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ABSTRACT
To compensate for the inherent unreliability of RFID data streams,
most RFID middleware systems employ a “smoothing filter”, a
sliding-window aggregate that interpolates for lost readings. In this
paper, we propose SMURF, the first declarative, adaptive smooth-
ing filter for RFID data cleaning. SMURF models the unreliability
of RFID readings by viewing RFID streams as a statistical sample
of tags in the physical world, and exploits techniques grounded in
sampling theory to drive its cleaning processes. Through the use of
tools such as binomial sampling andπ-estimators, SMURF contin-
uously adapts the smoothing window size in a principled manner to
provide accurate RFID data to applications.

1. INTRODUCTION
RFID (Radio Frequency IDentification) technology promises

revolutions in areas such as supply chain management and
ubiquitous computing enabled by pervasive, low-cost sensing
and identification [17]. One of the primary factors limiting the
widespread adoption of RFID technology is theunreliability of the
data streams produced by RFID readers [8, 23]. The observed read
rate (i.e., percentage of tags in a reader’s vicinity that are actually
reported) in real-world RFID deployments is often in the60−70%
range [21, 23]; in other words, over30% of the tag readings are
routinely dropped.

Unfortunately, such error rates render raw RFID streams essen-
tially useless for the purposes of higher-level applications (such as
accurate inventory tracking). Instead,RFID middleware systems
are typically deployed between the readers and the application(s)
in order to correct for dropped readings and provide “clean” RFID
readings to application logic. The standard data-cleaning mecha-
nism in most such systems is atemporal “smoothing filter”: a slid-
ing window over the reader’s data stream that interpolates for lost
readings from each tag within the time window [20, 24]. The goal,
of course, is to reduce or eliminate dropped readings by giving each
tag more opportunities to be read within the smoothing window.
While the APIs for RFID middleware systems vary, smoothing fil-
ter functionality can be expressed as a simplified continuous query
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Figure 1: Tension in setting the smoothing-window size
for tracking a single tag (dark bars indicate the tag is
present/read): small windows fail to fill in dropped readings
(false negatives); large windows fail to capture tag movement
(false positives).

(e.g., in CQL [6]) as shown in Query 1 (for a5 second window).

Query 1 CQL Smoothing Filter to Correct for Dropped Readings.

SELECT distinct tag id
FROM rfid readings stream [Range ’5 sec’]
GROUP BY tag id

Typically, the RFID middleware system requires the application
to fix the smoothing window size (as in the above CQL statement).
Setting the window size, however, is a non-trivial task: the ideal
smoothing-window size needs to carefully balance two opposing
application requirements (as shown in Figure 1):ensuring com-
pletenessfor the set of tag readings (due to reader unreliability)
andcapturing tag dynamics(due to tag movements in and out of
the reader’s detection field).

– Completeness:To ensure that all tags in the reader’s detection
range are read, the smoothing window must be large enough to cor-
rect for reader unreliability. Small window sizes cause readings for
some tags to be lost, leading tofalse negatives(i.e., tags mistakenly
assumed to have exited the reader’s detection range) and, conse-
quently, a large underestimation bias (e.g., always under-counting
the tag population). Adjusting the window size for completeness
depends on the reader’s read rate, which, in turn, depends on both
the type of reader and tag as well as physical surroundings [13, 18].

– Tag Dynamics:Using a large smoothing window, on the other
hand, risks not accurately detecting tag movements within the win-
dow, leading tofalse positives(i.e., tags mistakenly assumed to be
present after they have exited the reader’s detection range). Adjust-
ing the window size for tag dynamics depends on the movement
characteristics of the tags, which, in turn, can vary significantly
depending on the application; for instance, a tag sitting on a shelf
exhibits a different movement pattern from a tag on a conveyor belt.
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Any RFID deployment must seriously consider and study the
factors governing the window size as discussed above when design-
ing a cleaning scheme for raw RFID streams; in fact, ascertaining
environment characteristics and configuring the hardware and mid-
dleware to account for these factors represents a large portion of the
monetary and time cost of such deployments [32]. Furthermore, no
single window size is expected to be effective over the lifetime of
a deployment; thus, either the window size must be repeatedly re-
configured, or the quality of the data suffers.

The fundamental issue with any static windowing approach is
that the window size is a non-declarative, low-level parameter that
should not be exposed at the application level. Conceptually, what
the application expects from the RFID middleware is a stream
of readings that representan accurate picture of reality; in other
words, the application is only interested in accurately capturing
a true underlying “signal” (such as individual tag readings or
tag population counts) over time. Requiring the application to
fix a smoothing-window size, however, essentially forces the
application to decide beforehand exactlyhow to produce this
“accurate” data stream.

Our Contributions. In this paper, we introduce SMURF (Sta-
tistical sMoothing for Unreliable RFid data), the first declarative,
adaptive smoothing filter for cleaning raw RFID data streams. Un-
like conventional techniques, SMURF does not expose the smooth-
ing window parameter to the application; instead, it determines the
“right” window size automatically and continuously adapts it over
the lifetime of the system based on observed readings.

The main challenge for an adaptive smoothing scheme is to dis-
tinguish between periods of dropped readings and periods when a
tag has moved. To address this problem, SMURF uses a statistical
sampling-based approach. One of the key ideas behind SMURF’s
adaptive algorithms is that RFID data streams can be modeled as a
random sampleof the tags in a reader’s detection range. Through
this sample-based view of observed RFID readings, SMURF em-
ploys algorithms grounded in statistical sampling theory to drive its
adaptive smoothing techniques. More concretely, our contributions
can be summarized as follows.

• A Sampling-based View of RFID Data Streams.SMURF ex-
ploits a novel view of RFID unreliability by modeling observed
RFID readings as anunequal-probability random sampleof tags in
the physical world. This approach allows SMURF to balance the
tension between reader unreliability and tag dynamics in a prin-
cipled, statistical manner by continuously adapting the smoothing
strategy to provide accurate, unbiased data to applications. (Sec-
tion 3)

• An Adaptive Smoothing Filter for RFID Data. Building on
SMURF’s sampling-based foundation, we propose two novel,
adaptive smoothing mechanisms for (a) cleaning the readings
of single tag using techniques based onbinomial sampling[12]
(per-tag cleaning), and (b) cleaning an aggregate signal (e.g.,
count) over a tag population based onπ- (or Horvitz-Thompson)
estimators[29] (multi-tag cleaning). (Section 4)

• An Experimental Study Validating the Effectiveness of
SMURF’s Cleaning Algorithms. We present a detailed experi-
mental study using various schemes to clean both synthetic and
real RFID data streams. First, these tests show that there is no
single static window size that works well in all environments
(reader and tag behavior), motivating the need for an adaptive
approach. Second, we demonstrate SMURF’s ability to adapt its
data-cleaning strategy to a wide range of reader characteristics
and tag behaviors; in an environment with changing conditions,
SMURF reduces overall error by a factor of more than 3 compared

to the best environment-specific static window. (Section 5)

SMURF is designed to be a component in a pipeline of opera-
tors responsible for low-level RFID data processing tasks such as
cleaning, filtering, and spatial processing (see proposals such as
ALE [5] and ESP [21, 22]). SMURF would be responsible for
smoothing RFID readings from each reader before the streams are
sent to other modules for additional processing. In this work, we
focus on cleaning readings from a single reader or collection of log-
ically equivalent readers (i.e., alogical reader[5]). We consider
cleaning using multiple readers in Section 7 as ongoing work.

SMURF’s sampling-based foundation offers a powerful concep-
tual framework for effective RFID data-cleaning tools. The set of
techniques proposed in this paper can be directly incorporated in
RFID middleware platforms to yield systems that are (1) substan-
tially easier to configure and maintain; and, (2) produce more reli-
able RFID data, regardless of the deployment environment.

In the next section, we provide a general background on RFID
technology and detail RFID reader unreliability.

2. RFID BACKGROUND
RFID Technology Primer. RFID is an electronic tagging and
tracking technology designed to provide non-line-of-sight identi-
fication. For the purposes of this paper, a typical RFID installation
consists of three components: readers, antennae, and tags.

