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Abstract Declarative querying has proved powerful in allowing pro-

Declarative queries are proving to be an attractive paradigm for in-grammers to “task” an entire network of sensor nodes, rather

teracting with networks of wireless sensors. The metaphor that "th(I.\han rzqumng them tohworry abrc])ut pr)]rog“rar\]mmlng md'V'(.j'
sensornet is a database” is problematic, however, because sensb'@I no e?,' However, t € meta_p or that “the Sensomet_ IS a
do not exhaustively represent the data in the real world. In ordeflatabase” has proven misleading. Databases are typically
to map the raw sensor readings onto physical realitspoalel of treated as Complete, authoritative sources of information; the
that reality is required to complement the readings. In this paperjob of a database query engine has traditionally been to an-
we enrich interactive sensor querying with statistical modeling techswer a query “correctly” based upon all the available data.
nigues. We demonstrate that such models can help provide answeApplying this mindset to sensornets results in two problems:
that are both more meaningful, and, by introducing approximations . . . .

1. Misrepresentations of data: In the sensornet environ-

with probabilistic confidences, significantly more efficient to com- e .
pute in both time and energy. Utilizing the combination of a model ment, itis impossible to gathell the relevant data. The

and live data acquisition raises the challenging optimization prob-  Physically observable world consists of a set of con-
lem of selecting the best sensor readings to acquire, balancing the ~ tinuous phenomena in both time and space, so the set
increase in the confidence of our answer against the communication ~ Of relevant data is in principle infinite. Sensing tech-
and data acquisition costs in the network. We describe an expo-  nologies acquirsamplesf physical phenomena at dis-
nential time algorithm for finding the optimal solution to this op- crete points in time and space, but the data acquired by
timization problem, and a polynomial-time heuristic for identifying the sensornet is unlikely to be a random (i.i.d.) sam-
solutions that perform well in practice. We evaluate our approach on ple of physical processes, for a number of reasons (hon-
several real-world sensor-network data sets, taking into account the uniform placement of sensors in space, faulty sensors,

real measured data and communication quality, demonstrating that high packet loss rates, etc). So a straightforward inter-
our model-based approach provides a high-fidelity representation of gn p ’ s 9 M N
pretation of the sensornet readings as a “database” may

the real phenomena and leads to significant performance gains ver- . .
P 9 P 9 not be a reliable representation of the real world.

sus traditional data acquisition techniques. ~ - - !
2. Inefficient approximate queries: Since a sensornet

1 Introduction cannot acquire all possible data, any readings from a

i o o ) sensornet are “approximate”, in the sense that they only
Database technologies are beginning to have a significantim-  represent the true state of the world at the discrete in-
pact in the emerging area of wireless sensor networks (sen-  stants and locations where samples were acquired. How-
sornets). The sensornet community has embraced declarative  ever, the leading approaches to query processing in sen-
queries as a key programming paradigm for large sets of sen-  sornets [30, 21] follow a completist's approach, acquir-
sors. This is seen in academia in the calls for papers for lead-  jng as much data as possible from the environment at a
ing conferences and workshops in the sensornet area [2, 1], given point in time, even whemost of that data provides
and in a number of prior research publications ([21].[30],[17], |ittle benefit in approximate answer qualitjVe show
etc). In the emerging industrial arena, one of the leading ven-  examples where query execution cost — in both time and
dors (Crossbow) is bundling a query processor with their de-  power consumption — can be orders of magnitude more

vices, and providing query processor training as part of their  than is appropriate for a reasonably reliable answer.
customer support. The area of sensornet querying represents

an unusual opportunity for database researchers to apply their1  oOur contribution
expertise in a new area of computer systems.

In this paper, we propose to compensate for both of these defi-
ciencies by incorporating statisticalodelsof real-world pro-
cesses into a sensornet query processing architecture. Models
that the copies are not made or distributed for direct commercial advantageican .hfelp prowdle n:r?re robust mterﬂetag.lons O.f SenStQI‘I read-
the VLDB copyright notice and the title of the publication and its date appear, ngs: 1or eéxample, théy can account tor biases In spatial sam-

and notice is given that copying is by permission of the Very Large Data Bas®ling, can help identify sensors that are providing faulty data,
Endowment. To copy otherwise, or to republish, requires a fee and/or specigind can extrapolate the values of missing sensors or sensor

*This work was supported by Intel Corporation, and by NSF under the
grant [1S-0205647.

Permission to copy without fee all or part of this material is granted provided

permission from the Endowment. readings at geographic locations where sensors are no longer
Proceedings of the 30th VLDB Conference, operational. Furthermore, models provide a framework for
Toronto, Canada, 2004 optimizing the acquisition of sensor readings: sensors should
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be used to acquire data only when the model itself is not suf-  Probabilistic Queries Query Results
ficiently rich to answer the query with acceptable confidence. ~ "SELECT noderd, User  ".22597%  »
Underneath this architectural shift in sensornet qUErying,  wieas modob s (6" 3, 24.4 95% i ]
we define and address a key optimization problem: given a 4 FRLI00% o
query and a model, choose a data acquisition plan for the

sensornet to best refine the query answer. This optimization

Query Processor

problem is complicated by two forms of dependencies: one Probabilistic Model and Planner
in the statisticabenefitsof acquiring a reading, the other in Observation Plan Data
the systentostsassociated with wireless sensor systems. "{[voltage,1], "1, voltage = .73
. .. . . ltage,2], R, voltage = 2.65
First, any non-trivial statistical model will capture correla- Mt 4 temp - 22.1"
[

tions among sensors: for example, the temperatures of ge-
ographically proximate sensors are likely to be correlated.
Given such a model, the benefit of a single sensor reading can
be used to improve estimates of other readings: the tempera- .
ture at one sensor node is likely to improve the confidence of 3" e
model-driven estimates for nearby nodes.

The second form of dependency hinges on the connectiv- ;
ity of the wireless sensor network. If a sensor ngde is
not within radio range of the query source, then one canfigure 1:0ur architecture for model-based querying in sensor net-
not acquire a reading fronfiar without forwarding the re-  \yorks.
quest/result pair through another nodenr. This presents
not only a non-uniform cost model for acquiring readings, butestimates, the model may interrogate the sensor network for
one with dependencies: due to multi-hop networking, the acupdated readings that will help to refine estimates for which
quisition cost fomear will be much lower if one has already its uncertainty is high. As time passes, the model may also
chosen to acquire data frofimr by routing throughear. update its estimates of sensor values, to reflect expected tem-

To explore the benefits of the model-based querying apporal changes in the data.
proach we propose, we are building a prototype called BBQ |n BBQ, we use a specific model based on time-varying
that uses a specific model based on time-varying multivarimultivariate Gaussians; we describe this model below. We
ate Gaussians. We describe how our generic model-based &mphasize, however, that our approach is general with re-
chitecture and querying techniques are specifically applied igpect to the model, and that more or less complex models
BBQ. We also present encouraging results on real-world sefcan be used instead. New models require no changes to the
sornet trace data, demonstrating the advantages that modej§ery processor and can reuse code that interfaces with and

offer for queries over sensor networks. acquires particular readings from the sensor network. The
main difference occurs in the algorithms required to solve the
2 Overview of approach probabilistic inference tasks described in Section 3. These

