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ABSTRACT
Billions of dollars are spent each year on sponsored search,
a form of advertising where merchants pay for placement
alongside web search results. Slots for ad listings are al-
located via an auction-style mechanism where the higher a
merchant bids, the more likely his ad is to appear above
other ads on the page. In this paper we analyze the in-
centive, efficiency, and revenue properties of two slot auc-
tion designs: “rank by bid” (RBB) and “rank by revenue”
(RBR), which correspond to stylized versions of the mech-
anisms currently used by Yahoo! and Google, respectively.
We also consider first- and second-price payment rules to-
gether with each of these allocation rules, as both have been
used historically. We consider both the “short-run” incom-
plete information setting and the “long-run” complete infor-
mation setting. With incomplete information, neither RBB
nor RBR are truthful with either first or second pricing. We
find that the informational requirements of RBB are much
weaker than those of RBR, but that RBR is efficient whereas
RBB is not. We also show that no revenue ranking of RBB
and RBR is possible given an arbitrary distribution over
bidder values and relevance. With complete information,
we find that no equilibrium exists with first pricing using
either RBB or RBR. We show that there typically exists a
multitude of equilibria with second pricing, and we bound
the divergence of (economic) value in such equilibria from
the value obtained assuming all merchants bid truthfully.
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1. INTRODUCTION
Today, Internet giants Google and Yahoo! boast a com-

bined market capitalization of over $150 billion, largely on
the strength of sponsored search, the fastest growing compo-
nent of a resurgent online advertising industry. Pricewater-
houseCoopers estimates that 2004 industry-wide sponsored
search revenues were $3.9 billion, or 40% of total Inter-
net advertising revenues.1 Industry watchers expect 2005
revenues to reach or exceed $7 billion.2 Roughly 80% of
Google’s estimated $4 billion in 2005 revenue and roughly
45% of Yahoo!’s estimated $3.7 billion in 2005 revenue will
likely be attributable to sponsored search.3 A number of
other companies—including LookSmart, FindWhat, Inter-
ActiveCorp (Ask Jeeves), and eBay (Shopping.com)—earn
hundreds of millions of dollars of sponsored search revenue
annually.

Sponsored search is a form of advertising where merchants
pay to appear alongside web search results. For example,
when a user searches for “used honda accord san diego” in
a web search engine, a variety of commercial entities (San
Diego car dealers, Honda Corp, automobile information por-
tals, classified ad aggregators, eBay, etc...) may bid to to
have their listings featured alongside the standard “algorith-
mic” search listings. Advertisers bid for placement on the
page in an auction-style format where the higher they bid
the more likely their listing will appear above other ads on
the page. By convention, sponsored search advertisers gen-
erally pay per click, meaning that they pay only when a user
clicks on their ad, and do not pay if their ad is displayed but
not clicked. Though many people claim to systematically ig-
nore sponsored search ads, Majestic Research reports that

1
www.iab.net/resources/adrevenue/pdf/IAB PwC 2004full.pdf

2
battellemedia.com/archives/002032.php

3These are rough “back of the envelope” estimates. Google
and Yahoo! 2005 revenue estimates were obtained from Ya-
hoo! Finance. We assumed $7 billion in 2005 industry-wide
sponsored search revenues. We used Nielsen/NetRatings es-
timates of search engine market share in the US, the most
monetized market:
wired-vig.wired.com/news/technology/0,1282,69291,00.html
Using comScore’s international search engine market share
estimates would yield different estimates:
www.comscore.com/press/release.asp?press=622



as many as 17% of Google searches result in a paid click, and
that Google earns roughly nine cents on average for every
search query they process.4

Usually, sponsored search results appear in a separate sec-
tion of the page designated as “sponsored” above or to the
right of the algorithmic results. Sponsored search results
are displayed in a format similar to algorithmic results: as
a list of items each containing a title, a text description,
and a hyperlink to a corresponding web page. We call each
position in the list a slot. Generally, advertisements that
appear in a higher ranked slot (higher on the page) garner
more attention and more clicks from users. Thus, all else
being equal, merchants generally prefer higher ranked slots
to lower ranked slots.