A readerusesantennaeto communicate withtagsusing RF sig-
nals to produce lists of IDs in its detection field. Tags may either
be active (battery-powered) or passive (no on-board battery). We
focus on passive tags, as they are the most widespread variety of
RFID tags. Tags store a unique identifier code (e.g., a 64 or 96-bit
ID for EPCGlobal tags [16]). Although there exists RFID tech-
nology for multiple frequencies, we focus on 915 MHz technology,
which has a long detection range (roughly 10-20 feet) and is typical
of supply chain management applications.

Readersinterrogatenearby tags by sending out an RF signal.
Tags in the area respond to these signals with their unique identifier
code. Aninterrogation cycleis one iteration through the reader’s
protocol that attempts to determine all tags in the reader’s vicinity.

The results of multiple reader interrogation cycles are typically
grouped into what we termepochs.1 An epoch may be specified
as a number of interrogation cycles or as a unit of time. A typical
epoch range is 0.2-0.25 seconds [1, 31]. For each epoch, the reader
keeps track of all the tags it has identified, as well as additional in-
formation such as the number of interrogation responses for each
tag and the time at which the tag was last read. Readers store this
information internally in atag list (Table 1) which is periodically
transferred to readers’ clients. For more information on RFID tech-
nology, see [34].

Tag ID Responses Timestamp

8576 2387 2345 8678 9 11:07:05
8576 4577 3467 2357 1 11:07:05
8576 3246 3267 5685 7 11:07:06

Table 1: Example reader tag list.

RFID Reader and Tag Performance. To better understand the
unreliability of RFID readings, we profile two RFID readers with
different tags in two environments. Our profiling methodology is
as follows. We suspend a single tag at varying distances in the
same plane as the antenna. For every 6-inch increment of distance
from the reader, we measure the read rate (number of responses to
number of interrogations) for 100 epochs.
1In ALE terms, an epoch is aread cycle[5].
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(a)Alien reader with Alien Squiggle tag
under controlled conditions.
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(b)Sensormatic reader with Alien I2 tag
under noisy conditions.

Figure 2: RFID reader profiles for a single tag under different
conditions. Error bars represent± one standard deviation.

Our profiling experiments use two types of readers, the Alien
ALR-9780 [3] and the Sensormatic Agile 2 [30], with three types
of tags (Alien “I2”, “M”, and “Squiggle” [4]). We test various com-
binations of these readers and tags in two environments. Our first
environment, a large, wide-open room with little metal present, rep-
resents a controlled environment for RFID technology: we elimi-
nate many of the causes of degraded read rates [18]. Our second
profiling environment, a lab with metal objects such as desks and
computer equipment, represents a noisy environment.

Figure 2 depicts the results from two different profiling experi-
ments that are representative of the 8 different profiles we collected.
(The plots show the read rate of the tag at distances ranging from 0
to 20 feet.) All of the profiles have similar properties despite being
generated using different readers, tags, and environments. First, the
overall detection range of all readers and tags profiled remains rela-
tively constant at 15-20 feet. Second, within each reader’s detection
range, there are two distinct regions: (1) The area directly in front
of the reader, termed the reader’smajor detection region[26], giv-
ing high detection probabilities (read rates at or above 95%); and,
(2) the reader’sminor detection region, extending from the end of
the major detection region to the edge of the reader’s full detection
range, where the read rate drops off linearly (with some variation)
to zero at the end of the detection range.

The main difference between our observed profiles lies in the
percentage of the reader’s detection range corresponding to its ma-
jor detection region. For instance, the major detection region cor-
responds to roughly 75% of the full detection range for the profile
in Figure 2(a), whereas it makes up only 25% of the range in the
profile in Figure 2(b). Note that our profiles are consistent with the
results of in-depth commercial studies of the performance of many
different tags and readers under highly-controlled conditions [14].

We also profile the readers to determine how they respond to
the presence ofmultiple tagsin their detection ranges. For these
tests (not shown here), we suspend 10 tags in the same plane as the
reader and measure the average read rate for 100 epochs at varying
distances from the reader. While the overall properties of the ob-
served profile does not change (we still find a separation between a
major and minor detection region), the read rate in the major detec-
tion region typically drops to around 80%. Additional tests show
that the read rate in the major detection region stays somewhat con-
stant, at least up to 25 tags in the reader’s detection range.

We use these observations in the design of some of SMURF’s
cleaning mechanisms and in the implementation of a realistic RFID
data generator for evaluating our techniques.

3. RFID DATA STREAMS: A STATISTICAL
SAMPLING PERSPECTIVE

Given the inherent unreliability of RFID readings, one of our
key observations is that observed RFID data streams typically do

not provide a complete, authoritative picture of the true popula-
tion of tags in the physical world. Especially for tags outside a
reader’s major detection region, several readings may be missed,
causing some tags to become “invisible” during a time window.
These errors, of course, imply that typically only asubsetof the
tag population is actually observed. On the other hand, a lack of
readings from a tag may not be due to missed readings but rather
because the tag moved out of the detection field. The inherent ten-
sion between completeness of readings and capturing tag dynamics
(i.e., signal transitions) only exacerbates the problem: signals with
a high degree of variability (e.g., counting highly-mobile tags) re-
quire short smoothing windows in order to capture rapid changes
in the measurement data; but, obviously, a smaller window leads
to more missed readings and more severe and systematic underesti-
mation. The conventional solution of increasing the window size to
guarantee completeness simply does not work here, as it can cause
signal variations to be lost (“smoothed out”) due to aggregation.

Rather than striving for completeness, our proposed adaptive
smoothing filter, SMURF, captures tag dynamics while compen-
sating for lost RFID readings in a principled, statistical manner.
The key idea is that the observed RFID readings can be viewed as
a random sampleof the population of tags in the physical world. In
the remainder of this section, we briefly explain the details of this
process and the challenges in designing SMURF.

Mapping RFID Readings to a Sampling Process: SMURF
Methodology and Challenges. Consider an epocht. Recall
from Section 2 that an epoch is the atomic unit of detection and
is considerably smaller than the expected window size; that is,
epochs represent our basic “time units”, many of which make
up a smoothing window [20, 24]. Without loss of generality, let
Nt denote the (unknown) size of the underlying tag population
at epocht, and letSt ⊆ {1, . . . , Nt} denote the subset of tags
observed (“sampled”) during that epoch. SMURF viewsSt as an
unequal probability random sampleof the tag population.

The key to this scheme is the use of aper-epoch sampling proba-
bility pi,t for each tag. While there are many possible mechanisms
for deriving this value, we focus in this work on response-count in-
formation stored in the reader’s tag list (Table 1). Specifically, for
each tagi ∈ St, SMURF employs the response-count information
for tag i in conjunction with the known number of interrogation
cycles per epoch to derivepi,t. This sampling probabilitypi,t is
empirically estimated as the observed read rate for tagi during that
epoch; for instance, assuming a reader configuration with a total
number of10 interrogation cycles per epoch, the sampling proba-
bilities for the first and second tags in Table 1 would bepx78,t =
0.9 andpx57,t = 0.1, respectively. Of course, these sampling prob-
abilities differ across tags and can also vary over time as the ob-
served tags move within reader’s detection range.

Our key insight of viewing each RFID epoch as a “sampling
trial” enables SMURF’s novel, statistical-driven perspective on
adaptive RFID data cleaning. In a nutshell, SMURF views the
observed readings over a smoothing window (i.e., a sequence of
consecutive epochs) as the result of repeated random-sampling tri-
als, and employs techniques and estimators grounded in statistical
sampling theory to reason about the underlying physical-world
phenomena and drive its adaptive RFID data cleaning algorithms.
More specifically, SMURF uses the statistical properties of the
observed random sample to appropriately adapt the size of its
smoothing window based on (1) completeness requirements and,
(2) signal transitions detected as“statistically-significant” changes
in the underlying tag readings. Further, even for window sizes that
are necessarily small (to capture fast-varying signals), SMURF
usessampling-based estimators[12, 29] to provide accurate,un-
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biasedestimates for tag-population aggregates (e.g., counts), and
avoid the systematic under-counting of conventional smoothing
techniques. Thus, SMURF’s sampling-based foundation enables
it to explore the tension between completeness and tag dynamics
in a principled, statistical manner that continuously adapts the
smoothing strategy based on statistical properties of the data to
provide accurate, unbiased data to applications. Experimental
results (Section 5) confirm that SMURF’s sampling-based model
enables it to effectively clean RFID data streams.