. . . . . .. algorithms have been widely developed for many practical
In this section, we provide an overview of our basic arCh'teCTmodels e.9, [23]).

ture and approach, as well as a summary of BBQ. Our archi- Ei 1 illustrat basi hitecture th h
tecture consists of a declarative query processing engine tha}n ll%ureUsérgssr%Ens'togr LaS'Ce?;CS Itoe(;huere datre;)bufse an ﬁ.)é'h
uses a probabilistic model to answer questions about the cuf- pie. ubmit SQL queri » Whi

rent state of the sensor network. We denote a modepasta asre t;_anslgted_}rrl]to prObfab'“.St'? (aomputatlto TS over the n&otdel
ability density functior(pdf), p(X1, Xo, ..., X,,), assigning (Section 3). e queries include error tolerances and tar-

a probability for each possible assignment to the attribute§°t cqnﬂd'e.nce bounds that specify how mu'ch uncertainty the
X, X,,, where eachX; is an attribute at a particular sen- user is willing to tolerate. Such bounds will be intuitive to
Yt ns K3

sor (.9, temperature on sensing node 5, voltage on sensin any scientific and technical users, as they are the same as the
node '1’2) Typically, there is one such é\ttribute per Serlsc)%-‘onfidence bounds used for reporting results in most scientific
. s :

type per sensing node. This model can also incorpdriake elds (c.f., the graph-representation shown in the upper right

den variableqi.e., variables that are not directly observable) of Figure 1). In this example, the user is interested in esti-

that indicate, for example, whether a sensor is giving faum}nates of the value of sensor readings for nodes numbered 1

values. Such models can be learned from historical data usintﬁrongh 8, within .1 degrees C of the actual temperature read-

standard algorithmse(g, [23]). ing with 95% confidence. Based on the model, the system de-
Users query for information about the values of Ioarticu_C|des that the most eff|_0|ent way to answer the query with the
lar attributes or in certain regions of the network, much agequested confidence is to read battery voltage from sensors 1
they would in a traditional SQL database. Unlike databas nd 2 and temperature from sensor 4. Based on knowledge of
queries, however, sensornet queries request real-time infoj € SENSOr network topology, it generatemaservation plan
mation about the environment, rather than information abou hat acquires samples in this order, and sends the plan into the
a stored collection of data. T,he model is used to estimatgetwork’ where the appropriate readings are collected. These

sensor readings in the current time period; these estimatigadmgS are used to update the model, which can then be used

form the answer the query. In the process of generating the Q generate query answers with specified confidence intervals.
Notice that the model in this example chooses to observe

1BBQ is short for Barbie-Q: A Tiny-Model Query System the voltage at some nodes despite the fact that the user’s query
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Reading # vs. Voltage and Temperature

w
S

Conversely, the user could have requested very wide confi-
dence bounds, in which case the model may have been able to
answer the query without acquiring any additional data from
the network. In fact, in our experiments with BBQ on sev-
eral real-world data sets, we see a number of cases where
strong correlations between sensors during certain times of
285 : : : : — = the day mean that even queries with relatively tight confi-
28f dence bounds can be answered with a very small number of
i ] sensor observations. In many cases, these tight confidences
can be providediespite the fact that sensor readings have
changed significantlyThis is because known correlations be-
%% s 1000 1s‘ogeadmgiobo 2500 3000 500 tween sensors make it possible to predict these changes: for
) example, in Figure 2, it is clear that the temperature on the
Figure 2:Trace of voltage and temperature readings over a two dayyo sensors is correlated given the time of day. During the
period from a single mote-based sensor. Notice the close correlatio&aytime (e.g., readings 600-1200 and 2600-3400), sensor 25,
between the two attributes. which is placed near a window, is consistently hotter than sen-
was over temperature. This happens for two reasons: sor 1, which is in the center of our lab. A good model will be
. 7 ' able to infer, with high confidence that, during daytime hours,
1. Correlations in Value: Temperature and voltage are sensor readings on sensor 25 are 1-2 degrees hotter than those
highly correlated, as illustrated by Figure 2 which showsat sensor 1 without actually observing sensor 25. Again, this
the temperature and voltage readings for two days ofs jn contrast to existing sensor network querying systems,
sensor readings from a pair of Berkeley Mica2 Motes [6]here sensors are continuously sampled and readings are al-
that we deployed in the Intel Research Lab in Berkeleyyyays reported whenever small absolute changes happen.
California. Note how voltage tracks temperature, and Typically in probabilistic modeling, we pick a class of
how temperature variations across motes, even thoughqdels, and use learning techniques to pick the best model in
of noticeably different magnitudes, are very similar. Thehe class. The problem of selecting the right model class has
relationship between temperature and voltage is due tggep widely studiede(g, [23]), but can be difficult in some
the fact that, for many types of batteries, as they heabjications. Before presenting the specific model class used
or cool, their voltages vary significantly (by as much asj, g, we note that, in general, a probabilistic model is only
1% per degree). The voltages may also decrease as thg 4004 at prediction as the data used to train it. Thus, it may
sensor nodes consume energy from the batteries, but thg, the case that the temperature between sensors 1 and 25
time scale at which that happens is much larger than thg,qy1d not show the same relationship during a different sea-
time scale of temperature variations, and so the modelp, of the year, or in a different climate — in fact, one might
can use voltage changes to infer temperature changes.gypect that when the outside temperature is very cold, sensor
2. Cost Differential: Depending on the specific type of 25 will read less than sensor 1 during the day, just as it does
temperature sensor used, it may be much cheaper tguring the night time. Thus, for models to perform accurate
sample the voltage than to read the temperature. Fajredictions they must be trained in the kind of environment
example, on sensor boards from Crossbow Corporatiofyhere they will be used. That does not mean, however, that
for Berkeley Motes [6], the temperature sensor requiresye|l-trained models cannot deal with changing relationships
several orders of magnitude more energy to sample agyer time; in fact, the model we use in BBQ uses different
simply reading battery voltage (see Table 1). correlation data depending on time of day. Extending it to
One of the important properties of many probabilistic mod-handle seasonal variations, for example is a straightforward
els (including the one used in BBQ) is that they can capturextension of the techniques we use for handling variations
correlations between different attributes. We will see how weacross hours of the day.
can exploit such correlations during optimization to generate
efficient query plans in Section 4. 2.2 BBQ