Merchants bid for placement next to particular search
queries; for example, Orbitz and Travelocity may bid for
“las vegas hotel” while Dell and HP bid for “laptop com-
puter”. As mentioned, bids are expressed as a maximum
willingness to pay per click. For example, a forty-cent bid
by HostRocket for “web hosting” means HostRocket is will-
ing to pay up to forty cents every time a user clicks on their
ad.5 The auctioneer (the search engine6) evaluates the bids
and allocates slots to advertisers. In principle, the alloca-
tion decision can be altered with each new incoming search
query, so in effect new auctions clear continuously over time
as search queries arrive.

Many allocation rules are plausible. In this paper, we in-
vestigate two allocation rules, roughly corresponding to the
two allocation rules used by Yahoo! and Google. The “rank
by bid” (RBB) allocation assigns slots in order of bids, with
higher ranked slots going to higher bidders. The “rank by
revenue” (RBR) allocation assigns slots in order of the prod-
uct of bid times expected relevance, where relevance is the
proportion of users that click on the merchant’s ad after
viewing it. In our model, we assume that an ad’s expected
relevance is known to the auctioneer and the advertiser (but
not necessarily to other advertisers), and that clickthrough
rate decays monotonically with lower ranked slots. In prac-
tice, the expected clickthrough rate depends on a number
of factors, including the position on the page, the ad text
(which in turn depends on the identity of the bidder), the
nature and intent of the user, and the context of other ads
and algorithmic results on the page, and must be learned
over time by both the auctioneer and the bidder [13]. As of
this writing, to a rough first-order approximation, Yahoo!
employs a RBB allocation and Google employs a RBR allo-
cation, though numerous caveats apply in both cases when
it comes to the vagaries of real-world implementations.7

Even when examining a one-shot version of a slot auc-
tion, the mechanism differs from a standard multi-item auc-

4
battellemedia.com/archives/001102.php

5Usually advertisers also set daily or monthly budget caps;
in this paper we do not model budget constraints.
6In the sponsored search industry, the auctioneer and search
engine are not always the same entity. For example Google
runs the sponsored search ads for AOL web search, with
revenue being shared. Similarly, Yahoo! currently runs the
sponsored search ads for MSN web search, though Microsoft
will begin independent operations soon.
7Here are two among many exceptions to the Yahoo! =
RBB and Google = RBR assertion: (1) Yahoo! excludes
ads deemed insufficiently relevant either by a human editor
or due to poor historical click rate; (2) Google sets differing
reserve prices depending on Google’s estimate of ad quality.

tion in subtle ways. First, a single bid per merchant is used
to allocate multiple non-identical slots. Second, the bid is
communicated not as a direct preference over slots, but as
a preference for clicks that depend stochastically on slot al-
location.

We investigate a number of economic properties of RBB
and RBR slot auctions. We consider the “short-run” incom-
plete information case in Section 3, adapting and extend-
ing standard analyses of single-item auctions. In Section 4
we turn to the “long-run” complete information case; our
characterization results here draw on techniques from lin-
ear programming. Throughout, important observations are
highlighted as claims supported by examples. Our contri-
butions are as follows:

• We show that with multiple slots, bidders do not reveal
their true values with either RBB or RBR, and with
either first- or second-pricing.

• With incomplete information, we find that the infor-
mational requirements of playing the equilibrium bid
are much weaker for RBB than for RBR, because bid-
ders need not know any information about each others’
relevance (or even their own) with RBB.

• With incomplete information, we prove that RBR is
efficient but that RBB is not.

• We show via a simple example that no general revenue
ranking of RBB and RBR is possible.

• We prove that in a complete-information setting, first-
price slot auctions have no pure strategy Nash equi-
librium, but that there always exists a pure-strategy
equilibrium with second pricing.

• We provide a constant-factor bound on the deviation
from efficiency that can occur in the equilibrium of a
second-price slot auction.

