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Abstract 

This paper presents a set of algorithms for efficiently 
evaluating join queries over static data tables in sen-
sor networks. We describe and evaluate three algo-
rithms that take advantage of distributed join tech-
niques. Our algorithms are capable of running in lim-
ited amounts of RAM, can distribute the storage bur-
den over groups of nodes, and are tolerant to dropped 
packets and node failures.  REED is thus suitable for 
a wide range of event-detection applications that tra-
ditional sensor network database and data collection 
systems cannot be used to implement. 

1. Introduction 
A widely cited application of sensor networks is event-
detection, where a large network of nodes is used to iden-
tify regions or resources that are experiencing some phe-
nomenon of particular concern to the user.   Examples in-
clude condition-based maintenance in industrial plants 
[14], where engineers are concerned with identifying ma-
chines or processes that are in need of repair or adjustment,  
process compliance in food and drug manufacturing [25], 
where strict regulatory requirements require companies to 
certify that their products did not exceed certain environ-
mental parameters during processing, and applications  
centered around homeland security, where shippers are 
concerned with verifying that their packages and crates 
were not tampered with in some unsavory manner. 

A natural approach to implementing such systems is to 
use an existing query-based data collection system for sen-
sor networks. Through queries, a user can ask for the data 
he or she is interested in without concern for the technical 
details of how that data will be retrieved or processed.  A 
number of research projects, including Cougar [31], Di-
rected Diffusion [12], and TinyDB [19,20] have advocated 
a query-based interface to sensornets, and several imple-
mentations of query systems have been built and deployed.   

Unfortunately, these existing query systems do not pro-
vide an efficient way to evaluate the complex predicates 
these event-detection applications require because they lack 
a join operator that would naturally be used to express the 
checking of a large number of predicates against the cur-

rent readings of sensors and thus cannot be used in many 
condition-based monitoring and compliance applications.  
For example, we have been talking with Intel engineers 
deploying wireless sensornets for condition based mainte-
nance in Intel’s chip fabrication plants who report that they 
have thousands of sensors spread across hundreds of pieces 
of equipment that are each involved in a number of differ-
ent manufacturing processes that are characterized by dif-
ferent modes of behavior [13,14].   

In this paper, we present REED, a system for Robust and 
Efficient Event Detection in sensor networks that addresses 
this limitation, enabling the deployment of sensor networks 
for the types of applications described above.  REED is 
based on TinyDB, but extends it with the ability to support 
joins between sensor data and static tables built outside the 
sensor network.  This allows users to express queries that 
include complex time and location varying predicates over 
any number of conditions using join predicates over these 
different attributes.  The key idea behind REED is to store 
filter conditions in tables, and then to distribute those tables 
throughout the network.  Once these tables have been dis-
seminated, each node joins the filters to its readings by 
checking each tuple of readings it produces against all of 
the predicates, outputting a list of predicates that the tuple 
satisfies.  This list of satisfying predicates is then transmit-
ted out of the network to inform the user of conditions of 
interest.  Though this process is logically similar to a stan-
dard relational join, we show that join processing in sensor 
networks introduces a substantial set of new architectural 
challenges and optimization opportunities. 

By performing this join in-network, REED can dramati-
cally reduce the communications burden on the network 
topology, especially when there are relatively few satisfy-
ing tuples, as is typically the case when identifying failures 
in condition-based monitoring or process compliance ap-
plications. Reducing communication in this way is particu-
larly important in many industrial scenarios when relatively 
high data rate sampling (e.g., 100’s of Hertz) is required to 
perform the requisite monitoring [10].  Table 1 shows an 
example of the kinds of tables which we expect to transmit 
– in this case, the filtration predicates vary with time, and 
include conditions on both the temperature and humidity.  
Our discussions with various commercial companies (e.g., 
Honeywell and ABB) involved in process control suggest 
that these kinds of predicates are representative of many 
sensor-based monitoring deployments in the real world. 

Interestingly, both TinyDB [19] and Cougar [31] ini-
tially eschewed joins in their query languages as their au-
thors believed joins were of  limited utility; REED provides 
an excellent counter-example to this point of view.   In fact, 
we have added support for joins between external tables 
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and sensor readings to TinyDB; users can now write que-
ries of the form: 
 

 SELECT s.nodeid, a.condition_type 
 FROM sensors AS s, alert_table AS a 
 WHERE s.temp > a.temp_thresh 
 AND s.humidity > a.humid_thresh 
 AND s.time = a. time 
 SAMPLE PERIOD 1s 

Here, we use TinyDB syntax, where sensors refers to 
the live sensors readings (produced once per second, in this 
case).  In REED, the external alert_table (similar, for 
example, to Table 1) will be pushed into the network along 
with the query.  The filter conditions will be evaluated by 
having each node join the sensors tuples that it produces 
with the conditions in the table, with matches producing 
tuples of the form <nodeid, condition_type> that 
are then transmitted to the user. 

Because storage on sensor network devices is typically 
at a premium (e.g., Berkeley motes have just a few kilo-
bytes of RAM and half a megabyte of Flash), REED allows 
these predicate tables to be partitioned and stored across 
several sensors.  It also can transmit just a fragment of the  
predicate table into the network, forcing readings which do 
not have entries in the table to be transmitted out of the 
network and joined externally.  REED attempts to deter-
mine which predicates are most important to send into the 
network based on historical observations of predicates 
which commonly are not satisfied. 

Finally, to facilitate the integration with external data-
bases, we have integrated REED into the Borealis stream 
processing engine [3].  This allows us to issue queries at a 
centralized processor, which extracts relevant selection 
predicates and joins and pushes them into the network 
when the optimizer believes such push-down will be help-
ful. 

1.1. Contributions 
In summary, the major contributions of this work are: 
• We show how complex filters can be expressed as 

tables of conditions, and show that those conditions 
can be evaluated using relational join operations. 

• We describe the REED system and our sensor network 
filtration algorithms, which are tailored to provide ro-
bustness in the face of network loss and to handle very 
limited memory resources. 

• We provide experimental results showing the substan-
tial performance advantages that can be obtained by 
executing complex join-based filters inside the sensor 
network, through evaluation in both simulation and on 
a real, mote-based sensor network. 

• We discuss a number of variants and optimizations of 
our approach, some of which are motivated by join op-

timizations in traditional databases and others which 
we have developed to address the particular properties 
of sensor networks. 

• We describe our initial integration of REED and Bore-
alis and show an example illustrating how Borealis can 
push join operators into the sensornet. 

Before describing the details of our approach, we briefly 
review the syntax and semantics of sensor network queries 
and the capabilities of current generation sensornet hard-
ware.   