In BBQ, we use a specific probabilistic model based on time-
varying multivariate Gaussians. A multivariate Gaussian
The user in Figure 1 could have requested 100% confidendghereafter, just Gaussian) is the natural extension of the famil-
and no error tolerance, in which case the model would havéar unidimensional normal probability density function (pdf),
required us to interrogate every sensor. The returned resuthown as the “bell curve”. Just as with its 1-dimensional
could still include some uncertainty, as the model may notounterpart, a Gaussian pdf oveattributes X, ..., X; can
have readings from particular sensors or locations at somiee expressed as a function of two parameters: a ledgttc-
points in time (due to sensor or communications failures, otor of meansyu, and ad x d matrix of covariancesy.. Fig-

lack of sensor instrumentation at a particular location). Thesere 3(A) shows a three-dimensional rendering of a Gaussian
confidence intervals computed from our probabilistic modelover two attributesX; andXs; the z axis represents tiant
provide considerably more information than traditional sen-densitythat Xo = x and X; = y. Figure 3(B) shows a con-
sor network systems like TinyDB and Cougar provide in thistour plot representation of the same Gaussian, where each cir-
setting. With those systems, the user would simply get nale represents a probability density contour (corresponding to
data regarding those missing times and locations. the height of the plot in (A)).
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Intuitively, p is the point at the center of this probability 2D Gaussian PDF Wi High Covarianco 3 Gesian POF over XX, wnere 20X, ) i Higny Posiive
distribution, and> represents the spread of the distribution.
Theith element along the diagonalXfis simply the variance
of X;. Each off-diagonal elemeri[i, j],< # j represents
the covariance between attribut&s and X ;. Covariance is
a measure of correlation between a pair of attributes. A high
absolute covariance means that the attributes are strongly cor-
related: knowledge of one closely constrains the value of the
other. The Gaussians shown in Figure 3(A) and (B) have a -

5 10 15 20, 25 30 35 40

X,
2
Gaussian PDF over X_, X, after Some Time

high covariance betweeki; and.X,. Notice that the contours 012 (©)

are elliptical such that knowledge of one variable constrains x“;‘

the value of the other to a narrow probability band. £ <
In BBQ, we use historical data to construct the initial rep- ... =1

resentation of this pdp. In the implementation described 002

in this paper, we obtained such data using TinyDB (a tradi- - I S

2 5 10 15 20 25 3 3 40
XZ

tional sensor network querying systém)Once our initial

p is constructed, we can answer queries using the modekigre 3: Example of Gaussians: (a) 3D plot of a 2D Gaussian
updating it as new Ob_servat'ons are obtalneq from the Selith high covariance; (b) the same Gaussian viewed as a contour
sor network, and as t'me pasges. We eXP'a'” the ‘?‘eta"s ‘Hlot; (c) the resulting Gaussian ovéf, after a particular value of
how updates are done in Section 3.2, but illustrate it graphy has heen observed: finally, (d) shows how, as uncertainty about

ically with our 2-dimensional Gaussian in Figures 3(B) - x, increases from the time we last observed it, we again have a 2D
3(D). Suppose that we have an initial Gaussian shown in Figg5ssian with a lower variance and shifted mean.

ure 3(B) and we choose to observe the variakile given

the resulting single value ak; = z, the points along the including (i) simple selection queries requesting the value of
line {(z, X») | VX3 € [—00, 00]} conveniently form an (un- one or more sensors, or the value of all sensors in a given
normalized) one-dimensional Gaussian. After re-normalizinggeographic region, (ii) whether or not a predicate over one
these points (to make the area under the curve equal 1.0), vee more sensor readings is true, and (i) grouped aggregates
can derive a new pdf representip@X- | X; = z), whichis  such as AVERAGE.

shown in 3(C). Note that the mean &% given the value of For the purposes of this paper, we focus on multiple one-
X, is not the same as the prior meanXf in 3(B). Then, af-  shot queries over the current state of the network, rather than
ter some time has passed, our belief ab¥ut value willbe  continuous queries. We can provide simple continuous query
“spread out”, and we will again have a Gaussian over twdunctionality by issuing a one-shot query at regular time in-
attributes, although both the mean and variance may havervals. In our experimental section, we compare this ap-
shifted from their initial values, as shown in Figure 3(D). proach to existing continuous query systems for sensor net-
works (like TinyDB). We also discuss how knowledge of a
standing, continuous query could be used to further optimize
Answering queries probabilistically based on a distributionour performance in Section 6.

(e.g, the Gaussian representation described above) is con- |n this paper, there are certain types of queries which we
ceptually straightforward. Suppose, for example, that a quergo not address. For example, BBQ is not designed for out-
asks for are approximation to the value of a set of attributes, lier detection — that is, it will not immediately detect when a
with confidence at least — 6. We can use our pdf to com-  single sensor is reading something that is very far from its
pute the expected valug,, of each attribute in the query. expected value or from the value of neighbors it has been
These will be our reported values. We can the use the pdforrelated with in the past. We suggest ways in which our
again to compute the probability that; is within e from the  approach can be amended to handle outliers in Section 6.
mean,P(X; € [u; — €, pu; + €]). If all of these probabili-

ties meet or exceed user specified confidence threshold, thé@# Networking model and observation plan format

th‘e {f&%eﬂggé,esag&%%gﬁgebg ?!)f%% rtehpeonrtﬁ% a\;\?eﬂ:s Tﬁ:@flr initial implementation of BBQ focuses on static sensor
Za.ditional readings before answerin tﬁe uer a networks, such as those deployed for building and habitat
9 9 query. monitoring. For this reason, we assume that network topolo-

Choosing which readings to observe at this pointis an opti-.. :
A ) X ; : ies change relatively slowly. We capture network topology
mization problem: the goal is to pick the best set of attribute nformation when collecting data by including, for each sen-

to observe, minimizing the cost of observation required tosor, a vector of link quality estimates for neighboring sensor

bring the model's confidenqe up to the user spegified Fhr.eshiodes. We use this topology information when constructing
qld for all of t_he query pre_dl_cates. _We discuss this Opt'm'z""'query plans by assuming that nodes that were previously con-
t|or|1 prSobkta_m w;more dhetallr|]n Section 4. d optimizati nected will still be in the near future. When executing a plan,
n section éWeBSé 0‘?’ ow our queryban fosp |r|11|za 0N we observe that a particular link is not availabked, be-
engine are used in BBQ to answer a number of SQL querieg,,,se one of the sensors has failed), we update our topology

2Though these initial observations do consume some energy up-front, W,EnOdeI apcordlngly.We can continue to collect new FOPO'OQV
will show that the long-run energy savings obtained from using a model willinformation as we query th_e network, so_that new ||_nk3_ will
be much more significant. also become available. This approach will be effective if the
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topology is relatively stable; highly dynamic topologies will | Sensor Energy Per
need more sophisticated techniques, which is a problem we Sample (@3V), mJ
briefly discuss in Section 6. Solar Radiation [29] 525
In BBQ, observation plans consist of a list of sensor nodes | Barometric Pressure [16] 0.003
to visit, and, at each of these nodes, a (possibly empty) list| Humidity and Temperature[28] 0.5
of attributes that need to be observed at that node. The possi; \pltage 0.00009

bility of visiting a node but observing nothing is included to
allow plans to observe portions of the network that are separaple 1: Summary of Power Requirements of Crossbow MTS400
rated by multiple radio hops. We require that plans begin an&ensorboard (From [20]). Certain sensors, such as solar radiation
end at sensor id O (theot), which we assume to be the node and humidity (which includes a temperature sensor) require about a
that interfaces the query processor to the sensor network. second per sample, explaining their high per-sample energy cost.