In Section 2 we specify our model of bidders and the var-
ious slot auction formats.

In Section 3.1 we study the incentive properties of each
format, asking in which cases agents would bid truthfully.
There is possible confusion here because the “second-price”
design for slot auctions is reminiscent of the Vickrey auction
for a single item; we note that for slot auctions the Vickrey
mechanism is in fact very different from the second-price
mechanism, and so they have different incentive properties.8

In Section 3.2 we derive the Bayes-Nash equilibrium bids
for the various auction formats. This is useful for the effi-
ciency and revenue results in later sections. It should be-
come clear in this section that slot auctions in our model
are a straightforward generalization of single-item auctions.
Sections 3.3 and 3.4 address questions of efficiency and rev-
enue under incomplete information, respectively.

In Section 4.1 we determine whether pure-strategy equi-
libria exist for the various auction formats, under complete
information. In Section 4.2 we derive bounds on the devia-
tion from efficiency in the pure-strategy equilibria of second-
price slot auctions.

Our approach is positive rather than normative. We aim
to clarify the incentive, efficiency, and revenue properties of
two slot auction designs currently in use, under settings of

8Other authors have also made this observation [5, 6].



incomplete and complete information. We do not attempt
to derive the “optimal” mechanism for a slot auction.

Related work. Feng et al. [7] compare the revenue per-
formance of various ranking mechanisms for slot auctions
in a model with incomplete information, much as we do in
Section 3.4, but they obtain their results via simulations
whereas we perform an equilibrium analysis.

Liu and Chen [12] study properties of slot auctions under
incomplete information. Their setting is essentially the same
as ours, except they restrict their attention to a model with
a single slot and a binary type for bidder relevance (high or
low). They find that RBR is efficient, but that no general
revenue ranking of RBB and RBR is possible, which agrees
with our results. They also take a design approach and
show how the auctioneer should assign relevance scores to
optimize its revenue.

Edelman et al. [6] model the slot auction problem both as
a static game of complete information and a dynamic game
of incomplete information. They study the “locally envy-
free equilibria” of the static game of complete information;
this is a solution concept motivated by certain bidding be-
haviors that arise due to the presence of budget constraints.
They do not view slot auctions as static games of incom-
plete information as we do, but do study them as dynamic
games of incomplete information and derive results on the
uniqueness and revenue properties of the resulting equilib-
ria. They also provide a nice description of the evolution of
the market for sponsored search.

Varian [18] also studies slot auctions under a setting of
complete information. He focuses on “symmetric” equilib-
ria, which are a refinement of Nash equilibria appropriate for
slot auctions. He provides bounds on the revenue obtained
in equilibrium. He also gives bounds that can be used to
infer bidder values given their bids, and performs some em-
pirical analysis using these results. In contrast, we focus
instead on efficiency and provide bounds on the deviation
from efficiency in complete-information equilibria.

2. PRELIMINARIES
We focus on a slot auction for a single keyword. In a

setting of incomplete information, a bidder knows only dis-
tributions over others’ private information (value per click
and relevance). With complete information, a bidder knows
others’ private information, and so does not need to rely on
distributions to strategize. We first describe the model for
the case with incomplete information, and drop the distri-
butional information from the model when we come to the
complete-information case in Section 4.

2.1 The Model
There is a fixed number K of slots to be allocated among

N bidders. We assume without loss of generality that K ≤
N , since superfluous slots can remain blank. Bidder i assigns
a value of Xi to each click received on its advertisement,
regardless of this advertisement’s rank.9 The probability
that i’s advertisement will be clicked if viewed is Ai ∈ [0, 1].
We refer to Ai as bidder i’s relevance. We refer to Ri =
AiXi as bidder i’s revenue. The Xi, Ai, and Ri are random

9Indeed Kitts et al. [10] find that in their sample of actual
click data, the correlation between rank and conversion rate
is not statistically significant. However, for the purposes
of our model it is also important that bidders believe that
conversion rate does not vary with rank.

variables and we denote their realizations by xi, αi, and ri

respectively. The probability that an advertisement will be
viewed if placed in slot j is γj ∈ [0, 1]. We assume γ1 >
γ2 > . . . > γK . Hence bidder i’s advertisement will have a
clickthrough rate of γjαi if placed in slot j. Of course, an
advertisement does not receive any clicks if it is not allocated
a slot.