2. Background: Sensor Networks and Motes 
Sensor networks typically consist of tens to hundreds of 
small, battery-powered, radio-equipped nodes.  These 
nodes usually have a small, embedded microprocessor, 
running at a few Mhz, with a small quantity of RAM and a 
larger Flash memory.  The Berkeley mica2 Mote is a popu-
lar sensor network hardware platform designed at UC 
Berkeley and sold commercially by Crossbow Corporation. 
It has a 7 Mhz processor, a 38.6Kbps radio with ~100 foot 
range, 4KB of RAM and 512KB flash, runs on AA batter-
ies and uses ~15 mA in active power consumption and ~10 
µA when asleep. 
Storage: The limited quantities of memory are of particular 
concern for query processing, as they severely limit the 
sizes of join and other intermediate result tables.  Although 
future generations of devices will certainly have somewhat 
more RAM, large quantities of RAM are problematic be-
cause of their high power consumption.  Non-volatile flash 
can make up for RAM shortages to some extent, but flash 
writes are quite slow (several milliseconds per page, with 
typical pages less than 1 KB) and consume large amounts 
of energy – almost as much as transmitting data off of the 
mote [28].   Hence, memory efficient algorithms are criti-
cally important in sensornets. 
Sensors: Mica2 motes include a 51-pin expansion slot that 
accommodates sensor boards.  Commonly available sen-
sors measure light, temperature, humidity, vibration, accel-
eration, and position (via GPS or ultrasound). 
Communication: Radio communication tends to be quite 
lossy – without retransmission, motes drop significant 
numbers of packets.  At very short ranges, loss rates may 
be as low as 5%; at longer ranges, these rates can climb to 
50% or more [30].  Though retransmission can mitigate 
these losses somewhat, nodes can still fail, move away, or 
be subject to radio interference that makes them temporar-
ily unable to communicate with some or all of their 
neighbors.  Thus, any algorithm that runs inside of a sensor 
network must tolerate and adapt to some degree of com-
munication failure. 
TinyOS: Motes run a basic operating system called 
TinyOS [12], which provides a suite of software libraries 
for sending and receiving messages, organizing motes into 
ad-hoc, multihop routing trees, storing data to and from 
flash, and acquiring data from sensors. 
Power: Because sensors are battery powered, power con-
sumption is of utmost concern to application designers.  
Power is consumed by a number of factors; typically, sens-
ing and communicating dominate this cost [19,24].  In this 
paper, we focus on algorithms that minimize communica-

Table 1: Example of a Table of Predicates used in Con-
dition-based Monitoring 

Condition # Time Temp_thresh Humid_thresh 
1 9 pm > 100° C > 95 % 
2 10 pm > 110° C > 90 % 
3 11 pm > 115° C > 87 % 
… … … … 



tion, as any join algorithm that includes all nodes in a net-
work will pay the same cost for running sensors.  We note 
that if careful power management is not used, the cost of 
listening to the radio will actually dominate the cost of 
transmitting, as sending a message takes only a few milli-
seconds, but the receiver may need to be on continuously, 
waiting for a message to arrive.  TinyDB and TinyOS ad-
dress this issue by using a technique called low-power lis-
tening [23].  

2.1. Background: Data Model  and  Semantics  
REED adopts the same data model and query semantics as 
TinyDB.  Queries in TinyDB, as in SQL, consist of a SE-
LECT-FROM-WHERE clause supporting selection, projec-
tion, and aggregation.  REED extends this list of operators 
with joins.  TinyDB treats sensor data as a single table 
(sensors) with one column per sensor type.  Results, or 
tuples, are appended to this table periodically, at well-
defined intervals that are a parameter of the query, speci-
fied in the SAMPLE PERIOD clause. The period of time 
from the start of each sample interval to the start of the next 
is known as an epoch. Consider the query: 

SELECT nodeid, light, temp 
FROM sensors 
SAMPLE PERIOD 1s FOR 10s 

This query specifies that each sensor should report its own 
id, light, and temperature readings once per second for ten 
seconds. Thus, each epoch is one second long. 

2.2. Data Collection in TinyDB 
Query processing in the original TinyDB implementation 
works as follows.  The query is input on the user’s PC, or 
basestation.  This query is optimized to improve execution; 
currently, TinyDB only considers the order of selection 
predicates during optimization (as the existing version does 
not support joins).  Once optimized, the query is translated 
into a sensor-network specific format and injected into the 
network via a gateway node.  The query is sent to all nodes 
in the network using a simple broadcast flood (TinyDB 
also implements a form of epidemic query sharing which 
we do not discuss).   

As the query is propagated, nodes learn about their 
neighbors and assemble into a routing tree; in TinyDB, this 
is implemented using a standard TinyOS service similar to 
what is described in the work by Woo et al. [30].  Each 
node in the network picks one node as its parent that is one 
network hop closer to the root than it is.  A node’s depth is 
simply the number of radio hops required for a message it 
sends to reach the basestation.   

As a node produces query answers, it sends them to its 
parent; in turn, parents forward data to their parents, until 
answers eventually reach the root.  For some queries (and 
in our join implementation), parents will combine readings 
from children with local data to partially process queries 
within the network.  The basestation assembles partial re-
sults from nodes in the network, completes query process-
ing, and displays results to the user. 

 
 
 

3. Applications and Query Classification 
In this section, we describe some applications of REED.  
We use these applications to derive a classification of joins 
that motivate the join algorithms presented in Section 4. 

3.1.  Query Types 
REED extends the query language of TinyDB by allowing 
tables of filter predicates to appear in the FROM clause. In 
this section, we show the syntax of several example queries 
and describe their basic behavior.   

Industrial Process Control.  Chemical and industrial 
manufacturing processes often require temperature, humid-
ity, and other environmental parameters to remain in a 
small, fixed range that varies over time [11]. Should the 
temperature fall outside this range, manufacturers risk 
costly failures that must be avoided.  Thus, they currently 
employ a range of wired sensing to avoid such problems 
[25,13].  Interestingly, companies in this area (e.g., GE, 
Honeywell, Rockwell, ABB, and others) are aggressively 
pursuing the use of mote-like devices to provide wireless 
connectivity, which is cheaper and safer than powered so-
lutions as motes don’t require expensive wires to be in-
stalled and avoid the risks associated with running high-
voltage wires through volatile areas.  Of course, for wire-
less solutions to be cost-effective, they must provide many 
months of battery life as well as equivalent levels of infor-
mation to existing solutions.  Thus, the power and commu-
nications efficiency of a system like REED is potentially of 
great interest.   

It is easy to write a REED query that filters readings 
from sensors located at various positions with a time-
indexed table of predicates that encodes, for example, al-
lowable temperature ranges in a process control setting. 
Should the temperature ever fall outside the required range, 
users can be alerted and appropriate action can be taken. 
Such a query might look like: 

 
(1) SELECT a.atemp 

FROM schedule_table AS t, 
     sensors AS a 
WHERE a.ts > t.tsmin AND 
      a.ts < t.tsmax AND 
      a.atemp > t.tempmin AND 
      a.atemp < t.tempmax AND 
      a.nodeid = t.nodeid 

Here, results are produced only when an exceptional 
condition is reached (the temperature is outside the desired 
range), and thus relatively few tuples will match.  We note 
that this is a low selectivity query, indicating that it outputs 
(selects) a small percentage of the original sensor tuples. 

