
Distortion Estimation Techniques in Solving Visual
CAPTCHAs

Gabriel Moy, Nathan Jones, Curt Harkless, and Randall Potter
Areté Associates

Sherman Oaks, CA 91403
Email: {moy,jones,harkless,potter}@arete.com

Abstract— This paper describes two distortion estimation tech-
niques for object recognition that solve EZ-Gimpy and Gimpy-r,
two of the visual CAPTCHAs (“Completely Automated Public
Turing test to tell Computers and Humans Apart”) with high
degrees of success. A CAPTCHA is a program that generates and
grades tests that most humans can pass but current computer
programs cannot pass. We have developed a correlation algorithm
that correctly identifies the word in an EZ-Gimpy challenge
image 99% of the time and a direct distortion estimation
algorithm that correctly identifies the four letters in a Gimpy-r
challenge image 78% of the time.

I. INTRODUCTION

Many computer vision applications rely on accurate object
recognition for success. While there is no unifying object
recognition technique, it is important to advance strategies to
take care of specific problems such as accounting for noise
from the addition of background clutter and distortions. Visual
CAPTCHAs like EZ-Gimpy (Fig. 1) and Gimpy-r (Fig. 2)
are good examples of simple objects with background clutter
and distortions. Manuel Blum’s group at Carnegie Mellon
University describes different CAPTCHAs based on visual or
audio information at http://www.captcha.net [1].

The visual CAPTCHAs include the Gimpy family of tests,
Bongo, and Pix. Gimpy involves identifying three of approx-
imately seven distinct words in an image. EZ-Gimpy is a
simpler version that only uses one word, while Gimpy-r has
four random letters. The audio CAPTCHA, Sounds, is an
audio version of Gimpy. A sequence of letters or words is
rendered, distorted, then played. The test is to determine the
contents of the sound clip.

In both EZ-Gimpy and Gimpy-r, the user is presented with
a 290 pixel × 80 pixel JPEG image and prompted to enter a
“guess” as to what word or sequence of letters is shown. The
letters in EZ-Gimpy are from one font, and the background
clutter can consist of white noise, a grid, or other patterns
such as swirls. The letters in Gimpy-r are from two fonts, and
the background clutter is mostly different colored distortion
patterns such as boxes, waves, and ripples.

Visual CAPTCHAs are used to prevent spammers from
performing automated techniques in acquiring free email ac-
counts from sites such as Yahoo and to stop automated ticket
purchases from Ticketmaster. Furthermore, any program that
passes the tests generated by a CAPTCHA can be used to
solve a hard unsolved AI problem [2]. We take on the problem
of EZ-Gimpy and Gimpy-r not only to show that they are

Fig. 1. Three EZ-Gimpy challenge images.

ineffective deterrents but also to advance the progress on AI
problems.

The EZ-Gimpy test uses a dictionary of 561 words while
the Gimpy-r test uses a set of four random letters from a
dictionary of 19 letters. The approaches we use to solve EZ-
Gimpy at a 99% level and Gimpy-r at a 78% level add to our
collection of object recognition tools. The strategies consider
the specific problems of cluttered backgrounds and distorted
letters, but do not take into account other issues such as sight
angle, lighting effects, context, and camouflage. In the case
of EZ-Gimpy, we use a whole object recognition approach
against each object in the dictionary, since the dictionary
is relatively small. Our approach is very different from the
bigram approach of Mori and Malik [4] or the chamfer
matching approach of Thayananthan, et. al, [7] each of which
achieve a 93% success rate. With Gimpy-r, the dictionary has
194 = 130, 321 entries. A comparison to each entry would
be too time consuming, so we break down the problem into
four individual letter recognition problems. Neither the holistic
nor individual letter approach to word recognition is new.
Madhvanath and Govindaraju [3] have used a holistic approach
in handwriting recognition, while Plamondon and Srihari [5]
present a survey of holistic and segmented approaches for
handwriting recognition.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

Fig. 2. Three Gimpy-r challenge image.

Section II describes our correlation algorithm for solving
EZ-Gimpy. Section III describes our distortion estimation
algorithm for solving Gimpy-r. We discuss our conclusions
in Section IV.