Each bidder’s value and relevance pair (Xi, Ai) is indepen-
dently and identically distributed on [0, x̄]× [0, 1] according
to a continuous density function f that has full support on
its domain. The density f and slot probabilities γ1, . . . , γK

are common knowledge. Only bidder i knows the realiza-
tion xi of its value per click Xi. Both bidder i and the seller
know the realization αi of Ai, but this realization remains
unobservable to the other bidders.

We assume that bidders have quasi-linear utility func-
tions. That is, the expected utility to bidder i of obtaining
the slot of rank j at a price of b per click is

ui(j, b) = γjαi(xi − b)

If the advertising firms bidding in the slot auction are risk-
neutral and have ample liquidity, quasi-linearity is a reason-
able assumption.

The assumptions of independence, symmetry, and risk-
neutrality made above are all quite standard in single-item
auction theory [11, 19]. The assumption that clickthrough
rate decays monotonically with lower slots—by the same
factors for each agent—is unique to the slot auction prob-
lem. We view it as a main contribution of our work to
show that this assumption allows for tractable analysis of
the slot auction problem using standard tools from single-
item auction theory. It also allows for interesting results in
the complete information case. A common model of decay-
ing clickthrough rate is the exponential decay model, where
γk = 1

δk−1 with decay δ > 1. Feng et al. [7] state that
their actual clickthrough data is fitted extremely well by an
exponential decay model with δ = 1.428.

Our model lacks budget constraints, which are an impor-
tant feature of real slot auctions. With budget constraints
keyword auctions cannot be considered independently of one
another, because the budget must be allocated across multi-
ple keywords—a single advertiser typically bids on multiple
keywords relevant to his business. Introducing this element
into the model is an important next step for future work.10

2.2 Auction Formats
In a slot auction a bidder provides to the seller a declared

value per click x̃i(xi, αi) which depends on his true value
and relevance. We often denote this declared value (bid)
by x̃i for short. Since a bidder’s relevance αi is observable
to the seller, the bidder cannot misrepresent it. We denote
the kth highest of the N declared values by x̃(k), and the
kth highest of the N declared revenues by r̃(k), where the
declared revenue of bidder i is r̃i = αix̃i. We consider two
types of allocation rules, “rank by bid” (RBB) and “rank
by revenue” (RBR):

10Models with budget constraints have begun to appear in
this research area. Abrams [1] and Borgs et al. [3] design
multi-unit auctions for budget-constrained bidders, which
can be interpreted as slot auctions, with a focus on revenue
optimization and truthfulness. Mehta et al. [14] address
the problem of matching user queries to budget-constrained
advertisers so as to maximize revenue.



RBB. Slot k goes to bidder i if and only if x̃i = x̃(k).

RBR. Slot k goes to bidder i if and only if r̃i = r̃(k).

We will commonly represent an allocation by a one-to-one
function σ : [K] → [N ], where [n] is the set of integers
{1, 2, . . . , n}. Hence slot k goes to bidder σ(k).

We also consider two different types of payment rules.
Note that no matter what the payment rule, a bidder that
is not allocated a slot will pay 0 since his listing cannot
receive any clicks.

First-price. The bidder allocated slot k, namely σ(k), pays
x̃σ(k) per click under both the RBB and RBR alloca-
tion rules.

Second-price. If k < N , bidder σ(k) pays x̃σ(k+1) per click
under the RBB rule, and pays r̃σ(k+1)/ασ(k) per click
under the RBR rule. If k = N , bidder σ(k) pays 0 per
click.11

Intuitively, a second-price payment rule sets a bidder’s pay-
ment to the lowest bid it could have declared while main-
taining the same ranking, given the allocation rule used.