2.5 Cost model . ]
and standard aggregates. We provide a review of the stan-

During plan generation and optimization, we need to be ablgjard methodology required to use a probabilistic model to
to compare the relative costs of executing different plans imnswer these queries. This probabilistic model can answer
the network. As energy is the primary concern in battery-many other significantly more complex queries as well; we

powered sensornets [15, 26], our goal is to pick plans of minputline some of these directions in Section 6.
imum energy cost. The primary contributors to energy cost

are communication and data acquisition from sensors (CPU - _
overheads beyond what is required when acquiring and sen&1 Probabilistic queries
ing data are small, as there is no significant processing done

on the nodes in our setting). A probability density function(pdf), or prior density
Our cost model uses numbers obtained from the dat&(X1,...,Xn) assigns a probability for each joint value
sheets of sensors and the radio used on Mica2 motes witht: - - - » Zn fOr the attributesy,, ..., Xy,.

a Crossbow MTS400 [6] environmental sensor board. For Range queries: We begin by considering range queries
the purposes of our model, we assume that the sender and that ask if an attributé(; is in the rangéa;, b;]. Typically, we
ceiver are well synchronized, so that a listening sensor turngould need to query the sensor network to obtain the value of
on its radio just as a sending node begins transmitti@n  the attribute and then test whether the query is true or false.
current generation motes, the time required to send a packélsing a probabilistic model, we can compute the probability
is about 27 ms. The ChipCon CC1000 radio on motes useB(X; € [a;, b;]). If this probability is very high, we are con-
about 15 mW of energy in both send and receive modedijdent that the predicat&; € [a;, b;] is true. Analogously, if
meaning that both sender and receiver consume about .4 ntide probability is very low, we are confident that the predicate
of energy. Table 1 summarizes the energy costs of acquiringg false. Otherwise, we may not have enough information to
readings from various sensors available for motes. In this panswer this query with sufficient confidence and may need to
per, we primarily focus on temperature readings, though wecquire more data from the sensor network. The probability
briefly discuss other attributes as well in Section 5. Assum-P(X; € [a;,b;]) can be computed in two steps: First, we
ing we are acquiring temperature readings (which cost .5 dharginalize or project, the pdp(Xy,..., X,) to a density

per sample), we compute the cost of a plan that visitsdes  over only attributeX;:

and acquires readings to bé.4 x 2) x s+.5x aif there are

no lost packets. In Section 4.1, we generalize this idea, and N , ,

consider lossy communication. Note that this cost treats the p(w:) = /p(xl’ o Tp)dy . dri1dTig . dTy,.

entire network as a shared resource in which power needsto . = .

be conserved equivalently on each mote. More sophisticate‘}flarg'n"i''Zat'On gives us the pdf over only;. We can then
cost models that take into account the relative importance ofOMPUteP(X; € [a;, bi]) simply by:

nodes close to the root could be used, but an exploration of b

such cost models is not needed to demonstrate the utility of P(X; € |ai, b)) = / pla;)dz;. (1)
our approach. a;

. Range queries over multiple attributes can be answered by
3 Model-based querying marginalizing the joint pdf to that set of attributes. Thus, we
As described above, the central element in our approach @an use the joint probability densipy X, ..., X,,) to pro-
the use of a probabilistic model to answer queries about thgide probabilistic answers to any range query. If the user
attributes in a sensor network. This section focuses on a fewpecifies a confidence leviet-d, for § € [0, 1], we can answer
specific queries: range predicates, attribute-value estimate#e query if this confidence is eith&( X; € [a;,b;]) > 1-¢

or P(X; € [a;,b;]) < &. However, in some cases, the com-
3In practice, this is done by having the receiver periodically sample theputed confidences may be low compared to the ones required

radio, listening for a preamble signal that indicates a sender is about to begipy the query, and we need to make new observations, that is,
transmission; when this preamble is heard, it begins listening continuouslyto acquire new sensor readings.

Though this periodic radio sampling uses some energy, it is small, because .

the sampling duty cycle can be 1% or less (and is an overhead paid by any Suppose that we observe the value of attribiiteto be
application that uses the radio). xj, we can now use Bayes’ rule wonditionour joint pdf
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p(X1,...,X,) on this valué, obtaining: We can additionally provide confidence intervals on this esti-
mate of the value of the attribute: for a given error bouans
p(X1, o, X1, X1, X | ) = 0, the confidence is simply given B9(X; € [z; —¢,7; +¢] |
P(X1ye s Xjo1, 25, Xjits e o5 Xn) 9), which can be co_mputeq as in the range queries in E'q'ua—
() tion (1). If this confidence is greater than the user specified
valuel — 4, then we can provide a probably approximately
The conditional probabi”ty density function correct value for the attribute, without obse.rving it.
p(X1,..., X;21,X41,..., X, | z;), also referred as the AVERAGE aggregates: Average queries can be an-
posterior densitygiven the observation;, will usually lead ~ swered in a similar fashion, by defining an appropriate pdf.
to a more confident estimate of the probability ranges. Usingpuppose that we are interested in the average value of a set
marginalization, we can computB(X; € [a;,bi] | zj), of attributesA. For _example,. if we are interested in the av-
which is often more certain than the prior probability €rage temperature in a spatial region, we can defirte be
P(X; € [a;,b;]). In general, we will make a set of observa- the_set of sensors in this region. We can now define a random
tionso, and, after conditioning on these observations, obtairyariableY” to represent this average by= (3_;. 4 X;)/|Al.

p(X | o), the posterior probability of our set of attributéis ~ The pdf forY” is simply given by appropriate marginalization
giveno. of the joint pdf over the attributes id:

Example 3.1 In BBQ, the pdf is represented by a multivari- P(Y =¥10) =

ate Gaussian with mean vectgrand covariance matrix..
In Gaussians, marginalization is very simple. If we wantto | P(Z1,--,%n | 0) 1[(2 xz‘/«‘”) = y] dry ... dwy,
marginalize the pdf to a subsat of the attributes, we sim- icA

ply select the entries ip and X corresponding to these at-
tributes, and drop the other entries obtaining a lower dimen-
sional mean vectoy and covariance matriXxyy. For a
Gaussian, there is no closed-form solution for Equation (1).
However, this integration problem is very well understood,
called theerror function(erf), with many well-known, simple
approximations.