4. SMURF RFID DATA CLEANING
In this section, we present SMURF, our declarative, self-tuning

smoothing filter. SMURF contains two primary cleaning mecha-
nisms aimed at (1) producing accurate data streams for individual
tag-ID readings (per-tag cleaning); and, (2) providing accurate ag-
gregate (e.g., count) estimates over large tag populations (multi-
tag cleaning). Additionally, SMURF incorporates two modules
that apply to both data-cleaning techniques: a sliding-window pro-
cessor for fine-grained RFID data smoothing, and an optimization
mechanism for improving cleaning effectiveness by detectingmo-
bile tags. We first briefly discuss how SMURF processes readings
within its adaptive window, then detail the two key cleaning mech-
anisms used by SMURF, and finally present SMURF’s mobile tag
detection enhancement.

4.1 SMURF Sliding Window Processing
Window-based smoothing in SMURF closely resembles tradi-

tional sliding-window aggregate processing [2, 7, 10] as expressed,
for example, in Query 1 (of course, with the fixed-sizeRange
clause removed). Similar to other RFID smoothing filters, SMURF
produces a tag reading for a window if there exists at least one
reading for the tag within that window [20, 24]. To enable our more
sophisticated data-cleaning schemes, SMURF’s sliding-window
processor also implements two basic modifications to conventional
RFID filters: (1) partitioned RFID smoothing, and (2) epoch-based
mid-window slide.

As subsets of tagged objects may behave very differently (e.g.,
in a warehouse environment, some tagged items may be placed on
a shelf while others are moved on forklifts), SMURF’s cleaning
techniques must be able to adapt the smoothing-window sizes at a
much finer granularitycompared to traditional RFID middleware
systems that fix a single window size for the entire tag popula-
tion. At one extreme, when tracking individual tag movements,
SMURF runs its adaptive sliding-window processingper tag ID.
In general, the granularity of SMURF’s windowing mechanisms
is determined by theaggregate query of interest. That is, by a
pair(subset, aggregate) determining thesubset of tags over
which theaggregate value (e.g., count) is monitored. Note that
such fine-grained processing can be expressed in a declarative fash-
ion (e.g., through thePartition By clause in CQL [6]).

As epochs are a sample cycle in SMURF’s sample-based model
of RFID data, SMURF slides its windows by a single epoch (as op-
posed to a time period or by tuples). Furthermore, we set SMURF’s
slide point to the middle of the window. That is, SMURF produces
readings with an epoch value corresponding to the midpoint of the
window (after the entire window has been seen). A mid-window
slide point captures the intuitive notion of smoothing: e.g., if there
are reported readings at timest− 1 andt + 1, then there is likely a
reading at timet. We experimentally validated that a mid-window
slide point yields the most reliable readings (results omitted due to
space considerations).

4.2 Adaptive Per-Tag Cleaning

To clean readings from a single tag, the fundamental challenge
is to distinguish between periods of dropped readings and periods
where the tag has actually left the reader’s detection field. SMURF
must set window size such that it provides completeness (for
periods of dropped readings) and accurately captures transi-
tions (for periods where the tag has left). To help differentiate
between these two behaviors and to guide subsequent window
adaptations, SMURF employs statistical mechanisms based on its
random-sample view of RFID data.

A Binomial Sampling Model for Single Tag Readings.Consider
the simple case of cleaning the readings from a single tag (say,i)
based on a reader’s observations over a smoothing window of size
wi epochs (say,Wi = (t−wi, t]). Assume, for the time being, that
tagi is present in the reader’s range throughout the windowWi, and
has the same probability,pi, of being observed in each epoch ofWi.
SMURF views each epoch as an independentBernoulli trial (i.e., a
sampling draw for tagi) with success probabilitypi. This, in turn,
implies that the number of successful observations of tagi in the
window is a random variable that follows abinomial distribution
with parameters(wi, pi) (i.e., B(wi, pi)). In the general case, as-
sume that tagi is seen in only a subsetSi ⊆ Wi of all the epochs in
Wi, and letpavg

i denote the average empirical read rate over these
observation epochs; that is,pavg

i =
P

t∈Si
pi,t/|Si|, where each

pi,t is calculated based on the reader’s tag list information as shown
in Section 3. Note that we assume that within an appropriately-
sized window, thepi,ts will be relatively homogeneous and thus
averaging is a valid estimate of the actualpi,t.2 Based on our dis-
cussion above, and under the assumption that the tag stays within
the reader’s detection field throughoutWi, we can viewSi as a
binomial sample(of epochs inWi) and |Si| as aB(wi, p

avg
i ) bi-

nomial random variable; thus, from standard probability theory, we
can express theexpectationandvarianceof |Si| as:

E[|Si|] = wi · pavg
i and Var[|Si|] = wi · pavg

i · (1− pavg
i )

Next, we discuss how SMURF employs this binomial sampling
model to adjust its smoothing window for per-tag cleaning and ac-
curately detect transitions (e.g., departures of tagi).

Per-Tag Adaptive Window Size Adjustment.With our binomial
sampling model in place, we first consider the problem of setting
SMURF’s window sizewi to guaranteecompleteness. In other
words, we want to ensure that there are enough epochs inWi such
that tagi is observed (if it exists within the reader’s range). Given
the statistical nature of our model, our guarantees are necessarily
probabilistic; that is, we can setwi to ensure that tagi is read with
high probability, as described in the following lemma.

LEMMA 4.1. Let pavg
i denote the observation probability for

tag i during an epoch. Then, setting the number of epochs within
the smoothing window to bewi ≥ d ln(1/δ)

p
avg
i

e ensures that tagi is

observed withinWi with probability> 1− δ.

Proof: Based on our model of independent Bernoulli trials for ob-
serving tagi, the probability that we miss a reading from tagi over
wi sampling trials is exactly(1− pavg

i )wi . Setting this probability
≤ δ and takinglogs giveswi ln(1 − pavg

i ) ≤ ln δ. Combining
this with the inequality−x ≥ ln(1 − x) for x ∈ (0, 1), we see
that it suffices to require that−wip

avg
i ≤ ln δ, or, equivalently,

wi ≥ ln(1/δ)

p
avg
i

. This completes the proof.

2In cases where this homogeneity assumption does not hold due to a tag moving
rapidly away from the reader, our mobile tag detection algorithm (Section 4.4) allows
SMURF to appropriately size its window to capture tag dynamics.
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Thus, a window size ofwi = d ln(1/δ)

p
avg
i

e is sufficient to guarantee

completeness (with high probability). In general, due to the weak
(logarithmic) dependence onδ, small settings forδ (i.e., less than
0.1) do not have a large effect on the overall window size.

While using a smoothing-window size as suggested by
Lemma 4.1 guarantees completeness (i.e., correct detection of tag
i) with high probability, it can also lead to missing the temporal
variation in the underlying signal (e.g., due to the movements of
tag i). Note that, in the per-tag case, we are dealing with abinary
signal: either tagi is there (value= 1) or it is not (value= 0).
As discussed earlier, large smoothing windows canmiss signal
transitions, where tagi is mistakenly presumed to be present in
the reader’s detection range due to the interpolation of readings
inside the window (Figure 1). In order to avoid smoothing over
transitions and producing many false positives, SMURF needs to
accurately determine when tagi exited the reader’s detection range
(as opposed to a period of dropped readings) and decrease the size
of its window. We term this processtransition detection.