II. MATCHING WHOLE OBJECTS BY CORRELATION

Given a small set of template images, such as those in EZ-
Gimpy, we are able to test the challenge image against each
of the template images. Instead of trying to deduce which
individual letters are in the challenge image, we find the best
correlated template image. Our distortion estimation with cor-
relation approach uses what we call a “core” and “minipatch”
framework. In each template image, we identify 3 cores and 24
minipatches. We use variations of the cores and minipatches
to estimate distortions and then find which distorted template
image best correlates to the challenge image.

A. Cores

We define a core as an area that is most distinct, i.e., least
correlated with the rest of the image. Given an image that is
290 pixels × 80 pixels, we choose a circular core with a 16
pixel diameter. We compare each possible 16 pixel disc with
every other 16 pixel disc and find the three least correlated
sections that do not overlap. These cores represent the most
distinctive features of the word (Fig. 3) and will be the anchor
points between the template and challenge image.

B. Minipatches

We next split the template word into 24 small overlapping
sections, which we call minipatches (Fig. 4). Starting from the
original minipatch, we create five rotated versions. With the
five rotations, we independently shrink or stretch the minipatch
in the X and Y directions, giving 45 variations per minipatch.
We also keep track of the core positions with respect to
the minipatch positions. The variations on the minipatches
represent the types of distortions encountered. If larger ranges

Fig. 3. The three cores of two template images.

Fig. 4. A template image split into 24 minipatches.

of distortions need to be estimated, we would use a larger set
of minipatches with more variations, with the side effect of
increased execution time.

C. Matching

Given a challenge image, we go through multiple steps to
arrive at a metric of correlation to the template images. The
steps are as follows:

• Background removal
• Template core anchoring onto the challenge image
• Optimal minipatch placement and correlation calculation

We now discuss each of these steps in detail.
1) Background removal: Given the nature of background

clutter, we are able to remove the background to a great
extent without losing the important information, in this
case, the challenge word. Instead of using the intensity
(
√

red2 + green2 + blue2) of each pixel, we use the max-
imum color component (max(red, green, blue)). We then
detect and remove the grid if one exists by looking for a
periodic sequence of lines. Next, we apply a threshold to
the image, keeping all pixels greater than the threshold. We
determine if the image is noisy by looking at the intensity
variance of 64 pixel × 32 pixel sections located at the corners
of the image. If the image is noisy, we apply a thresholding
technique that takes into account the number of neighbors that
are also above the threshold. After this processing, the image
includes the challenge word and small bits of background
noise.

2) Core anchoring: With the clean challenge image, we test
it against the cores and minipatches of each template image.
Starting with the three cores, the best correlated locations are
found (Figs. 5 and 6). We use the original core as well as
independent X and Y stretching or shrinking of the core,
giving nine variations of the core for anchoring. We only use

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

Fig. 5. An easy EZ-Gimpy challenge image showing cores, core anchoring
with two minipatches, and core anchoring with all twenty-four minipatches.
The correct template image is used.

Fig. 6. An easy EZ-Gimpy challenge image showing cores, core anchoring
with two minipatches, and core anchoring with all twenty-four minipatches.
An incorrect template image is used.

nine variations due to execution time issues. Since we know
the relative position of the core to the minipatches, we can
then lay out the set of minipatches.

3) Minipatch placement and correlation calculation: Start-
ing with the best correlated core, we first choose the minipatch
closest to the core location. We compare the 45 different
variations to the core area and find the best correlated mini-
patch with respect to position, rotation, and X and Y stretch
or shrink. This information and the relative location of the
next minipatch are used to lay out the remaining minipatches,
starting from the minipatches closest to the core and working
outwards. We repeat the same procedure for the other two
cores (Fig. 7). We calculate a correlation for each template,
and the highest correlation across all templates is returned as

Fig. 7. A typical EZ-Gimpy challenge image with an overlay of correct
template cores, and minipatch layouts with one, two, and all twenty-four
minipatches.

the “guess”.