As mentioned above, our discussions with engineers in 
industrial settings suggest that each sensor may have sev-
eral alarm conditions associated with it, and there may be 
hundreds or thousands of sensors in a single factory.  In a 
typical deployment such as Intel’s, there could be several 
thousand filters, each of which consists of a time range, a 
minimum and maximum sensor value, and a node id.  Sup-
posing these numbers require 16 bytes to store, the total 
join table in the case of the Intel deployment might be 
100KB or larger. 



Failure and Outlier Detection.  One of the difficulties 
of maintaining a large network of battery-powered, wire-
less nodes is that failures are frequent.  Sometimes these 
failures are fail-fast:  for example, a node’s battery dies and 
it stops reporting readings.  At other times, however, these 
failures are more insidious:  a node’s readings slowly drift 
away from those of sensors around it, until they are mean-
ingless or useless.    Of course, there are times when such 
de-correlated readings actually represent an interesting, 
highly localized event (i.e., an outlier).  In either case, 
however, the user will typically want to be informed about 
the readings.  We have implemented a basic application 
that performs both these tasks in REED.  It works as fol-
lows:  we build a list of the values that each node com-
monly produces during particular times of day from his-
torical data and periodically update this list over time.  We 
then use this list to derive a set of low-probability value 
ranges that never occur or that occur with some threshold 
probability ε or less frequently.  Then, we run a query 
which detects these unusual values.  For example, the fol-
lowing query detects outlier temperatures: 

 
SELECT s.nodeid, s.temp 
FROM sensors AS s, outlier_temp AS o 
WHERE s.temp  
BETWEEN o.low_temp AND o.hi_temp 
AND s.roomno = a.roomno 
 

This query reports all of the readings that are within an 
outlier range in a given room number.  Note that the out-
lier_temp table may be quite large in this case, but that 
the selectivity of this query is also low. 

Power Scheduling.  As a third example, consider a set 
of sensors in a remote environment where power conserva-
tion is of critical importance. To minimize power consump-
tion in such scenarios, it is desirable to balance work across 
a group of sensors where each sensor only transmits its 
light reading some small fraction of the time.  We can do 
this with an external table as well;  for example: 

 
SELECT sensors.nodeid, sensors.light 
FROM sensors, roundrobin 
WHERE sensors.nodeid = roundrobin.nodeid 

  AND sensors.ts % |nodes| = roundrobin.ts 
 

For this query, the roundrobin table is small (≤ 
|nodes| entries), and can likely fit on one node. This filter 
also has a low selectivity, as only one or two nodes satisfy 
the predicate per time step. 

3.2. Query Classes  and Optimizer Tradeoffs 
These queries allow us to make several observations about 
how and where we should execute joins. In general, it is 
advantageous to perform joins with low selectivity in the 
sensor network. This is because there will be many fewer 
results than original data and thus a smaller number of 
transmissions needed to get data to the basestation.  

There are situations, however, when we might prefer not 
to push a join into the network; for example, if the join has 
a relatively high selectivity, and the size of the predicate 
table is very large, the cost of sending the join into the net-
work may exceed the benefit of applying the join inside the 

network.  We may also be unable to push a join into the 
network if the size of the predicate table exceeds the stor-
age of a single node or a group of nodes across which the 
table may be partitioned. 

Thus, in REED, we differentiate between the following 
types of joins: 
- Small join tables that fit in the RAM of a single node. 
- Intermediate join tables that exceed the memory of a 

single node, but can fit in the aggregate memory of a 
small group of nodes. 

- Large join tables that exceed the aggregate memory of a 
group of nodes. 
We have developed join algorithms that are suitable for 

all three classes of tables; we describe these algorithms in 
Sections 3 and 4 below.   

For small join tables, REED always chooses to push 
them into the network if their selectivity is smaller than 
one.  For intermediate tables, the REED query optimizer 
makes a decision as to whether to push the join into the 
network based on the estimated selectivity of the predicate 
(which may be learned from past performance or gathered 
statistics, or estimated using basic query optimization tech-
niques [28]) and the average depth of sensor nodes in the 
network.  It uses a novel algorithm to store several copies 
of the join table at different groups of neighboring nodes in 
the network, sending each sensor tuple to one of the groups 
for in-network filtration. 

For large joins, as well as intermediate joins that REED 
chooses not to place in-network, REED can employ a third 
set of algorithms that send a subset of the join table into the 
network. REED tags this subset with a logical predicate 
that defines which sensor readings it can filter in-network.  
For example, for Query (1) above, a join-table subset might 
be tagged with a predicate indicating it is valid for nodes 1-
5 at times between 5 am and 5 pm. For readings from these 
nodes in this time period, joins can be applied in-network; 
other readings will have to be transmitted out of the net-
work and joined externally.  We describe algorithms for 
these kinds of partial joins in Section 5. If REED chooses 
not to apply partial joins, all nodes transmit their readings 
out of the network where they are joined externally.  

In the following section, we present two algorithms:  the 
first is a single-node algorithm for small join tables.  The 
second shows how to generalize this single-node technique 
to a group of nodes that work together to collectively store 
the filter table.  We show that these algorithms are robust to 
failures and changes in topology as well as efficient in 
terms of communication and processing costs. 

4. Basic Join Algorithms 
Once the query optimizer has decided to push a REED 
query into the network, we need an algorithm for applying 
our joins efficiently; in this section, we describe our ap-
proach for performing this computation.  We focus on dis-
tributing and executing our filters throughout the network 
in a power-efficient manner that is robust in the face of 
dropped packets and failed nodes.  Logically, our algo-
rithms can be thought of as a nested-loops join between 
current sensor readings and a table of static predicates.  



Nested-loops joins are straightforward to implement in a 
sensornet, as shown by the following algorithm: 

 
Join(Predicate q) 
for each tuple tr in sensors do  
 for each tuple ts in predicates do  
  if q(tr, ts) is satisfied 
   add tr ∪ ts to result set r 
return r 

There are two things to note about this algorithm. First, 
low selectivity filters might cause there to be fewer than 
one result (on average) per element of the outer loop, 
though it is in general possible for each tuple to match with 
more than one predicate. As in any database system with 
these properties, it is advantageous to apply our filters as 
close as possible to the data source in a sensor network 
since this would reduce the total number of data transmis-
sions in the network. Second, elements of predicates are 
independent of each other. Thus, predicates can be hori-
zontally partitioned into a number of non-overlapping sub-
tables, each of which can be placed on separate nodes. As 
long as the table partitions are disjoint, the union of the 
results of the filter on the independent nodes storing parti-
tions of the table is equal to the results of the filter if the 
entire static table was stored at one location. 