Given the unreliability of tag readings, accurate transition de-
tection becomes crucial: readingswill routinely be lost (e.g., for
tags outside the reader’s major detection region (Figure 2)), and an
overly-sensitive transition detection mechanism can result in losing
the smoothing effect and emitting (useless) raw tag readings. On
the other hand, a coarse detection mechanism can miss true signal
transitions, resulting, once again, in false positives. SMURF em-
ploys its binomial sampling model to detect transitions in a princi-
pled manner asstatistically-significant deviationsin the observed
binomial sample size from its expected value. More formally, as-
suming that the current window sizewi and sampling probability
pavg

i are not too small, it follows from a Central Limit Theorem
(CLT) argument that, assuming no transition occurred in the current
window, the value of|Si| is within±2

p
Var[|Si|] of its expectation

with probability close to0.98. Based on this observation, SMURF
flags a transition (i.e., exit) for tagi in the current window if the
number of observed readings is less than the expected number of
readingsand the following condition holds:3

||Si| − wip
avg
i | > 2 ·

q
wip

avg
i (1− pavg

i ) (1)

SMURF Per-Tag Cleaning Algorithm. A pseudo-code de-
scription of SMURF’s adaptive per-tag cleaning algorithm is
depicted in Algorithm 1. SMURF employs the common Additive-
Increase/Multiplicative-Decrease (AIMD) paradigm [11] to adjust
its window size for each tagi, based on guidance from its
binomial-sampling model as discussed above.4

Algorithm 1 SMURF Adaptive Per-Tag Cleaning
Require: T = set of all observed tag IDs

δ = required completeness confidence
∀i ∈ T, wi ← 1
while (getNextEpoch()) do

for (i in T ) do
processWindow(Wi)
w∗

i ← completeSize(pavg
i , δ) // Lemma 4.1

if (w∗
i > wi) then

wi ←max{min{wi + 2, w∗
i }, 1}

else if(detectTransition(|Si|, wi, pavg
i )) then

wi ←max{min{wi/2, w∗
i }, 1}

end if
end for

end while

3More conservative, non-CLT-based probabilistic criteria, e.g., based on the Cheby-
shev or Chernoff bounds [25] can also be used here.
4Note that our algorithm uses only simple mathematical operations and, thus, the
overhead beyond traditional smoothing is minimal.

SMURF runs a sliding-window aggregate for each observed tag
i. The window size is initially set to one epoch for each tag, and
then adjusted dynamically based on observed readings. (If at any
point during processing SMURF sees an empty window for a tag,
it resets its window size to one epoch.)

During each new epoch, and for each tagi, SMURF starts by
processing the readings of tagi inside the windowWi (process-
Window(Wi)). This processing includes estimating the required
model parameters for tagi (e.g.,pavg

i , |Si|) using tag-list infor-
mation as well as emitting an output reading for tagi if there exists
at least one reading within the window. Then, SMURF consults its
binomial-sampling model to determine the number of epochs nec-
essary to ensure completeness with high probability (complete-

Size(pavg
i , δ)), based on Lemma 4.1. If the required sizew∗

i ex-
ceeds the current window sizewi = |Wi|, SMURF grows its cur-
rent window size fori additively.5 This “additive window growth”
rule allows SMURF to incrementally monitor the tag’s readings as
the window grows and thus remain responsive to changes in the
underlying signal.

If the current window size satisfies the completeness require-
ment, then SMURF tries to detect if a transition occurred duringWi

(detectTransition(|Si|, wi, p
avg
i )), based on Condition (1). If a

transition is flagged, SMURF multiplicatively decreases the size of
its current smoothing window fori (i.e., divides it in half). By mul-
tiplicatively decreasing its window size, SMURF can quickly react
to detected transitions and, at the same time, avoid over-reaction in
the unlikely event of an incorrect transition detection. Of course, if
the completeness requirement is met and no transition is detected,
SMURF continues with its current window size for tagi.

To summarize, Figure 3 graphically depicts some example sce-
narios under SMURF’s basic per-tag cleaning scheme.

4.3 Adaptive Multi-Tag Aggregate Cleaning
In many real-world RFID scenarios, applications need to track

large populations of tags, typically in the several hundreds or thou-
sands. In addition, applications often do not require information for
each individual tag, and only need to track simpleaggregates(e.g.,
counts or averages) over the entire tag population. For instance,
a retail-store monitoring application may only need to know when
thecountof items on a shelf drops below a certain threshold.

An “obvious” cleaning approach in such scenarios is to apply
SMURF’s per-tag cleaning algorithms (Section 4.2) for each indi-
vidual tag in the population and then aggregate the results across
individual smoothing filters for each epoch. Such a solution, how-
ever, potentially suffers from underestimation bias: tags not read
at all in a window will not be counted. Additionally, this ap-
proach incurs overhead: SMURF needs to continuously track and
dynamically adapt the window for each individual tag; further-
more, many window adjustments can happen (e.g., with mobile
tags) even though the underlying aggregate signal (e.g., population
count) remains stable. To avoid these problems, SMURF employs
statistical-estimation techniques to accurately estimate the popula-
tion count without cleaning on a per-tag basis.

Random-Sampling Model and Estimators for Multi-Tag Ag-
gregates.Consider the problem of estimating thecountof the tag
population over a window of sizew epochs (say,W = (t− w, t]).
As earlier, we usepavg

i to denote the average empirical sampling
probability for tagi duringW (i.e., the average read rate over all
observations ofi in W derived from the reader’s tag list informa-
tion). SMURF views each epoch as an independent “sampling ex-

5In order to advance the slide point, which is set to the middle of the window, by one
epoch, the window must be grown by2 epochs.
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(a)Normal sliding window processing for tagi in
SMURF. SMURF uses epoch-based midpoint sliding:
at each epocht, SMURF emits a reading with an
epoch value corresponding to the midpoint of the win-

dow.

(b)Ensuring completeness. In the left-
most window,pavg

i demands a larger
window such that the tag has a high
probability (1 − δ) of being detected.

Thus, the window size is increased.

(c)Transition detection. In the left-most
window, the number of readings in-
dicates a statistically-significant devia-
tion given thepavg

i . Thus, a transition
is likely to have occurred so the win-

dow is halved.

Figure 3: Graphical depiction of per-tag cleaning in SMURF.

periment” (i.e., Bernoulli trial) with success probabilitypavg
i ; thus,

the overall probability of reading tagi at least onceduring W is
estimated as:

πi = 1− (1− pavg
i )w (2)

Again, the sizew of the smoothing window plays a critical role in
capturing the underlying aggregate signal: a largew ensures com-
pleteness (i.e., allπi’s are close to1), but a smallw is often needed
to ensure that the variability in the population count is adequately
captured. Unfortunately, compromising on completeness implies
that RFID smoothing algorithms that simply report the observed
readings count can result in consistent underestimation errors.

SMURF employs its unequal-probability random sampling
model to correct for this underestimation bias through the use ofπ-
(or, Horvitz-Thompson) estimators[29] to approximate population
aggregates.6 Specifically, letSW ⊆ {1, . . . , NW } denote the
subset of observed (i.e., sampled) RFID tags over the window
W (NW denotes the true count), with sampling probabilities
determined by Equation (2). Theπ-estimator for the population
count based on the sampleSW is defined as:

N̂W =
X

i∈SW

1

πi

In other words, the countπ-estimator weights each sample point
i with its sampling probabilityπi. The reason for this is fairly
intuitive: If tag i, which is observed with probabilityπi, appears
once in the sample, then, on average, we expect to have1/πi tags
with similar probabilities in the full population (sinceπi · 1/πi =
1); thus, the single occurrence ofi in the sample is essentially a
“representative” of1/πi tags in the full population.

The N̂W π-estimator isunbiased(correct on expectation); that
is, E[N̂W ] = NW [29]. Thus, by weighting with sampling proba-
bilities, SMURF’sπ-estimator techniques correct for the underes-
timation bias of conventional smoothing schemes in a principled,
statistical manner (even for small smoothing window sizes). Simi-
lar calculations show that, assuming independence across different
tags, the variance ofN̂W is estimated by [29]:

V̂ar[N̂W ] =
X

i∈SW

1− πi

π2
i

(3)

Of course, even though SMURF guarantees unbiasedness, as the
window shrinks, the observed sample size and correspondingπi’s

6Although our discussion here focuses primarily on tag counts, SMURF’sπ-estimator
scheme for adaptive multi-tag cleaning can be easily extended to other aggregates. For
instance, if our goal is to estimate the sum of some measure (e.g., temperature) over
the underlying tag population, then the contribution of tagi to ourπ-estimator formula
becomesyi

πi
, whereyi is the measured quantity of interest.

also drop, resulting in possibly lower-quality (high-variance)π-
estimators. As our experimental results demonstrate, SMURF’s
π-estimation algorithms still significantly outperform conventional
smoothing algorithms in such “difficult” settings.