D. Results

Using a dual 2.0GHz Pentium system, the algortihm, im-
plemented in C, processes each challenge image and returns
a guess in approximately 18 seconds. We used a set of 1000
images for development and another set of 1000 images for
testing. There are 15 errors in the training set and 10 errors in
the test set giving a success rate of 99%. The jump in accuracy
is from favorable statistical noise. The core and minipatch
approach is a general approach and not limited to the EZ-
Gimpy problem. We have also applied it to the fingerprint
matching problem with great success.

III. MATCHING SUB-OBJECTS BY DISTORTION

ESTIMATION

The core and minipatch approach compares each template
image with the challenge image. In the case where there is a
very large dictionary and large local distortions, as is the case
with Gimpy-r, the computation time becomes unmanageable.
There are too many templates and minipatch variations to
consider before attaining a guess.

Instead, we use a new multi-stage approach that estimates
the local distortions and then finds the template image with the
lowest average distortion from the challenge image. From the
initial guess, we build confusion matrices in which we apply
a maximum likelihood test to maximize success. Geometric
constraints are exploited to minimize the search space as well
as to differentiate between very similar images.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

Fig. 8. A Gimpy-r challenge image with the background removed.

In the case of Gimpy-r, the challenge image consists of
four sub-images, or letters, chosen randomly from a set of 19
possibilities, giving a dictionary of 194 = 130, 321 entries. We
split the problem into four independent problems each with a
dictionary size of 19. To achieve an 80% success rate for the
set of four letters, we need to have a 95% success rate on each
individual letter.

We discuss each aspect of the multi-stage algorithm below.

A. Mesh generation and global distortion removal

After applying a similar background removal algorithm as
in the core and minipatch approach, we have an image that
contains four letters under a moderate continuous distortion
(Fig. 8). To estimate the distortion in the area of the letters, we
first slice each letter into eight horizontal slices by creating an
18 node (2 wide × 9 high) mesh whose right and left borders
follow a path that is equidistant from the neighboring letters
(Fig. 9). The equidistant measure is measured with respect to
the whole letter and not just along the horizontal axis. The top
and bottom borders are horizontal lines at the maximum and
minimum height of the letter, respectively.

Special cases occur at the leftmost and rightmost edges.
The left half of the first letter is undistorted, so the left mesh
border for the first letter is a straight line. For the rightmost
edge, we place an imaginary vertical bar a few pixels away
from the end of the fourth letter as the “fifth” letter and use
the equidistant path from the fourth and phantom fifth letter
as the mesh border.

Stretching the borders to a rectangle circumscribed by the
widest nodes and linearly interpolating the letter removes most
of the distortion. The mesh generation and stretching are
repeated for each of the letters (Fig. 10). This method of border
generation and distortion removal uses the ideal assumption
that the letter shapes on either side of the border are mirror
images of each other.

B. Local distortion estimation

Under the application of a continuous distortion, the topo-
logical features of loops and intersections remain loops and
intersections. Using this feature, we split our dictionary into
letters that contain a loop (‘a’, ‘b’, ‘d’, ‘e’, ‘g’, ‘o’, ‘p’, ‘q’)

Fig. 9. The mesh nodes for each letter in a Gimpy-r challenge image.

Fig. 10. An undistorted and rescaled gimpy-r challenge image.

and letters that do not contain a loop (‘c’, ‘f’, ‘h’, ‘m’, ‘n’,
‘r’, ‘s’, ‘t’, ‘w’, ‘y’, ‘z’).

After rescaling the template letters and challenge letter to
40 pixel × 40 pixel images, we compare the challenge letter
against the appropriate sub-dictionary and find the minimum
distortion necessary to get from the template image to the
challenge image (Figs. 11 and 12). To calculate the distortion,
we obtain an ordered list of border points for both the
challenge letter and template letter and subsequently find the
matching that minimizes border differences. The list of border
points are the x and y coordinates of points along the border of
the letter. Thus, we let the template and challenge letter border
points be denoted as t = Rm×2 and c = Rn×2, respectively.
The distortion metric for a specific template and starting point
is defined as

min
lε[0,m−1]

1
m

m−1∑

k=0

‖t((k + l) MOD m) − c(k ∗ n

m
)‖2

where c(k ∗ n/m) is the linear interpolation between points
c(�(k ∗ n

m)�) and c(�(k ∗ n
m)�), and l defines the starting point

of the template border points. In other words, the distortion
metric is the average magnitude of the vectors needed to
change the template letter border to the challenge letter border.