These two observations motivate our algorithms. The 
join is applied as close as possible to the data source. For 
the case where the static table fits on one sensor node, the 
static table is sent to every sensor node (using the TinyDB 
query flood mechanism) and the filter is performed on a 
sensor node as soon as the data is produced. For the case 
where the static table does not fit on one node, the predi-
cates table (s) is horizontally partitioned into n disjoint 
segments s1, s2, …, sn (s=s1∪s2∪…∪sn). Each si is sent to a 
member of a group of sensor nodes in close proximity to 
each other formed specially to apply the join. Each group is 
sent a copy of the predicates table.  When a sensor data 
tuple is generated, it is sent to each node in exactly one of 
these groups to join with every partition (si) of the predi-
cate table. 

In Section 4.1 we describe in more detail the case where 
the predicates table fits on one node. In Section 4.2, we 
extend this basic algorithm with a distributed version for 
the case where the table is too big to fit on one node. 

4.1. Single Node Join 
Our join algorithm leverages the existing routing tree to 
send control messages and tuples between the nodes and 
the root. When a query involving a join is received at the 
basestation, a message announcing the query is flooded 
down to all the nodes. This announcement (actually im-
plemented as a set of messages) is an extended version of 
the TinyDB “new query” messages, and includes the 
schema of the sensor data tuples, the name, size, and 
schema of the join table, the schema of the result tuples, 
and a set of expressions that form the join predicate. Upon 
receiving the complete set of these messages, every node in 
the sensor network knows whether it is participating in the 
query (by verifying that it contains the sensors that produce 
the fields in the schema) and how many tuples of the join 
table can be locally stored (by comparing the size of each 

join table tuple with the storage capacity the node is willing 
to allocate to the query).  

If the node’s storage capacity is sufficient to store the 
filter predicates table, the node simply sends a message to 
the root, requesting the table and indicating that it intends 
to store the entire table locally. The root assumes that there 
will likely be other nodes that can also store the entire ta-
ble, so it floods each tuple of the table throughout the sen-
sornet. Once the entire table is received, the node can begin 
to perform the join locally, transmitting the join results  

Figure 1: REED routing and join tree with group overlays 
 

rather than the original data.  Before then, nodes run a na-
ïve join algorithm, where sensor tuples are sent to the root 
of the network to be joined externally. 

A simple optimization that can be performed is that if 
the result of the join consists of more than one tuple, the 
node can simply send the original sensor tuple. The join for 
this tuple can then be performed at the basestation; this 
technique is equivalent to semi-joins [4]. 

4.2.  Distributed Join 
In this section, we describe our in-network join algorithm 
in detail. Our algorithm consists of three distinct phases:  
group formation, table distribution, and query processing.  

4.2.1. Algorithm Overview 
When the predicates table does not fit on one node, joins 
can no longer be performed strictly locally. Instead, the 
table must be horizontally partitioned. A tuple can only 
immediately join with the local partition at the node and 
must be shipped to other nodes to complete the join. Once 
the original tuple has reached every node that contains a 
partition of the table, it can be dropped and results can be 
forwarded to the root.  Nodes thus organize themselves into 
groups that cumulatively store the entire table, where all 
group members are within broadcast range of each other. 

Figure 1 shows the setup of such a distributed join 
query. The figure shows a multi-hop routing tree where 
tuples are passed to their parents on their path to the root 
basestation. For example, a tuple produced by node 7 is 
sent to node 5 which then sends the tuple to node 2 which 
sends the tuple to the basestation. Our join algorithm works 
by overlaying groups (shown as large circles in Figure 1) on 
top of this routing tree. The numbers in brackets in the fig-
ure represent the set of nodes in broadcast range for that 
particular node.  A tuple that needs to be joined is broad-



cast from a node to the other members of its group.  Each 
member sends any joined results up the original routing 
tree. For example, if node 7 produces a tuple to be joined, it 
broadcasts it to nodes 5 and 6. If node 5 contains a tuple in 
the table that successfully joins with 7’s tuple, it sends the 
result up to node 2 which forwards it to the root.  

Note that when node 7 produces a tuple that joins with 
the static table, three transmissions result; this is the same 
as if the original data was sent up the routing tree in the 
naïve or single-node case.  In the worst case, there would 
have been two extra tuples: if node 5 produced a tuple 
which joined with a tuple on node 7 a total of 4 transmis-
sions would have been performed.  In general, no more 
than 2 + depth transmissions will be required, as any pair 
of nodes in the same group differ by no more than one level 
(by definition).  For joins with predicates of low selectivity 
there are many cases where no element of the table joins 
with the original data. When this occurs, performing the 
join in the group rather than sending the tuple back to the 
root provides savings proportional to the depth of that 
group (instead of n hops to get the data to the root, only 1 
transmission of the original data is made). 

We now describe the algorithm that each node performs 
when it receives a join query with a predicates table whose 
size is too large to fit on that node.   

4.2.2. Group Formation 
If a node calculates that it does not have enough storage 

capacity for the table, it initiates the group formation algo-
rithm. To minimize the number of times an original tuple 
must be transmitted to make it available to every member 
of a group, we require that all nodes in the group are within 
broadcast range of each other. A second required property 
of a group is that it must have enough cumulative storage 
capacity to accommodate the table of predicates. If these 
requirements can not be met, the join classification (see 
Section 3.2) is not intermediate but rather large, and only 
the algorithms described in Section 5 can be used. Group 
formation is a background task that happens continuously 
throughout the lifetime of the join query as nodes come and 
go and network connectivity changes. Every group can be 
uniquely identified by its groupid and the queryid. 

Every node maintains a global, periodically refreshed 
list of neighbors that are within broadcast range.  For each 
neighbor, an estimate of incoming link quality is computed 
by snooping on messages sent by surrounding nodes. A 
neighbor node is placed on the neighbor list if the receive 
percentage is above some threshold (defaulting to 75%).  
This snooping algorithm we use is similar to the algorithm 
used for measuring link quality in the TinyOS multihop 
radio stack [30]. 

We give a brief overview of a group formation algo-
rithm here, and refer the reader to our technical report [1] 
for a more detailed account of how the algorithm works. It 
is important to note that there exist multiple variations on 
the algorithm we present; for example, while we do not 
allow a node to belong to more than one group, there is no 
fundamental reason why this is not possible and in fact this 
might allow for fewer copies of the static table to be sent 
into the network, optimizing table dissemination costs. 

Since our experimental results (Section 6.1.1) show that the 
group formation overhead is negligible compared to other 
communication required by the query, optimizations on the 
group formation algorithm should focus on maximizing the 
number of nodes that are members of a group, rather than 
trying to minimize the number of messages required to 
form a group. 

A master node initiates the creation of a group by send-
ing out an announcement and nodes within broadcast range 
respond with their neighbor lists and capacities. The master 
then attempts to take an intersection of neighbor lists (ac-
counting for asymmetric links in the process) of a subset of 
nodes from which it has heard, such that the resulting set of 
nodes have enough capacity to store the original table. If 
such an intersection exists, the master contacts the root 
node and the table is partitioned and distributed evenly 
across the nodes in the group (taking into consideration 
space constraints on individual nodes). A node moves 
through phases in this algorithm by transitioning through 
states in a finite state machine which is shown in Figure 2.  