Adaptive Window Size Adjustment for Multi-Tag Aggregates.
As in the single-tag case, we first consider the problem of upper-
bounding SMURF’s smoothing window in a manner that results
in reasonably complete readings over the reader’s detection range.
Let SW denote the sample of (distinct) tags read over the current
smoothing windowW , and letpavg =

P
i∈SW

pavg
i /|SW | denote

the average per-epoch sampling probability over all observed tags.
Following a rationale similar to that in Lemma 4.1, we set the upper
bound for SMURF’s smoothing window size for multi-tag aggre-
gate cleaning atw = d ln(1/δ)

pavg e; in other words, for completeness,
we require that the “average tag” in the underlying population is
read with high probability (≥ 1−δ). (A more pessimistic window-
size estimate would use theminimumof the pavg

i ’s in the above
calculation to ensure that the “worst” tag is read — however, since
SMURF employsπ-estimators to correct for missed readings, such
a pessimistic window could result in overestimation errors.)

SMURF also employs its random-sampling model andπ-estima-
tor calculations in order to dynamically adapt its smoothing win-
dow size to accurately capture the temporal variation in the popu-
lation count (analogous to transition detection in the per-tag case).
The key observation here is that SMURF can detect transitions in
the underlying aggregate signal asstatistically-significant changes
in its aggregate estimates over sub-ranges of its current smoothing
window. Specifically, assumeW = (t − w, t] is the current win-
dow, and letW ′ = (t−w/2, t] denote the second half ofW . Also,
let N̂W and N̂W ′ denote theπ-estimators for the tag population
counts duringW and W ′, respectively. Under similar CLT-like
assumptions as in Section 4.2, we have that the corresponding true

population counts (NW andNW ′ ) satisfyNW ∈ N̂W±2

q
V̂ar[N̂W ]

andNW ′ ∈ N̂W ′ ± 2

q
V̂ar[N̂W ′ ] with high probability. Based on

these observations, SMURF detects that a statistically-significant
transition in population count has occurred in the second half ofW
if the following condition is satisfied:

|N̂W − N̂W ′ | > 2

„q
V̂ar[N̂W ] +

q
V̂ar[N̂W ′ ]

«
(4)

The above condition essentially asserts that the difference
|NW −NW ′ | of true counts is non-zero with high probability.

There are two important points to note here. First, remember
that the key problem with adaptive smoothing-window sizing is to
correct forfalse-positive readingsdue to a large windowW and
a drop-off in the true number of tags in the detection range over
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W . (An increase in the tag count overW is always “caught”, re-
gardless of the current window size, since the observed new read-
ings are by default interpolated throughout the smoothing window.)
Condition (4) attempts to accurately capture such significant drop-
offs within the current window, and allows SMURF to adaptively
shrink its smoothing window size. Second, while Condition (4)
with W ′ = (t− w/2, t] is sufficient to identify count changes that
persist for at leastw/2 epochs within the smoothing window, it
may still miss transitions that last for< w/2 epochs. A more gen-
eral solution here is to check Condition (4) for a series of dyadic-
size windowsW ′ = (t − w/2i, t] (i = 1, 2, . . .) at the tail end
of W , and signal a transition whenever one of these conditions is
satisfied. (Note that, as we slideW across time, any transition is
initially located at the tail end ofW and, thus, can be discovered
by the above technique.) The caveat here, of course, is that, as the
sub-range withinW decreases, the variability of thêNW ′ estimate
goes up, making it difficult to detect very short-lived transitions.
Our empirical results demonstrate that using Condition (4) for just
the second-half windowW ′ = (t− w/2, t] is sufficient to provide
accurate population-count estimates to applications.

SMURF Multi-Tag Cleaning Algorithm. Algorithm 2 depicts the
pseudo-code for SMURF’s multi-tag cleaning scheme that incor-
porates the above techniques. Similar to per-tag cleaning, SMURF
uses AIMD to adjust its smoothing window size; however, in con-
trast to the per-tag case, only a single windowW is maintained
(and adapted) for all observed tags.

Algorithm 2 SMURF Adaptive Multi-Tag Cleaning
Require: δ = desired average completeness confidence

w ← 1
while (getNextEpoch()) do
processWindow(W )
W ← slideWindow(w)
w∗ ← completeSize(pavg , δ) // Lemma 4.1
if (detectTransition(N̂W ,N̂W ′ ,V̂ar[N̂W ],V̂ar[N̂W ′ ])) then

wi ←max{min{wi/2, w∗
i }, 1}

else if(w∗ > w) then
wi ←max{min{wi + 2, w∗

i }, 1}
end if

end while

For each epoch, SMURF starts by processing the readings in
the windowW (processWindow(W )). This involves computing
key window parameters (e.g.,pavg, N̂W ′ , V̂ar[N̂W ′ ]), determining
the aggregate contribution from each tag (1/πi), and calculating
(and subsequently emitting) the estimated tag count (N̂W ) using
π-estimation.

The window is then checked for a statistically-significant change
in the count estimate in its second half (detectTransition (N̂W ,
N̂W ′ , V̂ar[N̂W ], V̂ar[N̂W ′ ])) based on Condition (4). If a change
is detected, SMURF halves its window size. Otherwise, SMURF
checks if the current window meets the completeness requirement
based on the average tag detection probabilitypavg and grows its
window additively, if necessary.

Note that the ordering of the increasing and decreasing phases
in Algorithm 2 is reversed from the per-tag case. Since SMURF’s
π-estimation scales-up readings in a window to estimate the un-
derlying tag population, the completeness requirement (i.e., a large
window) is not as crucial for accurate estimation as in the single-tag
case (where a missed reading causes a100% error). Thus, multi-tag
processing in SMURF focuses primarily on capturing transitions in
the aggregate and usesπ-estimation to compensate for small win-
dows in an unbiased manner.

4.4 Mobile Tag Detection

Here we present an enhancement to SMURF processing that ap-
plies to both per-tag and multi-tag cleaning.

Tags that are detected far away from the reader with a low prob-
ability can force SMURF to use a large smoothing-window (based
on Lemma 4.1). While large windows are necessary to accurately
detectstatic tagsplaced far from the reader, they can cause prob-
lems in environments where tags aremobile. For per-tag cleaning, a
mobile tag detected with a lowpi,t just before it leaves the reader’s
detection range causes a large number of false positives since it
forces an abnormally large window. In the multi-tag case, a similar
reading results in an overly large contribution to the overall count
estimate, and thus a large over-estimation error.

To alleviate the effects of lowpi,ts produced by mobile tags, we
enhance SMURF with a pre-processing stage that recognizes mo-
bile tags that are exiting the detection range and reacts accordingly.
This stage, termedmobile tag detection, monitors individual tag
pi,ts, and attempts to determine when low detection probabilities
are caused by an exiting mobile tag (as opposed to a static remote
tag, which should force a large window). Mobile tag detection uses
a simple heuristic: tags that are read with consistently fallingpi,ts
are likely to be moving away from the reader and, thus, may be ex-
iting the detection range soon. Such readings with lowpi,t values
are filtered away by SMURF’s mobile tag detector.