The template with minimum distortion is our guess of which

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

Fig. 11. Distortion needed to go from the template ‘q’ to challenge ‘q’.

Fig. 12. Distortion needed to go from the template ‘o’ to challenge ‘q’.

letter the challenge sub-image represents. While this technique
only yields a 52% success rate on the training database of
564 challenge images, we can use the distortion information to
build confusion matrices (Table I). Confusion matrices tabulate
the “guess” versus the “truth” to obtain a better understanding
of how the algorithm fails.

The confusion matrix shows that the guess can be grouped
into an even smaller subset of letters containing the correct
letter and a handful of incorrect letters. For example, if the
guess is an ‘o’, then the smaller subset is ‘a’, ‘b’, ‘d’, and
‘o’. Curiously, the confusion matrices are non-symmetric, i.e.,
there are significantly more guesses of a ‘g’ when the truth
is ‘q’ than vice versa. After distortion estimation on the 564
image test database, of which 553 are successfully parsed,
the algorithm successfully identifies all four letters in 294
of the cases and successfully identifies 1883 out of the 2212
individual letters.

Based on the confusion matrix, we apply a maximum

TABLE I

CONFUSION MATRICES

Truth
a b d e g o p q

a 5
G b 3 5
u d 1
e e 3 1 6
s g 2 1 2 80
s o 1 8 11

p 1
q 4

Truth
c f h m n r s t w y z

c 2
f 1 2 4
h 1 1 2 1

G m 1 1
u n 16 1
e r 1 5 2 44 8 4
s s 1 5 1 1 3
s t 30 4 2 1 1

w 1 2 1
y 1 6 1
z 17 16

likelihood rule and exploit geometric properties to finalize the
guess.

C. Maximum likelihood

With the confusion matrix, the initial guess is now an
excellent starting point to decide which letter should be our
final guess. Using the distortion metrics described above, we
perform a maximum likelihood test to improve the success
rate. We consider the difference and magnitude of the distor-
tion metrics between the incorrect guess and the truth. We
maximize the number of correct guesses for each pair of
looped or non-looped letters by testing over two parameters,
α and β, where α is the minimum distortion of the guess
and β is the maximum difference between distortions of the
guess and truth. For example, we look at the pair ‘e’ and ‘p’.
Searching over the space of α and β, we find that if α > 0.5
and β < 0.12, then the guess of ‘e’ should be changed to a
guess of ‘p’. This change would yield 6 more correct answers
while introducing zero wrong answers. Typical α values are
near 0.5 while correct guesses with little distortion have α
values near 0.2. This big difference in distortions tells us that
there was no good guess and the best of the poor guesses was
taken. The correct guess is not too far off, so the number of
correct guesses is maximized with an added bias.

D. Geometric properties

Many of the pairs of letters in the confusion matrix look
somewhat alike, such as (‘h’,‘n’), (‘g’,‘q’), (‘b’,‘o’), and
(‘c’,‘t’). There are some that do not look at all alike, such
as (‘f’,‘w’) and (‘b’,‘g’). For the pair (‘h’,‘n’), we compare
the height of the arch to the height of the whole letter. For the
pair (‘b’,‘o’), we look at the residual after removing the area
surrounding the looped area. For (‘g’,‘q’), the only difference

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

TABLE II

FINAL CONFUSION MATRICES

Truth
a b d e g o p q

a
G b 2 1
u d 2 2
e e
s g 1 8
s o 1

p
q 1 2

Truth
c f h m n r s t w y z

c 1 1 1
f 1 1
h 1 3

G m
u n 1 1
e r 1 2 6 2 2
s s
s t 2 14 3 2 2

w 3 1 2
y 1 1 1
z

is the small tail at the lower right hand corner of the letter, so
we apply a thinning algorithm [6] and look for the branching
in the lower right corner. For (‘c’,‘t’), we look for a branching
in the top half of the letter. We use many of these types of
geometric properties to distinguish pairs of letters to maximize
the number of correct guesses.