4.2.3. Message Loss and Node Failure 
The group formation algorithm deals with message loss 

by allowing every state in the finite state machine to time 
out while having a minimal effect on other nodes. For ex-
ample, if a master node does not hear back from enough 
neighbors, it will time out (shown as TO in Figure 2) and 
transition back into the Need Group state. Nodes that had 
responded to the master cannot respond to any other master 
until they hear back from the current one. If they never hear 
back, they time out and go back to the Need Group state. 
The algorithm adds some optimizations to speed some of 
the steps along; for example, if a master times out and tran-
sitions back to the Need Group state, it sends out an an-
nouncement that it will do so. Nodes that receive this an-
nouncement (and were waiting for this master) can transi-
tion back as well without having to time out. 

Groups are not permanent. A node might choose to dis-
solve the group if it senses that a node has ceased to re-
spond (node failure) or if the message loss percentage from 
a node in the group rises above the desired threshold. Node 
failure is detected using the periodic advertisements de-
scribed in Section 4.2.2 as heartbeats to detect liveliness. In 
such a scenario each node that was a member of the group 
must attempt to find a new group to join. In the current 
implementation of our system, current groups do not accept 
new members, even if that member is in broadcast range of 
every member of the group. As a result, many nodes from a 
failed group often end up reforming a new group without 
the node that caused the group to disband. 

4.2.4. Operation 
Sensor data tuples that need to be processed by a node are 
generated either by the sensors on the node itself or re-
ceived from children in the REED routing tree. Nodes are 
responsible for forwarding child sensor data tuples at all 
times during the query, whether or not they are in an active 
join group. Until a node transitions to an In Group state, all 
data tuples are forwarded up to the parent node in the 
REED tree. If all nodes along the way to the root are not 



members of active groups, then the network behaves like 
the naive join with all the original sensor data tuples being 
forwarded to the root where the join is performed. 

However, if a node along the way is a member of a 
group, then instead of forwarding the data message to its 
parent, it broadcasts the tuple to its group. Each group 
member then joins that data tuple with the locally stored 
portion of the join table and forwards the resulting joined 
tuples up the original REED tree; these result tuples need 
no more joining and can be output once they reach the root. 

5. Optimizations 
In this section, we extend the basic join algorithm de-
scribed in the previous section with several optimizations 
that decrease the overall communication requirements of 
our algorithms and that allow us to apply in-network joins 
for large tables that exceed the storage of a group of nodes. 

5.1.  Bloom Filters 
To allow nodes to avoid transmitting sensor data tuples that 
will not join with any entries in the join table, we can dis-
seminate to every node in the network a k-bit Bloom filter 
[5], f, over the set of values, J, appearing in the join col-
umn(s) of the predicates table.  We also program nodes 
with a hash function, H, which maps values of the join at-
tribute a into the range 1…k. Bits in f are set as follows:  
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Thus, if bit i of f is unset, then no value which H maps to 
i is in J.  However, just because bit i is set does not mean 
that every value which hashes to i is included in J.  We 
apply Bloom filters as in R*[18]: when a node produces a 
tuple, t, with value v in the join column, it computes H(v) 
and checks to see if the corresponding entry is set in f.  If it 
is not, it knows that this tuple will definitely not join.  Oth-
erwise, it must forward this tuple, as it may join.  Assuming 
simple, uniform hashing, choosing a larger value of k will 
reduce the probability of a false positive where a sensor 
tuple is forwarded that ultimately does not join, but will 

also increase the cost of disseminating the Bloom filter and 
use up limited memory.  We can apply Bloom filters with 
the group protocol, to avoid any transmission of data to 
group members, or in isolation as a locally-filtered version 
of single-node join algorithm. 

5.2.  Partial Joins 
For situations in which there are a very large number of 
tuples in the join table, we can just disseminate information 
that allows sensors to identify tuples that definitely do not 
join with any predicates.  Suppose we know that there are 
no predicates on attribute a in the range a1 … a2.  If we 
transmit this range into the network, then a sensor tuple, t, 
with value t.a inside a1 … a2 is guaranteed to not join with 
any predicates and need not be transmitted;  otherwise, we 
must transmit it to the root to check and see if this tuple 
joins with any predicates. Of course, for a multidimen-
sional join query, there will be many such ranges with 
empty values, and we will want to send as many of them 
into the network as the nodes can store. 

Thus, the challenge in applying this scheme is to pick 
the appropriate ranges we send into the network so as to 
maximize the benefit of this approach.   If few tuples that 
are produced by the sensors are outside of this range, we 
can substantially decrease the number of tuples that nodes 
must transmit.  Of course, the range of values which com-
monly join may change over time, suggesting that we may 
want to change the subset of the table stored in the network 
adaptively, based on the values of sensor tuples we observe 
being sent out of the network.  

5.3.  Cache Diffusion 
The key idea of our approach is to observe the data that 
sensor nodes are currently producing. We assume that each 
node contains two cache tables. The first, the local value 
cache, contains the last k tuples that a node n produced. 
The second table (which is organized as a priority queue) 
holds empty range descriptions (ERDs) of the join.  An 
ERD is defined in the following way: 
Given a set of attributes A1 … An that are used in the join 
predicates of a query, an ERD consists of a set of ranges in 
the domain of these attributes:  
{[x 1-y1] … [xn-yn] | xi, yi ∈ Ai}  
such that if a tuple contains values for each of these attrib-
utes that fall within the ranges listed in an ERD, it is guar-
anteed that there does not exist a predicate that will evalu-
ate the tuple to true. As a result, the tuple can be immedi-
ately dropped. For example, an ERD for a query filtering 
by nodeid and temperature might consist of the 
range [20-25] on temperature and the range [5-7] on 
nodeid; a different ERD might consist of the range [23-
30] on temperature and [1-3] on nodeid.  A tuple 
coming from node 6 with a temperature of 22 falls within 
the first ERD and thus can be dropped.  We define the size 
of an ERD to be the product of the width of the ranges in 
the ERD.  We define a maximal ERD for a non-joining 
tuple to be the ERD of the largest size that the tuple over-
laps.  We currently compute the maximal ERD via exhaus-
tive search at the basestation. 

Figure 2: Join Algorithm Finite State Machine.  The “TO” 
transitions represent timeouts, which prevent deadlocks 
when messages are lost or nodes fail. 
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The cache diffusion algorithm then works as follows. 
Every time the root basestation receives a tuple that does 
not join, it sends the maximal ERD which that tuple inter-
sects one hop in the direction that the tuple came from. 
This node then checks its local value cache for tuples that 
are contained within this ERD. If one is found, this value 
and any other values that overlap with the ERD are re-
moved from the local value cache, and the ERD is added to 
the ERD cache table with priority 1. If no match is found, 
then the ERD is also placed in the ERD cache table, but we 
mark it with priority 0.  Priorities are used to determine 
which ERDs to evict first, as described below. 

Upon receiving a tuple from a child for forwarding, a 
node first checks the ERD cache to see if the tuple falls 
within any of its stored ERDs. If so, the node filters the 
tuple and sends the matching ERD to the child. Further, if 
node x overhears node y sending a tuple to node z (where 
node z is not the basestation), it also checks its ERD table 
for matching ERDs and, if, it finds one, forwards it to node 
y. The ERD cache is managed using an LRU policy, except 
that low-priority ERDs are evicted first. Here “last-use” 
indicates the last time an ERD successfully filtered a tuple. 

Thus, for a node x of depth d, it takes d tuples that fall 
within an ERD to be produced before the ERD reaches 
node x.  Note that these d tuple productions do not have to 
be consecutive as long as the matching ERD that diffuses 
to node x does not get removed from the ERD cache of its 
ancestor nodes on its way. Further, note that despite the 
fact that it takes d tuples before node x receives the ERD, 
these tuples get forwarded fewer and fewer times while the 
ERD gets closer and closer to x. In total, d + (d-1) + (d-2) 
… + 1 additional transmissions are needed before an ERD 
reaches node x.  The advantage of this approach over di-
rectly transmitting the ERD to the node that produced the 
non-joining tuple is twofold:  first, we do not have to re-
member the path each tuple took through the network; sec-
ond, we do not have to transmit every ERD d hops – only 
those which filter several tuples in a row.    

Once an ERD (or set of ERDs) arrive at node x, then as 
long as node x produces data within the ERD, no transmis-
sions are needed. Thus, for joins with low selectivity on 
sensor attributes of high locality, we expect this cache dif-
fusion algorithm to perform well, even for very large ta-
bles. 

6. Experiments and Results 
We have completed an initial REED implementation for 
TinyOS. Our code runs successfully on both real motes and 
in the TinyOS TOSSIM [16] simulator. We use the same 
code base for both TOSSIM and the motes, simply compil-
ing the code for a different target.  Most of the experimen-
tal results in this section are reported from the TinyOS 
TOSSIM simulator, which allows us to control the size and 
shape of the network topology and measure scaling of our 
algorithms beyond the small number of physical nodes we 
have available.  We demonstrate that our simulation results 
closely match real world performance by comparing them 
to numbers from a simple five-mote topology.  

We are running TOSSIM with the packet level radio 
model that is currently available in the beta/TOSSIM-

packet directory of the TinyOS CVS repository.  This 
simulator is much faster (approximately 1000x) than the 
standard TOSSIM radio model but still simulates colli-
sions, acknowledgments, and link asymmetry. For the 
measurements reported here, our algorithms perform simi-
larly (albeit much more slowly) when using the standard 
bit-level simulator. 

For the experiments below, we 
simulate a 20x2 grid of motes where 
there are 5 feet between each of the 
20 rows and 2 feet between the 2 col-
umns. The top-left node is the bases-
tation. This is shown in Figure 3. 
With these measurements, a data 
transmission can reach a node of dis-
tance 1 away (horizontally, vertically, 
or diagonally in Figure 3) with more 
than 90% probability, of distance 2 
away with more than 50% probability, 
and rarely at further distances. How-
ever the collision radius is much lar-
ger: nodes transmitting data with dis-
tance <=5 away from a particular node can collide with that 
node’s transmission. For the distributed (group) join ex-
periments, we set the group quality threshold described 
above to 75%, which yield groups almost always to consist 
of nodes all less than 10 feet away from each other. We 
chose this topology because it allows us to easily experi-
ment with large depths so that nodes towards the leaves of 
the network can still reliably send data to the basestation 
while not requiring the TinyOS link layer to perform re-
transmissions during data forwarding. We have also ex-
perimented with grid topologies (such as 5x5) to confirm 
that the algorithm still performs correctly under different 
topologies (as long as the network is dense enough so that 
groups can form). 

Our first set of experiments will examine the distributed 
(REED) join algorithm. We evaluate this algorithm along 
two metrics:  power savings and result accuracy.  We use 
number of transmissions as an approximation of power 
savings as justified in Section  2.  We compare those results 
to a naïve algorithm that simply transmits all readings to 
the basestation and performs the join outside the network.  
We measure accuracy to determine whether our protocols 
have a significant effect on loss rates over an out-of-
network join.  We also show how combining this algorithm 
with a predication filter (such as Bloom) can further im-
prove our metrics. In these experiments, we simulate a 
Bloom filter that accurately discards non-joining tuples 
with a fixed probability. We analyze the dimensions that 
contribute to this probability in later experiments. 

For experiments of the distributed join, we use a join 
query like the industrial process control Query (1) de-
scribed in Section 2 above, except that we use the same 
schedule at every node (so our query does not include a 
join on nodeid).  Our schedule table has 62 entries, repre-
senting 62 different times and temperature constraints.  On 
our mica2 motes with 4K of RAM, each mote has suffi-
cient storage for about 16 tuples – the remainder of the 

basestation 



RAM is consumed by TinyDB and forwarding buffers in 
the networking stack.  We have also experimented with 
several other types of join queries and found similar re-
sults:  irrespective of the query, join-predicate selectivity 
and average node depth have the largest effect on query 
execution cost for the distributed join algorithm. 

For all graphs showing results for the distributed join al-
gorithm, we show power utilization and result accuracy at 
steady state, after groups have formed and nodes are per-
forming the join in-network. We do not include table dis-
tribution costs in the total transmission numbers. We 
choose to do this for two reasons: 

First, efficient data dissemination in sensor networks is 
an active, separate area of research [17,26]. Any of these 
algorithms can be used to disseminate the predicates table 
to the network. We use the most naïve of dissemination 
algorithms:  flooding the table to the network. For every 
tuple sent into the network, each node will receive it once 
and rebroadcast it once. Thus, if there n nodes in the net-
work, and the table contains k predicates, then there will be 
n·k transmissions per table dissemination. However, since 
multiple tables are disseminated (one per group), our naïve 
dissemination algorithm requires n·k·g transmissions where 
g is the number of groups. A simple optimization would be 
to wait until all groups had been formed and transmit the 
table just once; doing this is non-trivial as groups may 
break-up and reform over the course of the algorithm.  For 
the experiments we run, we found that on average 300 
transmissions are made per predicate in the table for our 40 
node network (since g is on average 7.7). Thus, for the 60 
predicate table we used, 18K transmissions were needed.  

Second, applications of our join algorithm tend to be 
long running continuous queries. For this reason, we are 
more interested in how the algorithm performs in the long 
term, and we expect that these set up costs will be amor-
tized over the duration of a query. For example, in 500 ep-
ochs (the duration of our experiments below), we already 
accrue up to 160K transmissions - well above the 18K 
transmissions needed to disseminate the table. 

Our second set of experiments analyzes and compares 
the Bloom Filter and Cache Diffusion algorithms. Again 
we use the number of transmissions as the evaluation met-
ric. We observe how the join attribute domain size and data 
locality are good ways to decide which algorithm to use.  

6.1. Distributed Join Experiments 
The next two experiments examine how two independent 
variables affect the metrics of power savings and accuracy 
for each join algorithm: join predicate selectivity and aver-
age node depth. For all experiments, data is collected once 
the system reaches steady state for 500 epochs. The table 
contains 62 predicates and each node has space for 16, re-
sulting in groups of size 4 being created. Different numbers 
and combinations of groups form in different trial runs, so 
each data point is taken by averaging three trial runs. Error 
bars on graphs display 95% confidence intervals. 

6.1.1.  Selectivity 
For this set of experiments, we varied the selectivity of the 
join predicate and observed how each join algorithm per-
formed.  We model the benefit of the Bloom filter optimi-
zation described in Section  5.1 by inserting a filter that 
discards non-joining tuples with some probability p. We 
can directly vary p for the test query via an oracle which 
can determine whether or not a tuple will join, which is 
convenient for experimentation purposes. We will show 
later how in practice, the value of p can be obtained. 

Figure 4 shows that for highly selective predicates (low 
predicate selectivity), both the REED algorithm and the 
Bloomjoin optimization provide large savings in the 
amount of data that must be transmitted in the network. 
The naïve algorithm is unaffected by selectivity because it 
must send back all of the original data to the basestation 
before the data is analyzed and joined. The REED algo-
rithm does not have this same requirement: those nodes 
that are in groups can determine whether a produced tuple 
will join with the predicates table without having to for-
ward it all the way to the basestation. Thus, the savings of 
the algorithm is linear in the predicate selectivity. The 
Bloomjoin algorithm improves these results even more 
since nodes no longer always have to broadcast a tuple to 
its group (or to its parent if not in a group) to find out if a 
tuple will join.  In these experiments we filter 50% of the 
non-joining tuples in the Bloom filter. 

To better understand the performance of these algo-
rithms, we broke down the type of transmissions into four 
categories: (1) the transmission of the originally produced 
tuple (to the node’s parent if not in a group; otherwise to 
the group), (2) the first transmission of any joined tuples, 
(3) any further transmissions to forward either the original 
tuple or a joined result up to a parent in a group or to a bas-
estation, and (4) transmissions needed as part of the over-
head for the group formation and maintenance algorithms.   
Figure 5 displays this breakdown for the REED algorithm 
over varying selectivity. In this figure, the original tuple 
transmissions remain constant at approximately 20K. This 
is because every tuple needs to be transmitted at least once 
in the REED algorithm: if the node is not in a group, the 
tuple is sent to the node’s parent; otherwise it is sent to the 
group. Once a tuple is sent to a group, no further transmis-
sions are needed if the tuple does not join with any predi-
cate. For the 20-hop node topology used in this experiment, 
the forwarded messages dominate the cost. It is also worth 
noting that the figure shows that the group management 
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overhead (at steady state) is negligible compared with any 
of the other types of transmissions. 

Since Figure 5 shows that the reason why the REED re-
duces the number of transmissions is because it reduces the 
number of forwarded messages that need to be sent, one 
possible explanation for this could be that the algorithm 
causes more loss in the network and messages tend to get 
dropped before reaching the basestation (so they do not 
have to be forwarded). To affirm that this is not the case, 
we measured the number of tuples that reach the basesta-
tion at varying selectivities and compared each algorithm. 
These results are shown in Figure 6. As can be seen, all 
algorithms perform similarly; however the naïve algorithm 
has slightly less loss at high selectivities and the REED 
algorithms have slightly less loss at low selectivities. This 
can be explained as follows: group processing of the join 
occasionally requires 1-2 extra hops. This is the case when 

a node x that stores a partition of the predicates table that 
will join with a particular tuple produced by node y and x is 
located at the same depth as y or 1 node deeper. The former 
case requires 1 extra hop, the latter 2 extra hops. With each 
extra hop, there is extra probability that a tuple can be lost. 
This explains why there is more loss at high join predicate 

selectivities. However, at low selectivities, this negative 
impact of REED is outweighed by its reduction in the 
number of transmissions and thus network contention. 
Since fewer messages are being sent in the network, there 
is an increased probability that each message will be 
transmitted successfully. 

6.1.2. Average Node Depth 
For this set of experiments, we fixed the join predicate se-
lectivity at 0.5 and 0.1 and varied the topology of the sen-
sor network (in particular varying average node depth) and 
observed each how join algorithm performed.  We varied 
node depth by subtracting leaf nodes from the 20x2 topol-
ogy described earlier. The baseline 20x2 topology has a 
average depth of 10.26 (each node’s parent is fixed to be 
the node above it in the network except for the top-right 
node which has the basestation as its parent). We elimi-
nated the bottom 6 nodes to achieve an average depth of 
8.76, another 6 nodes to achieve an average depth of 7.26, 
etc. to achieve depths of 5.76, 4.26, and 2.78; and then the 
bottom pairs for nodes to achieve average depths of 2.29, 
1.80, and 1.33. The number of transmissions for each of the 
three join algorithms is given in Figure 7.  

0

1000

2000

3000

4000

0 0.2 0.4 0.6 0.8 1
D ata Select ivity

T
ot

al
 

T
ra

ns
m

is
si

on
s

Actual Results
From M otes
Simulated
Results

  
Figure 8: Simulated vs. Real World Results 

These results show that the average depth necessary for 
REED (without using a Bloom filter) to perform better than 
the naïve algorithm is 1.8. The reason why REED performs 
worse than the naïve algorithm at low depths is twofold. 
The less significant reason is the small group formation and 
maintenance overhead incurred by REED. The more sig-
nificant reason is that, as explained above, join processing 
occasionally requires 1-2 extra hops. At large depths, these 
extra hops get made up for in the saved forwarded trans-
missions, but for depths less than 2, this is not the case. 
However, if a reasonably selective Bloom filter is used, 
REED always outperforms the naïve algorithm. 
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6.2.  Real World Results 
Although we expected that TOSSIM would be an accurate 
simulation for TinyOS code, we verified for ourselves that 
our join algorithm worked on a simple five-node one hop 
network. We tracked the number of transmissions by pass-
ing this number with each result tuple (in order to get 
enough data back to the basestation at small selectivities, 
25% of the tuples are sent using the naïve algorithm rather 
than being broadcast to a group). We ran our REED algo-
rithm without the Bloom optimization for 500 epochs. The 
results of this experiment in simulation and on real motes 
are displayed in Figure 8. Simulation and practice perform 
similarly; however the non-simulated results have slightly 
decreased number of transmissions due to a slightly higher 
amount of loss than was modeled in simulation. 

6.3.  Bloomjoin vs. Cache Diffusion 
Although the Bloomjoin and Cache Diffusion (CD) algo-
rithms described above can help optimize the REED algo-
rithm, they also can be applied independently when the 
predicate table is too large to fit on even a group of nodes. 
We now explore the tradeoff between these algorithms, 
studying cases when one outperforms the other. For these 
experiments, we allocated 90 bytes space for the data struc-
tures needed by each algorithm. For the Bloomjoin algo-
rithm, this allowed a 720 bit Bloom filter to be distributed 
and for CD, this allowed 9 tuples or ERDs to be cached. 

We found that the two most important dimensions that 
distinguish these algorithms are domain size and data local-
ity, and thus we present our results using these dimensions 
as independent variables. The query used to run these ex-
periments is the outlier detection query presented in Sec-
tion 2.1 except that we add light as sensor produced data. 
In order to vary data locality as an independent variable, 
we generated data for each node using matlab where read-
ings for a sensor s were produced by sampling a normal 
distribution, Ns, with variable variance in the range [0,1] 
and mean µ randomly selected from a uniform distribution 
over the range [0,1]. We define locality in these experi-
ments to be 1/(variance) of Ns  -- larger variances lead to 
less locality in values. Figure 9 shows how total transmis-
sions for a 5 node network of average depth=2 running for 
2500 epochs varies with data locality of the Bloomjoin and 
CD algorithms.  
Bloomjoin is 
insensitive to data 
locality because 
each node has the 
same Bloom filter 
(the decrease in 
total transmissions 
at low localities 
occurs in this ex-
periment because the 
same few bits in the 
Bloom filter get continually queried and it happens to be 
the case that these few bits have a small amount of false 
positives). Cache Diffusion sends appropriate ERDs to 
each node and thus works better when locality is high. 

In order to vary attribute domain size we simply modulo 
these values by the desired domain size of each attribute. 
The size of the domain of the whole tuple is simply the 
product of the domain sizes of each component attribute. 
Due to lack of space, we do not show the graph for the 
Bloomjoin and CD algorithms with varying selectivity. In 
short, we found that domain size did not affect CD (how-
ever, this could be query dependent), but that Bloomjoin 
was greatly affected. If light was allowed to vary between 
only 64 values and temperature between 32 (resulting in a 
domain size of 2048), Bloomjoin approached the naïve 
algorithm in terms of number of transmissions. This is be-
cause the size of the domain was much larger than the 
number of bits allocated to the filter (720) so the rate of 
false positives increased rapidly. But for smaller domains, 
Bloomjoin performed extremely well. Thus, Bloomjoin is 
preferred over CD when joining only one attribute, but CD 
is preferred over Bloomjoin when the domain is larger than 
one attribute and there is some locality to the sensor data. 

7. Integration of REED into Borealis 
We have begun to integrate REED into the Borealis stream 
processing system [3] to allow query processing and opti-
mization between the two database systems.  A proxy op-
erator is responsible for accepting queries on behalf of 
REED. Borealis passes the query plan to the proxy, which 
removes the portions of the plan that can be pushed into 
REED and returns the remainder to Borealis, as described 
in [2]. The objective of the proxy is to optimize the execu-
tion of the Borealis query plan for energy consumption. 

    In our initial implementation, the proxy always pushes 
selections into REED.  When confronted with a join be-
tween sensor data and a static table, the proxy decides to 
push the join into the network when it computes that the 
energy savings of applying the join in-network will out-
weigh the costs of running the REED algorithm (we do not 
consider the costs of sending in the join tables, as this is a 
one-time cost that is amortized over the life of the query 
anytime the selectivity of the join is less than one.)  Ac-
cording to Figure 4, for the network we simulated above, 
this selectivity threshold is about .95. In our current im-
plementation, selectivity is measured adaptively through a 
simple estimated-moving window average. 

 
Figure 10: Borealis GUI output for Live Data 

    Figure 10 shows output from a real 5 mote REED net-
work integrated with Borealis. It shows what Borealis cal-
culates to be the expected lifetime of the network computed 
on-the-fly as a join query is executed (here we collect sta-
tistics once per second about the number of messages 
transmitted and query selectivity and use communication as 



a stand-in for total lifetime.). Initially the whole query is 
running within Borealis. When the query is started, lifetime 
decreases as the query is disseminated through the network.  
After some time, based on observed selectivity, Borealis 
decides to move the Join into the sensornet, which again 
incurs some cost as groups are formed.  Once this setup is 
complete, expected lifetime improves significantly.  

8. Related Work 
Epstein et al. [9] introduced an algorithm for the retrieval 
of data from a distributed relational database with commu-
nication traffic as a cost criteria for which nodes should 
perform joins. Bernstein et al. [4] introduced a semi-join 
algorithm which reduces the communication overhead of 
performing distributed joins by taking the intersection of 
the schemas of the tables to be joined, projecting the result-
ing schema on one of the tables, sending this smaller ver-
sion of the table to the node containing the other table and 
joining at this node, and then sending this result back to the 
node containing the original table and joining again.  This 
semi-join technique is an interesting possible optimization, 
though our Bloom-filter approach subsumes and likely out-
performs it, for the same reasons as described in R* [18]. 

Determining how to horizontally partition a join table 
amongst a set of servers is a classic problem in database 
systems.  The Gamma[8] and R* [15] systems both studied 
this problem in detail, analyzing a range of alternative tech-
niques for allocating sets of tuples to servers, though both 
sought to minimize total query execution time rather than 
communication or energy consumption. 

TinyDB [19,20,21] and Cougar [31] both present a range 
of distributed query processing techniques for the sensor 
networks. However, these papers do not describe a distrib-
uted join algorithm for sensor networks.   

There are a large number non-relational query systems 
that have been developed for sensor networks, many of 
which include some notion of correlating readings from 
different sensors.  Such correlation operations resemble 
joins, though their semantics are typically less well defined, 
either because they do not impose a particular data model 
[12], or because they are probabilistic in nature [7] and thus 
fundamentally imprecise.  

The work that comes closest to REED is the work from 
Bonfils and Bonnet [6], which proposes a scheme for join-
operator placement within sensor networks.  Their work, 
however, focuses on joins of pairs of sensors, rather than 
joins between external tables and all sensors.  They do not 
address the join-partitioning problem that we focus on. 

9. Conclusion 
REED extends the TinyDB query processor with facilities 
for efficiently executing multi-predicate filtration queries 
inside a sensor network.  Our algorithms are capable of 
running in limited amounts of RAM, can distribute the 
storage burden over groups of nodes, and are tolerant to 
message loss and node failures.  REED is thus suitable for 
a wide range of event-detection applications that traditional 
sensor network database systems cannot be used to imple-
ment. Moving forward, because REED incorporates a gen-
eral purpose join processor, we see it as the core piece of 

an integrated query processing framework, in which sensor 
networks are tightly integrated into traditional databases, 
and users are presented with a seamless query interface.  
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