SMURF’s mobile tag detection algorithm forms a best-fit line
using least squares fitting with the observedpi,ts in the window.
Using the slope of this line (in units of

∆pi,t

epochs
), SMURF calculates

a filter threshold asfilterThresh = ε−slope∗wmd. This thresh-
old is a value ofpi,t for which it is estimated that thepi,t for the tag
will drop below some valueε in the nextwmd epochs, wherewmd

is wi in the per-tag case andw in the multi-tag case. The reason the
algorithm looks aheadwmd epochs is intuitive: the larger the win-
dow the greater the potential for false positives if the tag exits; thus,
SMURF more aggressively filters readings when the window size is
large. Usingε = 0 yields a good indication of whether the tag will
be exiting the detection range soon. Mobile tag detection filters all
readings for mobile tags whosepi,ts fall below this threshold, thus
preventing such readings from adversely influencing the window
size calculation or count estimation.

5. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate SMURF’s data clean-

ing techniques. For both per-tag and multi-tag cleaning, we illus-
trate two key points: (1) there is no single static window that works
well in the face of fluctuating tag movement, reader unreliability, or
both; and, (2) across a range of environments with different levels
of tag movement and reader unreliability, SMURF cleaning tech-
niques produce an accurate stream of readings (both individual tag
IDs and counts) describing tags in the physical world.

5.1 Experimental Setup
In order to run experiments across a wide variety of scenarios,

we built a data generator to produce synthetic RFID streams given
realistic configurations of tags and readers.

Reader Detection Model. The data generator is based on RFID
reader detection regions as observed in our tests described in Sec-
tion 2. We simplify a reader’s detection field to derive a model of
RFID readers as shown in Figure 4.

The model uses the following parameters to capture a wide vari-
ety of reader behavior under different conditions:

• DetectionRange: the distance in feet from the reader to the
edge of the reader’s detection range.

• MajorPercentage: the percent of the reader’s overall detec-
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Figure 4: Reader model and tag behavior for the RFID data
generator

tion range that is the major detection region.

• MajorReadRate: the read rate (i.e., the probability of detec-
tion) of a tag within the major detection region. The read rate
in the minor detection region drops off linearly to the end of
the reader’s detection range.

Tag Behavior. We randomly placeNumTags tags uniformly be-
tween 0 and 20 feet from the reader along its central axis. Here we
have detailed data describing the read rate of the readers along this
axis as described in Section 2. By moving the tags along this axis,
we can generate readings withpi,ts corresponding to many types
of movement. For instance, thepi,ts of readings produced by a tag
passing through an RFID-enabled door can be generated by mov-
ing a tag from outsideDetectionRange to directly in front of the
reader, and then back to outsideDetectionRange.

Tags move between 0 and 20 feet following one of two behaviors
representative of a range of RFID applications:

1. Pallet: All tags have the same velocity. This simulates
grouped tags, such as tagged items on a pallet.

2. Fido: Each tag chooses a random initial velocity (uniform
between 1 and 3 feet/epoch). Note that the average ve-
locity, 2 feet/epoch, is roughly equivalent to conveyor-belt
speed [28]. Every 100 epochs, on average, each tag switches
from a moving state to a resting state (and vice versa). When
a tag resumes movement, it chooses another random velocity
between 1 and 3 feet/epoch. This behavior simulates
tracking environments such as a digital home, where each
tag displays independent random behavior.

Data Generation.We run the generator forNumEpochs epochs.7

At each epoch, the generator determines which tags are detected
based on the read rate at each tag’s location relative to the reader. It
then produces a set of readings containing a tag ID, epoch number,
and the tag’spi,t (the read rate at which the reader read the tag).
Additionally, the generator produces the set of all tags within the
reader’s detection range at each epoch to serve as the reality against
which we compare the output of each cleaning mechanism.

Table 2 summarizes the experimental parameters we use to pro-
duce our synthetic RFID data traces. We manipulate the other pa-
rameters as part of our experiments. The settings for the RFID
detection model were chosen as they represent the average of the
reader/tag combinations we profiled. Recall from Section 2 the av-
erage read rate drops to around 0.8 with multiple tags in the reader’s
detection field; we setMajorReadRate to reflect this behavior.

Smoothing Schemes.We clean the data produced by the generator
using SMURF as well as various sized static smoothing window
schemes. We denote each fixed-window scheme asStatic-x, where
x is the size of the window in epochs (1 epoch≈ 0.2 seconds).

5.2 Per-Tag Cleaning
7To eliminate effects caused by the start or end of the trace, we run the generator for an
additional 300 epochs and omit the first and last 150 epochs from our measurements.

Parameter Value
DetectionRange 15 feet
MajorReadRate 0.8
MajorPercentage varied
NumTags 25 (per-tag), 100 (multi-tag)
V elocity varied
NumEpochs 5000 epochs

Table 2: Experimental parameters

The first set of experiments examine cleaning techniques that
report individual tag ID readings. We analyze the performance of
different cleaning schemes as the environment changes in terms of
tag movement and reader reliability.

Our evaluation metric for per-tag cleaning is average errors
per epoch. An error is a reading that indicates a tag exists when
it does not (a false positive), or a (lack of) reading where a
tag exists, but is not reported (a false negative). The average
errors per epoch is calculated as

PNumEpochs
j=1 (FalsePos-

itivesj + FalseNegativesj)/NumEpochs. This metric captures
both types of errors in one metric that allows us to easily compare
the effectiveness of each scheme.
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Figure 5: Average errors per epoch asMajorPercentage varies
from 0 to 1 with tags following Fido behavior.

Experiment 1: Varied Reader Reliability. In the first tests, we
determine how each technique reacts to different levels of reader
unreliability. We move tags usingFido behavior and vary the major
detection region percentage. At each value forMajorPercentage

between 0 and 1, we measure the average errors per epoch produced
by each scheme (recall that a lower value forMajorPercentage

corresponds to a more unreliable environment). Figure 5 shows the
results of this experiment.

As can be seen, when the major detection region percentage is
0 (a noisy environment), the large windows do comparatively well,
producing around 4 errors per epoch (i.e., misreporting about 4 tags
out of 25 per epoch, on average). We truncate the traces forraw and
Static-2due to their poor performance. AsMajorPercentage in-
creases, the accuracy of all schemes improves due to more reliable
raw data. When the major detection region makes up the entire de-
tection field (MajorPercentage = 1), the small windows are com-
petitive; Static-2misreports slightly more than 1 tag out of 25 per
epoch, on average.

In this experiment, SMURF cleaning has the lowest errors per
epoch across the entire range of environments. Its relative perfor-
mance is particularly good in this case because of its partitioned
smoothing: it adapts, on a per-tag basis, to each tag’s independent
random behavior. Static windowing schemes that use a single win-
dow for all tags cannot capture this variation.
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Figure 6: A 200 epoch trace of different cleaning mechanisms cleaning the readings from a single tag moving withFido behavior.

To further investigate the mechanisms behind each smoothing
scheme, we drill-down on a 200 epoch trace of this experiment.
We focus on readings produced from a single tag ID in a noisy
environment: the major detection region percentage is set to 0 (the
left-most x-value in Figure 5). The readings produced by the tag
in this scenario are particularly challenging to clean as the data are
highly unreliable and the tag sporadically moves at a high velocity:
a smoothing scheme must be able to discern between periods of
dropped readings and periods when the tag is transiently absent.

Figure 6 shows this time-line. The top subsection of the figure
shows the tag’s distance relative to the reader: the tag moves with
a high velocity for a period, stops (at point A) for a period at the
edge of the detection field, and then resumes movement. The mid-
dle subsection of the graph shows reality (e.g., the readings that
would have been produced by a perfect reader), readings produced
by the best two static window smoothing schemes (according the
Figure 5), and the output of SMURF. The bottom subsection shows
SMURF’s window size over the course of the trace.

During the first period, the tag rapidly moves in and out of the
detection field; the challenge for any smoothing scheme is to accu-
rately capture this movement. Both static windows, however, fail to
capture all of the tag’s transitions. In the worst case,Static-25con-
tinuously reports the tag as present. Of course, smaller windows
would catch these transitions, but would perform worse during the
second phase of this trace.

At point A, the tag stops at the edge of the detection range, caus-
ing the reader to infrequently report the tag.Static-10fails to report
the tag’s behavior due to lack of readings: according toStatic-10,
the tag is still moving.Static-25accurately reports the tag’s pres-
ence only because it reports the tag’s existence continuously.