Even though there are two fonts used in the challenge
images, we only use one font for our template images. The
major differences in the fonts are ‘g’ versus ‘g’ and that
one font is thicker than the other. Since we calculate the
average amount of distortion it takes to get the border of a
template image to match the border of the challenge image,
the thickness property of letters affects all the template image
distortion metrics fairly uniformly. For the ‘g’ versus ‘g’
ambiguity, if we find two loops in the letter, then we guess
‘g’.

E. Results

We run our multi-stage algorithm on a 2.4GHz PC as an
IDL program. It takes an average of seven seconds to analyze a
challenge image and return a guess. After applying our second
stage to the 564 image test database, we successfully identified
all four letters in 479 of 553 images parsed and 2131 of 2212
individual letters for a success rate of 85%. The image parser
had problems when the background could not be removed well
enough to identify four distinct letters. The final confusion
matrices are shown in Table II.

In a blind test of 736 images obtained from Luis von Ahn of
CAPTCHA.net, our algorithm correctly identified 576 images
for a success rate of 78%. The discrepancy between our test
results and the blind test is due to over-tuning of the maximum
likelihood test.

IV. CONCLUSIONS

We have shown two different distortion estimation tech-
niques for identifying objects in clutter. The correlation ap-
proach works well when there are small distortions with a
small dictionary. Our algorithm has a 99% success rate on
EZ-Gimpy. Anchoring the most distinct part of an image and
working outwards to see how well the pieces fit is an excellent
approach when working with images containing only small
distortions. For more accuracy, there is a tradeoff between
using more core and minipatch variations versus runtime. For
the EZ-Gimpy problem, we chose to use no rotations with
three variations in each of the X and Y directions for the
cores and five rotations with three variations in each of the X
and Y directions for the minipatches to achieve an adequate
success rate and execution time.

The direct distortion estimation approach works well on
images with large continuous distortions. With the 564 image
Gimpy-r training database, our algorithm had an 85% success
rate when used with geometric properties and a maximum
likelihood test. On the 736 image blind test database, our
success rate dropped slightly to 78%. With larger distortions,
we estimate the distortion from the image itself, such as the
path equidistant between letters in the case of Gimpy-r, to
obtain an image closer to the template images.

The distortion estimation algorithms have room for im-
provement, and they are just proof-of-concepts. There are
many optimizations and features available to exploit, such
as global distortion information, other sub-object information
when compiling current sub-object information, or the optimal
number of slices to take per sub-object. As a test, we used
20 slices per sub-object and the baseline distortion estimation
accuracy goes up to 54% while runtime increased to 12
seconds per challenge image.

These approaches are not unique to the Gimpy family of
problems and are specific applications of a more general
toolbox for object recognition.

REFERENCES

[1] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. The CAPTCHA
Web Page: http://www.captcha.net. 2000.

[2] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using
Hard AI Problems for Security. Advances in Cryptology: Eurocrypt
2003, May 2003.

[3] S. Madhvanath and V. Govindaraju. The role of holistic paradigms in
handwritten word recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(2):149-164, February 2001.

[4] G. Mori and J. Malik. Recognizing objects in adversarial clutter –
breaking a visual captcha. Proceedings of the Conference on Computer
Vision and Pattern Recognition, vol. 1, Madison, USA, pp. 134-141,
June 2003.

[5] R. Plamondon and S. N. Srihari. On-line and off-line handwriting
recognition: A comprehensive survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(1):63-84, January 2000.

[6] F.W.M. Stentiford and R.G. Mortimer. Some New Heuristics for Thin-
ning Binary Handprinted Characters for OCR. IEEE Transactions on
Systems, Man, and Cybernetics, 13(1):81-84, January/February 1983.

[7] A. Thayananthan, B. Stenger, P. H. S. Torr, and R. Cipolla. Shape
Context and Chamfer Matching in Cluttered Scenes. Proceedings of
the Conference on Computer Vision and Pattern Recognition, vol. 1,
Madison, USA, pp. 127-133, June 2003.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

	footer1:

