiness, noise, and
non-uniformity inherent in such environments.

References
[1] IPSN 2004 Call for Papers.http://ipsn04.cs.uiuc.edu/

call_for_papers.html .
[2] SenSys 2004 Call for Papers.http://www.cis.ohio-state.

edu/sensys04/ .
[3] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilis-

tic queries over imprecise data. InSIGMOD, 2003.
[4] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sen-

sor querying and routing for ad hoc heterogeneous sensor networks. In
Journal of High Performance Computing Applications., 2002.

[5] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter.Probabilistic
Networks and Expert Systems. Spinger, New York, 1999.

[6] Crossbow, Inc. Wireless sensor networks.http://www.xbow.
com/Products/Wireless_Sensor_Networks.htm .

[7] A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is Good:
Dependency-Based Histogram Synopses for High-Dimensional Data.
In SIGMOD, May 2001.

[8] A. Desphande, C. Guestrin, W. Hong, and S. Madden. Exploiting cor-
related attributes in acquisitional query processing. Technical report,
Intel-Research, Berkeley, 2004.

[9] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using prob-
abilistic models. InSIGMOD, May 2001.

[10] P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct
values queries and event reports. InProc. of VLDB, Sept 2001.

[11] P. B. Gibbons and M. Garofalakis. Approximate query processing:
Taming the terabytes (tutorial), September 2001.

[12] P. B. Gibbons and Y. Matias. New sampling-based summary statistics
for improving approximate query answers. InSIGMOD, 1998.

[13] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman,
T. Roth, and P. J. Haas. Interactive data analysis with CONTROL.
IEEE Computer, 32(8), August 1999.

[14] J. M. Hellerstein, P. J. Haas, and H. Wang. Online aggregation. In
SIGMOD, pages 171–182, Tucson, AZ, May 1997.

[15] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A
scalable and robust communication paradigm for sensor networks. In
MobiCOM, Boston, MA, August 2000.

[16] Intersema. Ms5534a barometer module. Technical report, October
2002. http://www.intersema.com/pro/module/file/
da5534.pdf .

[17] G. Kollios, J. Considine, F. Li, and J. Byers. Approximate aggregation
techniques for sensor databases. InICDE, 2004.

[18] U. Lerner, B. Moses, M. Scott, S. McIlraith, and D. Koller. Monitoring
a complex physical system using a hybrid dynamic bayes net. InUAI,
2002.

[19] S. Lin and B. Kernighan. An effective heuristic algorithm for the tsp.
Operations Research, 21:498–516, 1971.

[20] S. Madden. The design and evaluation of a query processing architec-
ture for sensor networks. Master’s thesis, UC Berkeley, 2003.

[21] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The de-
sign of an acquisitional query processor for sensor networks. InACM
SIGMOD, 2003.

[22] S. Madden, W. Hong, J. M. Hellerstein, and M. Franklin. TinyDB web
page. http://telegraph.cs.berkeley.edu/tinydb.

[23] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[24] C. Olston and J.Widom. Best effort cache sychronization with source

cooperation.SIGMOD, 2002.
[25] C. Olston, B. T. Loo, and J. Widom. Adaptive precision setting for

cached approximate values. InACM SIGMOD, May 2001.
[26] G. Pottie and W. Kaiser. Wireless integrated network sensors.Commu-

nications of the ACM, 43(5):51 – 58, May 2000.
[27] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach.

Prentice Hall, 1994.
[28] Sensirion. Sht11/15 relative humidity sensor. Technical report, June

2002. http://www.sensirion.com/en/pdf/Datasheet_
SHT1x_SHT7x_0206.pdf .

[29] TAOS, Inc. Tsl2550 ambient light sensor. Technical report, September
2002.http://www.taosinc.com/pdf/tsl2550-E39.pdf .

[30] Y. Yao and J. Gehrke. Query processing in sensor networks. InCon-
ference on Innovative Data Systems Research (CIDR), 2003.

599