SMURF, in comparison, captures the high-level behavior of the
tag during the entire trace. During the first phase of tag movement,
it keeps its window size small, as can be seen at the bottom of the
figure, and accurately reports that the tag is moving; it succeeds
at catching all transitions. Once the tag stops, SMURF grows its
window in reaction to the unreliable readings it receives during this
period. Thus, SMURF accurately reports the tag as present despite
the severe lack of readings.8

Experiment 2: Varied Tag Velocity. Next, we measure each
scheme’s effectiveness as the tag velocity changes. We fix the
MajorPercentage at 0.7 (representing a controlled environment)
and move tags withPallet behavior. At each velocity from 0 and 2
feet/epoch, we measure the average errors per epoch produced by
each scheme. Figure 7 shows the results of this experiment.

The results illustrate the challenge in setting a static smoothing

8Note that there is a short period just after point A where all schemes fail to report
the tag while it exists. During this period, the reader produces no readings; no scheme
without foreknowledge of the tag’s motion can report the tag before it is read.
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Figure 7: Average errors per epoch as tag velocities vary from
0 to 2 feet/epoch followingPallet behavior.

window. As we increase the tag velocity, there is no single static
window that does consistently well.Static-25andStatic-10do well
when the tags are motionless by eliminating many of the dropped
readings (they miss less than 1 tag out of 25 every other epoch, on
average). As the tags speed up, however, the performance of the
large windows degrade due to many false positives. The reason
the errors for the two large windows drop at higher velocities is
because at that point they continuously report all tags as present.
Thus, while they produce a large number of false positives, they
produce no false negatives.

On the other hand, the smaller windows (Static-2andStatic-5),
aren’t able to fully compensate for lost readings. As the tag veloc-
ity increases, these schemes become comparatively better by filling
in some of the missed readings without producing many false pos-
itives. Static-5, however, performs poorly at high tag speeds due
to false positives. In a deployment where tags move with different
velocities or change velocities over the course of time, an applica-
tion cannot set a single static smoothing window that captures the
variation in tag movement to provide accurate data.

SMURF, in contrast, consistently performs well as the tags in-
crease speed. When the tags are motionless, it removes many of the
false negatives and is competitive with the large window schemes.

As the tags increase velocity, SMURF is able to generally track
the best static window. At low velocities, SMURF does well, but
not as well asStatic-5. Here, tags are not moving fast and thus
mobile tag detection has little effect. As a result, SMURF’s bino-
mial sampling scheme occasionally sets its window too large: it
produces roughly twice as many false positives asStatic-5. As the
tags speed up, however, mobile tag detection filters readings from
tags that are exiting and thus reduces the false positives. At a tag
velocity of 1 foot/second, both SMURF andStatic-5show similar
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increases in false negatives, but SMURF produces only 2/3rds the
false positives asStatic-5.

At the highest velocities,Static-2performs better than SMURF.
Here, the tag velocity is approaching a fundamental limitation for
any detection scheme: if the time between transitions is smaller
than the window size, then the transition will be lost. In our setup,
at 2 feet/epoch the time between transitions is 5 epochs. Thus,
for a smoothing scheme to be able to detect a transition, the win-
dow size must be set smaller than 5 epochs. In this experiment
(MajorReadRate = 0.8,MajorPercentage = 0.7), SMURF uses
an average window size (without transition detection or mobile tag
detection) ofd ln(1/δ)

p
avg
i

e = d ln(1/0.05)
0.68

e = 5. Thus, the tag velocity in

this case is at SMURF’s limit; transition detection and mobile tag
detection prevent it from breaking down completely.

Experiment 3: Experiences with Real RFID Data. The previ-
ous experiments were based on a generator that created RFID data
based on a simple model. Of course, real-world RFID data does
not follow this model exactly. Here we describe our experiences
with real RFID data and the performance of cleaning mechanisms
on this data. First, we collect real RFID data under varying cir-
cumstances and examine how it differs from the model used in our
generator. Second, we show that SMURF’s cleaning techniques are
robust to any discrepancies.

For these experiments, we recreate the conditions used in Exper-
iment 2 through an RFID testbed deployed in the controlled envi-
ronment from Section 2 using an Alien reader [3] and a single Alien
“I2” [4] tag suspended in the same plane as the antenna. We gather
data using tag velocities ranging from 0 to 2 feet/epoch. For the
motionless tag test, we average results from data collected every
0.5 feet from 0 to 15 feet (the reader’s detection range is approx-
imately 15 feet). For the mobile tag tests, we move the tag back
and forth between 0 and 20 feet from the reader. For tag velocities
we are unable to produce in our testbed (1.5 and 2 feet/epoch) we
collect data at lower velocities and then speed up the data traces.
All runs are performed for 2000 epochs (≈ 400 seconds). Addi-
tionally, we collect limited traces from two reader positions in the
noisy environment, differing by≈ 5 feet.

During the course of these experiments, we discovered that real
RFID data differ from our model in two main ways. First, if the
reader is deployed near obstacles (e.g., walls), its detection field
does not follow the same shape as seen in all other positions: it
is much more irregular. The detection field for a reader deployed
close to a wall and metal desks, for instance, has multiple high
and low detection regions. Such behavior argues for an adaptive
approach to data cleaning: very small changes in the environment
can cause dramatic changes in RFID reader and thus necessitates
changes to any static windowing scheme.

Real RFID data differ from our model in another important way:
the reader occasionally produces many more or many less readings
than expected based on the reportedpi,t. For instance, the reader
occasionally produces many readings with a very lowpi,t (e.g.,
0.1) in a window; SMURF is robust to such cases. In rare cases, a
tag statically placed at very specific distances relative to the reader
(e.g.,≈ 12 feet± 2 inches for one of the reader positions) will
cause the reader to occasionally produce only one reading in 5-10
epochs, but report thepi,t of the reading as greater than 0.8. Based
on thispi,t, it is expected to see roughly 8 readings in a window
of 10 epochs. In such cases, the SMURF algorithm mistakenly
signals a transition and shrinks the window, causing many false
negatives (e.g., 12% dropped readings versus 10% forStatic-10and
2% for Static-25). As such behavior occurs rarely and only in very
specific locations with static tags, we do not expect this to be a

problem in practice. If necessary, theδ parameter can be used to
help alleviate the effects of these types of readings: by settingδ to
0.01, the dropped readings are reduced to 6%.

Finally, our tests confirm our two key points. Across the differ-
ent speeds and environments, there is no single static window that
works uniformly well. At high speeds in the controlled environ-
ment,Static-2works very well, while it falters at slow speeds and
in the noisy environment. On the other hand,Static-25works very
well with a motionless tag, but performs poorly when the tag starts
moving. In contrast, SMURF handles all of these cases well. When
the tag moves fast in the controlled environment, it closely follows
Static-2while at the same time competing withStatic-25when the
tag is motionless. On average, SMURF performs the best: for in-
stance, in the controlled environment, SMURF averages 0.05 er-
rors per epoch, compared to 0.06 forStatic-2andStatic-5, 0.14 for
Static-10, and 0.18 forStatic-25. We omit detailed results due to
space considerations.

Due to the difficulty in running controlled experiments with
RFID technology, the remainder of the experiments we use
synthetic data streams.

5.3 Multi-tag Aggregate Cleaning
As stated in Section 4.3, many applications only need a count

of the tagged items in the area. Here we compare techniques for
accurately counting the number of tags in a reader’s detection field.

We show the same static windowing schemes as the previous
experiments (Static-2, Static-5, Static-10, Static-25). For count ag-
gregates, these schemes use the equivalent of a windowed count
distinct operation. For SMURF processing, we show two versions,
as outlined in Section 4.3: SMURF with per-tag cleaning with sum-
mation (σ-SMURF) and SMURF usingπ-estimators (π-SMURF).

As π-SMURF cannot produce individual tag readings, we
change our evaluation metric to root-mean-square error (RMS
error) of the count of reported tags compared to reality.