Interestingly, if we condition a Gaussian on the value of
some attributes, the resulting pdf is also a Gaussian. The Siea Xil(X; > o)
mean and covariance matrix of this new Gaussian can be Z = )

. K . Zz A ]]-(Xz > C)
computed by simple matrix operations. Suppose that we ob- €
serve value for attributesO, the mean:y |, and covariance
matrix Xy |, of the pdfp(Y | o) over the remaining attributes

wherel|[-] is the indicator functioR. Oncep(Y =y | o) is
defined, we can answer an average query by simply defining
a value query for the new random variabMeas above. We
can also compute probabilistic answers to more complex ag-
gregation queries. For example, if the user wants the average
value of the attributes il that have value greater thanwe

can define a random variahle

Whereg is defined to bé. The pdf ofZ is given by:

are given by: p(Z=z|0)=
1 .
bylo = py +EvoXpp(o — po), 5 / . o lo)1 L AN Qe de
Yvlo = Yyy-— YvoXonroy, @ P(eL,--an [ 0) DicAzisel Y ' "

whereXy o denotes the matrix formed by selecting the rows |n general, this inference problerine., computing these in-

Y and the columng) from the original covariance matrix tegrals, does not have a closed-form solution, and numerical
2. Note that the posterior covariance matiix/|, does not integration techniques may be required.

depend on the actual observed valueWe thus denote this

matrix by Xy 0. In BBQ, by using Gaussians, we can thus Example 3.2 BBQ focuses on Gaussians. In this case, each

compute all of the operations required to answer our queriegposterior meanz; can be obtained directly from our mean

by performing only basic matrix operationsd vector by using the conditioning rule described in Exam-

ple 3.1. Interestingly, the sum of Gaussian random variables

Value queries: In addition to range queries, a probability is also Gaussian. Thus, if we define an AVERAGE query

density function can, of course, be used to answer many othéf = (>_;c 4 Xi)/|Al, then the pdf for” is a Gaussian. All

query types. For example, if the user is interested in the valu@e need now is the variance Bf which can be computed in

of a particular attributeX;, we can answer this query by using closed-form from those of eacty, by:

the posterior pdf to compute the meanvalue of X;, given
the observations: E[(Y —py)?] = E(XicaXi—m)?/AP,

_ 1 2
= AF (Xiea EI(Xi = )]
I; = /x p(z; | 0)dz;. Y22 i a 2jen i
El(X; — pi) (X — p5)]) -
4The expressiop(w|y) i_s read “the_probability of: giveny"; and repre- Thus, the variance of is given by a weighted sum of the
sents the pdf of variable given a particular value of. Bayes’ rule allows

conditional probabilities to be computed in scenarios where we only have 5The indicator function translates a Boolean predicate into the arithmetic
data on the inverse conditional probabilipyz|y) = plylz)p(@) value 1 (if the predicate is true) and O (if false).

p(y)
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variances of eaclX;, plus the covariances betweéf} and This process is then repeated for tithe- 2, and so on.
X, all of which can be directly read off the covariance ma- The pdf for the initial timet = 0, p(X?{,..., X2), is ini-
trix 3. Therefore, we can answer an AVERAGE query over dialized with the prior distribution for attribute¥, ..., X,,.
subset of the attributed in closed-form, using the same pro- This process of pushing our estimate for the density at time
cedure as value queries. For the more general queries that through the transition model and then conditioning on the
depend on the actual value of the attributes, even with Gausneasurements at time+ 1 is often calledfiltering. In con-
sians, we require a numerical integration procedure. trast to the static model described in the previous section, fil-
tering allows us to condition our estimate on the complete
history of observations, which, as we will see in Section 5,
3.2 Dynamic models can significantly reduce the number of observations required

. . . for obtaining confident approximate answers to our queries.
Thus far, we have focused on a single static probability den- g PP q

sity function over the attributes. This distribution represents . C
spatial correlation in our sensor network deployment. How- =X@mple 3.3 In BBQ, we focus on Gaussian distributions;
ever, many real-world systems include attributes that evolv! these distributions the filtering process is called a
over time. In our deployment, the temperatures have botftaiman filter  The transition modep(X,™ ..., X7t |
temporal and spatial correlations. Thus, the temperature vafs1:: - - - X») can be leamned from data with two simple steps:
ues observed earlier in time should help us estimate the tenj'St W€ 1earn a mean and covariance matrix for the joint

=arl . IS € : i+1 1yt ¢ -
perature later in time. Adynamic probabilistic modetan ~ densityp(X; ..., X, Xy, X5). Thatis, we form

1 .
represent such temporal correlations. tuples (X7, ..., X; 71, X1, ..., X;) for our attributes at
In particular, for each (discrete) time indéxwe should ~ E€VerYy consecutive timésandt + 1, and use these tuples to
estimate a pdp(X! X! | o'*) that assigns a prob- compute the joint mean vector and covariance matrix. Then,
b K n

ability for each joint assignment to the attributes at timeWVe Use the conditioning rule described in Example 3.1 to
¢, given o', all observations made up to time A dy- CcOmpute the transition model:
namic model describes the evolution of this system over time,

t+1 t
telling us how to compute(Xi™, ..., Xt+! | o't) from (X X = IL;X)
p(Xt,..., X! | ort). Thus, we can use all measurements p(XY)
made up to time to improve our estimate of the pdf at time

Once we have obtained this transition model, we can answer

1. L . . . our queries in a similar fashion as described in Examples 3.1
For simplicity, we restrict our presentation kéarkovian and3.2. O

models, where given the value afl attributes at time, the

value of the attributes at time+ 1 are independent of those ) )
for any time earlier than. This assumption leads to a very 4 Choosing an observation plan
simple, yet often effective, model for representing a stochas-

tic dynamical system. Here, the dynamics are summarized b p the previous section, we showed that our pdfs can be condi-
a conditional density called’theansition model oned on the value of the set of observed attributes to obtain

a more confident answer to our query. Of course, the choice
p(XTFL X X XD, of attributes that we observe will crucially affect the result-
ing posterior density. In this section, we focus on selecting

Using this transition model, we can compute the attributes that are expected to increase the confidences in

p(XITL .., XEY | olt) using a simple marginaliza- the answer to our particular query at minimal cost. We first
tion operation: formalize the notion of cost of observing a particular set of
p(eFL, . att | olt) = attributes. Then, we describe the expected improvement in

our answer from observing this set. Finally, we discuss the
/p(a:§+17 ettt a)pat, . al | ot ) dat L dat. problem of optimizing the choice of attributes.

This formula assumes that the transition mqg&{‘+! | Xt*) 4.1 Costof observations
is the same for all times. In our deployment, for example, | ot s denote a set of observations®yC {1,...,n}. The

in the mornings the temperatures tend to increase, Wh"‘?,aéxpected cosf'(O) of observing attribute® is divided addi-
night they tend to decrease. This suggests that the tran5|t|0[R/e|y into two parts: the data acquisition ca&t(©), repre-

mode! should be diffe_rent at_different times of th(_a day. In Oursenting the cost of sensing these attributes, and the expected
experimental results in Section 5, we address this problem b4 {ransmission cost, (©), measuring the communication
simply learning a different transition modgl(X‘*! | X?)

: . . cost required to download this data.
for each hout of the day. At a particular time, we simply au W I

. . The acquisition cos€’, (O) is deterministically given by
use the transition modalod(t, 24). This idea can, of course, o g, of the energy required to observe the attribftess
be generalized to other cyclic variations.

discussed in Section 2.5:

Once we have obtaingd X!™* ... X!+ | ol-t), the
prior pdf for timet + 1, we can again incorporate the mea- Ca(0) = Z Cali),
surements’*! made at time + 1, as in Section 3.1, obtain- 0
ing p(XIth ..., Xt | ol+tF1), the posterior distribution
attimet + 1 given all measurements made up to titne 1. whereC,(7) is the cost of observing attribufg;.
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The definition of the transmission cast(O) is somewhat Example 4.1 The descriptions in Examples 3.1-3.3 describe
trickier, as it depends on the particular data collection mechhow the benefit®; (o) can be computed for a particular ob-
anism used to collect these observations from the networlserved valu® in the Gaussian models used in BBQ. For gen-
and on the network topology. Furthermore, if the topology iseral range queries, even with Gaussians, we need to use nu-
unknown or changes over time, or if the communication linksmerical integration techniques to estimate the expected re-
between nodes are unreliable, as in most sensor networks, thisard R;(O) in Equation (3).
cost function becomes stochastic. For simplicity, we focus on However, for value and AVERAGE queries we can com-
networks with known topologies, but with unreliable com- pute this expression in closed-form, by exploiting the fact de-
munication. We address this reliability issue by introducingscribed in Example 3.1 that the posterior covariaitg|o
acknowledgment messages and retransmissions. does not depend on the observed valudlote that for these

More specifically, we define our network graph by a set ofqueries, we are computing the probability that the true value
edgesé, where each edge;; is associated two link qual- deviates by more thanfrom the posterior mean value. This
ity estimates,p;; and p;;, indicating the probability that a probability is equal to the probability that a zero mean Gaus-
packet fromi will reach j and vice versa. With the sim- sian, with covarianc&y o, deviates by more thaa from
plifying assumption that these probabilities are independent). This probability can be computed using the error function
the expected number of transmission and acknowledgmererf) and the covariance matriXy . Thus, for value and
messages required to guarantee a successful transmission BY¥ERAGE querie®;(O) = R;(0), Vo, allowing us to com-
tweeni andj is 1p . We can now use these simple valuespute Equation (3) in closed-form.O

to estimate the e;pjécted transmission cost. ]

There are many possible mechanisms for traversing the More generally, we may have range or value queries over
network and collecting this data. We focus on simply choosMultiple attributes. Semantically, we define this type of query
ing a single path through the network that visits all sensor@S trying to achieve a particular marginal confidence over
that observe attributes i@ and returns to the base station. 8ach attribute. We must thus decide how to trade off con-
Clearly, choosing the best such path is an instance of thfidences between different attributes. For a query over at-
traveling salesman problemwhere the graph is given by tributesQ C {1,...,n}, we can, for instance, define the to-

the edges® with weights —L Although this problem is tal benefitR(o) of observing value as either the minimum

PijPji i i — min. ) -
NP-complete, we can use well-known heuristics, such as kpeneflt over all attributesii(o) = min;cg £;(0), or the av

1 .
OPT [19], that are known to perform very well in practice. er-age,-R-(o) = 157 2ico Ri(0). In. this paper, we focus on
We thus define”,(0) to be the expected cost of this (subop- MiNIMIzing the total number of mistakes made by the query
timal) path, and our expected total cost for obserdhgan  Processor, and use the average benefit to decide when to stop
now be obtained bg(0) = C,(O) + C,(O). observing new attributes.
4.3 Optimization

4.2 Improvement in confidence

. . . ' In the previous sections, we defined the expected benefit
Observing attribute® should improve the confidence of our R(O) and costC(O) of observing attribute®. Of course,

pﬁstel(r;%r deglsnty. Thatis, after observ_[[rr:g these at:g_butes, Wifferent sets of observed attributes will lead to different ben-
Should be able to answer our query with more cer irfepr efit and cost levels. Our user will define a desired confidence
a particular value of our observation®), we can compute level 1 — 6. We would like to pick the set of attribut&? that

the posterior density(X;,..., X, | o) and estimate our oot this confidence at a minimum cost:
confidence as described in Section 3.1.

More specifically, suppose that we have a range query minimizeoc1,....y  C(O),

X, € [as,b;], we can compute the benefi; (o) of observ- such that R(O)>1-0.
ing the specific value by:

This general optimization problem is known to be NP-hard.
R;(0) = max [P(X; € [a;,b;] | 0),1 — P(X; € [a;,b;] | 0)], Thus, efficient and exact optimization algorithms are unlikely

) _ ~ to exist (unless P=NP).

that is, for a range query?;(o) simply measures our confi- e have developed two algorithms for solving this opti-
dence after observing. For value and average queries, we mization problem. The first algorithm exhaustively searches
define the benefit byz;(0) = P(X; € [z; —€,Z; +¢] | 0),  over the possible subsets of possible observatidhsC
wherez; in this formula is the posterior mean &, giventhe {1, n}. This algorithm can thus find the optimal subset

observations. 3 _ . of attributes to observe, but has an exponential running time.
However, the specific value of the attributes® is not The second algorithm uses a greedy incremental heuris-
knowna priori. We must thus compute tfexpected benefit tic. We initialize the search with an empty set of attributes,
R;(0): O = (). At each iteration, for each attribufé; that is not in
R,(O) = R, (0)do. 3 our set { ¢ O), we compute the new expect bendlitO U i)
©) /p(o) (0)do 3 and costC (O U 7). If some set of attribute§ reach the de-

This integral may be difficult to compute in closed-form, andSiréd confidenceii.g, forj € G, R(O U j) > 1 — ), then,

we may need to estimafe;(©) using numerical integration. among the attributes |ﬁ we pick the one with lowest total
costC'(OUj), and terminate the search returnifig) j. Oth-

8This is not true in all cases; for range predicates, the confidence in therwise, if_g = (), we have nO_t reaCh_ed our d_eSired Confidence,
answer maylecreasefter an observation, depending on the observed valueand we simply add the attribute with the highest benefit over
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cost ratio to our set of attributes: Approximate-Caching: The base-station maintains a
_ view of the sensor readings at all motes that is guaranteed
O=0U (arg max R(OUJ)> ) to be within a certain interval of the actual sensor readings
ig0 C(OUj) by requiring the motes to report a sensor reading to the base-
station if the value of the sensor falls outside this interval.
Rote that, though this model saves communication cost by
not reporting readings if they do not change much, it does not
. save acquisition costs as the motes are required to observe the
5 Experimental results sensor values at every time step. This approach is inspired by

In this section, we measure the performance of BBQ on sevWOrk by Olstoret al.[24].
eral real world data sets. Our goal is to demonstrate that BB@ 4 Methodology
provides the ability to efficiently execute approximate queries

This process is then repeated until the desired confidence
reached.

includes a transition model for each hour of the day, based on
5.1 Datasets Kalman filters described in Example 3.3 above. We gener-

Our results are based on running experiments over two reafite traces from the test data by taking one reading randomly
world data sets that we have collected during the past feffom each hour. We issue one query against the model per
months using TinyDB. The first data sefarden is a one hour. The model computes tlaepriori probabilities for each
month trace of 83,000 readings from 11 sensors in a singlgredicate (ore bound) being satisfied, and chooses one or
redwood tree at the UC Botanical Garden in Berkeley. In thignore additional sensor readings to observe if the confidence
case, sensors were placed at 4 different altitudes in the treBounds are not met. After executing the generated observa-
where they collected collected light, humidity, temperature fion plan over the network (at some cost), BBQ updates the
set into non-overlapping training and test data sets (with 2/@ares predicted values for non-observed readings to the test
used for training), and build the model on the training data. data from that hour. -

The second data séap, is a trace of readings from 54 sen- ~ To measure the accuracy of our prediction with value
sors in the Intel Research, Berkeley lab. These sensors cdieries, we compute the average number of mistakes (per
lected light, humidity, temperature and voltage readings, agour) that BBQ madei.e., how many of the reported val-
well as network connectivity information that makes it possi-ues are further away from the actual values than the specified
ble to reconstruct the network topology. Currently, the dateefror bound. To measure the accuracy for predicate queries,
consists of 8 days of readings; we use the first 6 days fowe Compute the nymber of predlcates whose truth value was
training, and the last 2 for generating test traces. incorrectly approximated.

For TinyDB, all queries are answered “correctly” (as we
are not modeling loss). Similarly, for approximate caching, a
We report results for two sets of query workloads: value from the test data is reported when it deviates by more

Value Queries: The main type of queries that we antici- thane from the last reported value from that sensor, and as
pate users would run on a such a system are queries askig§ch, this approach does not make mistakes either
to report the sensor readings at all the sensors, within a spec- We compute a cost for each observation plan as described
ified error bound: with a specified confidenc& indicating  above; this includes both the attribute acquisition cost and
that no more than a fraction— ¢ of the readings should devi- the communications cost. For most of our experiments, we
ate from their true value by. As an example, a typical query measure the accuracy of our model at predicting temperature.
may ask for temperatures at all the sensors within 0.5 degre
with 95% confidence.

Predicate Queries:The second set of queries that we useWe begin by analyzing the performance of value queries on
are selection queries over the sensor readings where the ugke gardendata set in detail to demonstrate the effectiveness
asks for all sensors that satisfy a certain predicate, and ona# our architecture. The query we use for this experiment re-
again specifies a desired confideiace quires the system to report the temperatures at all motes to

We also looked ativerage queriesasking for averages within a specified epsilon, which we vary. In these experi-
over the sensor readings. Due to space constraints, we doents we keep confidence constant at 95%, so we expect to
not present results for these queries. see no more than 5% errors. Figure 4 shows the relative cost
and number of errors made for each of the three systems. We
varied epsilon from between 0 and 1 degrees Celsius; as ex-
We compare the effectiveness of BBQ against two simplepected, the cost of BBQ (on the left of the figure) falls rapidly
strategies for answering such queries : as epsilon increases, and the percentage of errors (shown on

TinyDB-style Querying: In this model, the query is dis- the right) stays well below the specified confidence threshold
seminated into the sensor network using an overlay tree struof 5% (shown as the horizontal line). Notice that for reason-
ture [22], and at each mote, the sensor reading is observedble values of epsilon, BBQ uses significantly less commu-
The results are reported back to the base station using th@cation than approximate caching or TinyDB, sometimes by
same tree, and are combined along the way back to minimizen order of magnitude. In this case, approximate caching al-
communication cost. ways reports the value to within epsilon, so it does not make
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fidence interval of 95%.

100 4

We also ran experiments comparing (1) the performance
80 of the greedy algorithm vs. the optimal algorithm, and (2) the
performance of the dynamic (Kalman Filter) model that we

fR—ire use vs. a static model that does not incorporate observations
PR T Bpsllon 10 made in the previous time steps into the model. As expected,

- the greedy algorithm performs slightly worse that the optimal
[SUSURRE:SOUUROE SOUUUUNY: VRN SO SO algorithm, whereas using dynamic models results in less ob-
0 w w w servations than using static models. Due to space constraints,
Timein Davs we omit those experiments from this paper.

Figure 5:Figure showing the number of sensors observed overtimes 7  Garden Dataset: Range queries
for varying epsilons.
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We ran a number of experiments with range queries (also over

“mistakes”, although the average observation error in approxthe gardendata set). Figure 7 summarizes the average num-
imate caching is close to BBQ (for example, in this experi-ber of observations required for a 95% confidence with three
ment, with epsilon=.5, approximate caching has a root-meardifferent range queries (temperature in [17,18], temperature
squared error of .46, whereas BBQ this error is .12; in othein [19,20], and temperature in [20,21]). In all three cases, the
cases the relative performance is reversed). actual error rates were all at or below 5% (ranging from 1.5-

Figure 5 shows the percentage of sensors that BBQ ol5%). Notice that different range queries require observations
serves by hour, with varying epsilon, for the same set of garat different times — for example, during the set of readings
den experiments. As epsilon gets small (less than .1 degreegdist before hour 50, the three queries make observations dur-
itis necessary to observe all nodes on every query, as the vaifig three disjoint time periods: early in the morning and late
ance between nodes is high enough that it cannot infer that night, the model must make lots of observations to deter-
value of one sensor from other sensor’s readings with suchmine whether the temperature is in the range 16-17, whereas
accuracy. On the other hand, for epsilons 1 or larger, vergluring mid-day, it is continually making observations for the
few observations are needed, as the changes in one sensange 20-21, but never for other ranges (because it can be sure
closely predict the values of other sensors. For intermedithe temperature is above 20 degrees, but not 21!)
ate epsilons, more observations are needed, especially during ., ~ eeiisn
times when sensor readings change dramatically. The spikes g _, ; o o
in this case correspond to morning and evening, when tem- ; ; ¥
perature changes relatively quickly as the sun comes up or
goes down (hour 0 in this case is midnight).

% of Nodes Obser v

5.6 Garden Dataset: Cost vs. Confidence

For our next set of experiments, we again look at the garden Timein Davs

data set, this time comparing the cost of plan execution With:igure 7: Graph showing BBQ’s performance on three different
confidence intervals ranging from 99% to 80%, with epsilonrange queries, for the garden data set with confidence set to 95%.
again varying between 0.1 and 1.0. The results are shown in

Figure .6(a) and (b). F|gqre 6(a) shows that decreasing CO”fB.S Lab dataset

dence intervals substantially reduces the energy per query, as

does decreasing epsilon. Note that for a confidence of 95%\e also ran similar experiments on thkeb dataset, which
with errors of just .5 degrees C, we can reduce expected pebecause of the higher number of attributes in it, is a more
guery energy costs from 5.4 J to less than 150 mJ — a factanteresting dataset. Contrary to our initial expectation, tem-
of 40 reduction. Figure 6(b) shows that we meet or exceegberatures in the lab are actually harder to predict compared
our confidence interval in almost all cases (except 99% confito the outdoors; human intervention (in particular, turning the
dence). It is not surprising that we occasionally fail to satisfyair conditioning on and off) introduces a lot of randomness in
these bounds by a small amount, as variances in our traininpis data. We report one set of experiments for this dataset,
data are somewhat different than variances in our test data. but defer a more detailed study to future work.
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Figure 8(a) shows the cost incurred in answering a value [1%
guery on this dataset, as the confidence bound is varied. Fc
comparative purposes, we also plot the cost of answering th g

Initial 7-8am
Traversal > Traversal

( i
) ——

guery using TinyDB. Once again, we see that the as the re [/ % ® .
quired confidence in answer drops, BBQ is able to answer thi =

qguery more efficiently, and is significantly more cost-efficient N %
than TinyDB for larger error bounds. Figure 8(b) shows that @
BBQ was able to achieve the specified confidence bounds il XX o %

almost all the cases.