Experiment 4: Varied Reliability and Tag Velocity. We test the
accuracy of the counts produced by each scheme as either the level
of tag movement or unreliability increases. We run the same tests
as Experiments 1 and 2, but with more tags (100), and measure the
RMS error of each scheme’s output compared to reality.

To determine the count accuracy of different schemes as the tag
velocity increases, we run a similar test to Experiment 2. We set
MajorPercentage at 0.25 and vary the tag velocity between 0 and
2 feet/epoch usingPalletbehavior. We show the results in Figure 8.
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Figure 8: The RMS error of different cleaning schemes count-
ing 100 tags moving at increasing velocities.

In most cases, bothσ-SMURF andπ-SMURF are more accurate
than any static window.π-SMURF does particularly well here due
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to its unbiased nature.σ-SMURF, however, suffers from under-
counting. To illustrate, we also measure the mean error of the count
estimates (a measure of the bias of an estimator). At a tag velocity
of 1 foot/epoch, for example,σ-SMURF has an mean error of -6.5,
indicating an under-count of 6.5 items, on average.π-SMURF,
in comparison, only has a mean error of -0.3: on expectation,π-
SMURF provides accurate estimates.

To determine how each scheme performs as the level of relia-
bility changes, similar to Experiment 1, we move tags usingFido
behavior and vary the major detection region percentage. At each
value ofMajorPercentage, we measure the error of each scheme.
Here, bothσ-SMURF andπ-SMURF are competitive with the best
static window (results omitted due to space considerations).

Experiment 5: Tracking Counts in a Dynamic Environment.
Here we illustrate how different multi-tag cleaning schemes re-
act as conditions change over time. We simulate tag movement
and reader characteristics typical of a warehouse scenario over the
course of 15000 epochs. In this scenario, an application monitors
the count of 100 tags placed together on a pallet as it travels through
the warehouse in three phases (as depicted at the top of Figure 9):

1. Shelf: In the first phase, the pallet is motionless on a
shelf. Due to interference from the shelf and other tags in the
vicinity, the read rate is low: we setMajorReadRate to 0.5 and
MajorPercentage to 0.5.

2. Forklift : After 5000 epochs, a forklift picks up the pallet and
begins moving. Here, there is less reader interference due to other
tags or obstructions, but the forklift reduces the major detection
region (MajorReadRate = 0.8, MajorPercentage = 0.25). We
simulate the forklift’s motion by moving the tags at 0.5 feet/epoch.

3. Conveyor Belt: In the final phase, we simulate the pallet trav-
eling on a conveyor belt. Here, the reader environment is controlled
to reduce unreliability (MajorReadRate = 0.8,MajorPercentage

= 0.7). The tags, however, move very fast (2 feet/epoch).
These three phases simulate realistic conditions in terms of tag

and reader behavior. Any cleaning scheme should be able to handle
all of these conditions to produce accurate readings describing the
count of items on the pallet as it moves through the warehouse.

We clean the data produced by the tags on the pallet using dif-
ferent schemes and measure the RMS error during each phase as
shown in the middle subsection of Figure 9. Additionally, we in-
clude a trace of a 100-epoch sliding window of the RMS error for
each scheme to illustrate how accuracy changes over time.

When the pallet is on the shelf, the raw data (not shown) is very
poor (reporting less than 20 tags out of 100 per epoch on aver-
age). To clean this data, a large window must be used: with either
counting technique, SMURF provides a stream of count readings
that are competitive withStatic-25, the largest static window (of
course, larger windows would do better here, but we omit them due
to poor performance during the remainder of the experiment). The
bottom portion of the figure shows the trace of a 100 epoch moving
average of the window size set byπ-SMURF. During the period
when the tags are motionless,π-SMURF sets its window large to
compensate for the unreliability of the reader.

Once the tags start moving, both SMURF techniques adjust their
window sizes to balance unreliability and tag movement to outper-
form all static window schemes.

Finally, when the tags are moved very fast in a controlled envi-
ronment,π-SMURF does particularly well as it drastically reduces
its window size in reaction to the tags’ movement while usingπ-
estimators to avoid under-counting with such a small window.

As can be seen, there is no single static window that the ware-
house monitoring application case use to provide accurate counts
in this scenario. Using SMURF, in contrast, the application can get

accurate readings throughout the pallet’s lifetime without setting
the smoothing window size.π-SMURF further refines its accuracy
by providing an unbiased estimate.

6. RELATED WORK
Many commercial RFID middleware solutions contain config-

urable filters to process data produced by RFID readers [9, 20, 24,
33]. Many of these platforms explicitly incorporate data smooth-
ing as a solution to RFID unreliability. None of these systems,
however, provide any guidance for setting the size of the smoothing
window. SMURF is designed to be incorporated into an RFID mid-
dleware system to provide self-tuning smoothing without requiring
the application to set this parameter. As a result, these systems
become simpler to deploy and produce more reliable data.

Several projects have explored simple techniques to clean RFID
data, typically based on fixed-window smoothing. In one paper,
the authors identify the trade-off between smoothing the data and
capturing the temporal variation but provide no real solutions [18].
In previous work, we recognize the need to clean RFID data and
use an approach based on declarative continuous queries [19, 21,
22]. We show smoothed RFID data using different sized windows,
but do not address how to choose the best size.

The idea of using probabilistic models for sensor measurements
has been explored in earlier work [15]; still, our work is the first to
apply statistical techniques for adaptive RFID data cleaning. Fur-
thermore, this scheme relies on learning and maintaining many
fairly heavyweight multi-dimensional Gaussian models; our tech-
niques rely on simple, non-parametric sampling estimators. Ex-
ploring interactions between the two approaches is an interesting
area for future work.

Adaptive filtering has been studied in digital signal processing
in wide-ranging contexts such as image analysis and speech pro-
cessing [27]. Especially applicable are nonlinear digital filters,
which are designed to capture transitions in the signal. For instance,
AWED [27] adapts the size of a smoothing window for cleaning
noisy images using a multi-phase approach involving smoothing
and edge detection that inspired the basic SMURF design.

7. CONCLUSIONS AND FUTURE WORK
While RFID technology holds much promise, the unreliability

of the data produced by RFID readers is a major factor hindering
large-scale deployment. Specifically, RFID readers suffer from low
read rates, frequently failing to read tags that are present.

Current solutions to correct for missed readings using static
smoothing filters are not adequate. Such filters require the
application to set a static window size, incurring overhead for
initial configuration: the window size must be set considering
complex factors such as environmental conditions that affect RF
signals and the range of expected tag behaviors. A more serious
issue, however, is that a single smoothing window size cannot both
compensate for missed readings while capturing the dynamics of
tag motion. Thus, readings produced by smoothing filters using
static windows do not accurately represent physical reality.

SMURF, in contrast, is a declarative, adaptive smoothing filter
for RFID data. It does not require the application to set a smooth-
ing window size: it automatically adapts its window size based on
the characteristics of the underlying data stream. SMURF produces
more reliable data streams by successfully balancing the tension be-
tween compensating for missed readings and capturing tag motion.

The key insight behind SMURF is its view of RFID data streams
as a random sample of the tags in the physical world. Using this in-
sight, SMURF incorporates techniques from sampling theory, such
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Figure 9: A simulated pallet moving through three phases in a warehouse: shelf, forklift, conveyor belt.

as binomial sampling andπ-estimators, to guide cleaning opera-
tions in a principled, statistical manner.

As part of our ongoing work, we are exploring multiple direc-
tions for extending SMURF’s statistical framework. In this paper,
we focused on cleaning data from a single RFID reader or a collec-
tion of logically equivalent readers. Current work involves apply-
ing SMURF’s statistical model-based approach to clean readings
from multiple readers across space. Another area of exploration
is using SMURF’s statistical mechanisms with data produced by
other types of sensing devices. For instance, SMURF can useπ-
estimators to clean data produced by sensor networks.

In order for RFID technology to become feasible, RFID mid-
dleware must be able to produce reliable streams describing the
physical world without incurring high overhead in terms of config-
uration and maintenance. SMURF is a significant step in this di-
rection: RFID middleware incorporating SMURF are substantially
easier to deploy and maintain and provide more reliable data.
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