Figure 9 shows an example traversal generated by execu
ing a value based query with confidence of 99% and epsilor
of .5 degrees C over tHab data. The two paths shown are
amongst the longer paths generated — one is the initial set ¢figure 9: Two traversals of the lab network. An observation is
observations needed to improve the model’s confidence, andlade at every circle. The query was a value-query over all 54 sen-
the other is a traversal at 8am just as the day is starting teors withe = .1 andd = .99. These paths correspond to times when

warm up. the model’s variance is high — e.g., when the system is first started,
—%— Epsilon 0.25 - -4— Epsilon 0.75 —%— Epsilon 025 - -4— Epsilon 0.75 and at around 8am When the sun beglnS to heat the lab‘ S-O many
a000]  THEmiln0S - - Epsilon 10 T 03 e Elon 10 observations are needed. For other hours, very few observations are
104 % Mistakes Allowed / , s needed .

— 15000 % 7

§ 2 of our instrumentation of our lab space, we are beginning a

2 10000 =

9 S

systematic study of how network topologies change over time
and as new sensors are added or existing sensors move. We
plan to use this information to extend our exploration plans

5000

‘b0 b2 obi ob  oms olo  om  obz obi  obs  obs ol with simple topology change recovery strategies that can be
1- Confidence 1 - Confidence used to find alternate routes through the network.
(@) (b) Continuous queries: Our current approach re-executes

. i an exploration plan that begins at the network root on every
Figure 8:Energy per query (a) and percentage of errors (b) versug, \ary - For continuous queries that repeatedly request data
confidence interval size and epsilon for the Lab Data. about the same sensors, it may be possible to install code in

) ) ) the network that causes devices to periodically push readings
6 Extensions and future directions during times of high change (g, every morning at 8 am).

In this paper, we focused on the core architecture for unifying7 Related k
probabilistic models with declarative queries. In this section elated wor
we outline several possible extensions. There has been substantial work on approximate query pro-
Conditional plans: In our current prototype, once an ob- cessing in the database community, often using model-like
servation plan has been submitted to the sensor network, $ynopses$or query answering much as we rely on probabilis-
is executed to completion. A simple alternative would betic models. For example, the AQUA project [12, 10, 11]
to generate plans that include early stopping conditions; @roposes a number of sampling-based synopses that can pro-
more sophisticated approach would be to generate conditionglde approximate answers to a variety of queries using a frac-
plans that explore different parts of the network depending omion of the total data in a database. As with BBQ, such an-
the values of observed attributes. We have begun exploringwers typically include tight bounds on the correctness of
such conditional plans in a related project [8]. answers. AQUA, however, is designed to work in an envi-
More complex models:In particular, we are interested in ronment where it is possible to generate an independent ran-
building models that can detect faulty sensors, both to answefom sample of data (something that is quite tricky to do in
fault detection queries, and to give correct answers to genergkensor networks, as losses are correlated and communicating
gueries in the presence of faults. This is an active researatandom samples may require the participation of a large part
topic in the machine learning community.g, [18]), and we  of the network). AQUA also does not exploit correlations,
expect that these techniques can be extended to our domairwhich means that it lacks th@edictivepower of representa-
Outliers: Our current approach does not work well for tions based on probabilistic models. [7, 9] propose exploiting
outlier detection. To a first approximation, the only way to data correlations through use of graphical model techniques
detect outliers is to continuously sample sensors, as outlief®r approximate query processing, but neither provide any
are fundamentally uncorrelated events. Thus, any outlier deguarantees in the answers returned. Recently, Consaine
tection scheme is likely to have a high sensing cost, but wel. have shown that sketch based approximation techniques
expect that our probabilistic techniques can still be used te@an be applied in sensor networks [17].
avoid excessive communication during times of normal oper- Work on approximate caching by Olstenal, is also re-
ation, as with the fault detection case. lated [25, 24], in the sense that it provides a bounded approx-
Support for dynamic networks: Our current approach imation of the values of a number of cached objects (sensors,
of re-evaluating plans when the network topology changesn our case) at some server (the root of the sensor network).
will not work well in highly dynamic networks. As a part The basic idea is that the server stores cached values along
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with absolute bounds for the deviation of those values; whemeductions in sampling and communication cost offered by
objects notice that their values have gone outside the bound®BQ, we see our general architecture as the proper platform
known to be stored at the server, they send an update of odor answering queries and interpreting data from real world
value. Unlike our approach, this work requires the cacheanvironments like sensornets, as conventional database tech-
objects to continuously monitor their values, which makesnology is poorly equipped to deal with lossiness, noise, and
the energy overhead of this approach considerable. It doeapn-uniformity inherent in such environments.

however, enable queries that detect outliers, something BB(?{eferenceS

currently cannot do.

There has been some recent work on approximate, prob{ll
abilistic querying in sensor networks and moving object [
databases [3]. This work builds on the work by Ols&dral.
in that objects update cached values when they exceed somiél
boundary condition, except that a pdf over the range defined,
by the boundaries is also maintained to allow queries that es-
timate the most likely value of a cached object as well as an
confidence on that uncertainty. As with other approximation 5]
work, the notion of correlated values is not exploited, and the[g)
requirement that readings be continuously monitored intro-
duces a high sampling overhead. [

Information Driven Sensor Querying (IDSQ) from Cht
al. [4] uses probabilistic models for estimation of target po- [8]
sition in a tracking application. In IDSQ, sensors are tasked
in order according to maximally reduce the positional uncer- [g)
tainty of a target, as measured, for example, by the reduction
in the principal components of a 2D Gaussian. [10]

Our prior work presented the notionaéquisitional query
processingACQP) [21] —that is, query processing in environ-
ments like sensor networks where it is necessary to be sendi2l
tive to the costs of acquiring data. The main goal of an ACQP[13]
system is to avoid unnecessary data acquisition. The tech-
nigues we present are very much in that spirit, though the
original work did not attempt to use probabilistic techniques[14]
to avoid acquisition, and thus cannot directly exploit correla-15
tions or provide confidence bounds.

BBQ is also inspired by prior work on Online Aggrega- [16]
tion [14] and other aspects of the CONTROL project [13].
The basic ideain CONTROL is to provide an interface that al-
lows users to see partially complete answers with confidencg’!
bounds for long running aggregate queries. CONTROL didg)
not attempt to capture correlations between the different at-
tributes, such that observing one attribute had no effect on thﬁg]
systems confidence on any of the other predicates.

The probabilistic querying techniques described here argo]
built on standard results in machine learning and statistin21
(e.g, [27, 23, 5]). The optimization problem we address is a ]
generalization of thgalue of informatiorproblem [27]. This
paper, however, proposes and evaluates the first general &2
chitecture that combines model-based approximate query ansy
swering with optimizing the data gathered in a sensornet.  [24]

(11]

8 Conclusions [25]

In this paper, we proposed a novel architecture for integratf26]
ing a database system with a correlation-aware probabilisti
model. Rather than directly querying the sensor network, wi
build a model from stored and current readings, and answees]
SQL queries by consulting the model. In a sensor network,
this provides a number of advantages, including shielding thﬁg]
user from faulty sensors and reducing the number of expen-
sive sensor readings and radio transmissions that the netwol#¢!
must perform. Beyond the encouraging, order-of-magnitude
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