Overture introduced the first slot auction design in 1997,
using a first-price RBB scheme. Google then followed in
2000 with a second-price RBR scheme. In 2002, Overture
(at this point acquired by Yahoo!) then switched to second
pricing but still allocates using RBB. One possible reason
for the switch is given in Section 4.

We assume that ties are broken as follows in the event
that two agents make the exact same bid or declare the
same revenue. There is a permutation of the agents κ :
[N ] → [N ] that is fixed beforehand. If the bids of agents i
and j are tied, then agent i obtains a higher slot if and only
if κ(i) < κ(j). This is consistent with the practice in real
slot auctions where ties are broken by the bidders’ order of
arrival.

3. INCOMPLETE INFORMATION

3.1 Incentives
It should be clear that with a first-price payment rule,

truthful bidding is neither a dominant strategy nor an ex
post Nash equilibrium using either RBB or RBR, because
this guarantees a payoff of 0. There is always an incentive
to shade true values with first pricing.

The second-price payment rule is reminiscent of the second-
price (Vickrey) auction used for selling a single item, and in
a Vickrey auction it is a dominant strategy for a bidder to
reveal his true value for the item [19]. However, using a
second-price rule in a slot auction together with either al-
location rule above does not yield an incentive-compatible
mechanism, either in dominant strategies or ex post Nash
equilibrium.12 With a second-price rule there is no incen-
tive for a bidder to bid higher than his true value per click
using either RBB or RBR: this either leads to no change

11We are effectively assuming a reserve price of zero, but in
practice search engines charge a non-zero reserve price per
click.

12Unless of course there is only a single slot available, since
this is the single-item case. With a single slot both RBB
and RBR with a second-price payment rule are dominant-
strategy incentive-compatible.

in the outcome, or a situation in which he will have to pay
more than his value per click for each click received, result-
ing in a negative payoff.13 However, with either allocation
rule there may be an incentive to shade true values with
second pricing.

Claim 1. With second pricing and K ≥ 2, truthful bid-
ding is not a dominant strategy nor an ex post Nash equi-
librium for either RBB or RBR.

Example. There are two agents and two slots. The
agents have relevance α1 = α2 = 1, whereas γ1 = 1 and
γ2 = 1/2. Agent 1 has a value of x1 = 6 per click, and agent
2 has a value of x2 = 4 per click. Let us first consider the
RBB rule. Suppose agent 2 bids truthfully. If agent 1 also
bids truthfully, he wins the first slot and obtains a payoff of
2. However, if he shades his bid down below 4, he obtains
the second slot at a cost of 0 per click yielding a payoff of
3. Since the agents have equal relevance, the exact same
situation holds with the RBR rule. Hence truthful bidding
is not a dominant strategy in either format, and neither is
it an ex post Nash equilibrium.

To find payments that make RBB and RBR dominant-
strategy incentive-compatible, we can apply Holmstrom’s
lemma [9] (see also chapter 3 in Milgrom [15]). Under the
restriction that a bidder with value 0 per click does not pay
anything (even if he obtains a slot, which can occur if there
are as many slots as bidders), this lemma implies that there
is a unique payment rule that achieves dominant-strategy
incentive compatibility for either allocation rule. For RBB,
the bidder allocated slot k is charged per click

KX
i=k+1

(γi−1 − γi)x̃
(i) + γK x̃(K+1) (1)

Note that if K = N , x̃(K+1) = 0 since there is no K + 1th

bidder. For RBR, the bidder allocated slot k is charged per
click

1

ασ(k)

 
KX

i=k+1

(γi−1 − γi)r̃
(i) + γK r̃(K+1)

!
(2)

Using payment rule (2) and RBR, the auctioneer is aware
of the true revenues of the bidders (since they reveal their
values truthfully), and hence ranks them according to their
true revenues. We show in Section 3.3 that this allocation
is in fact efficient. Since the VCG mechanism is the unique
mechanism that is efficient, truthful, and ensures bidders
with value 0 pay nothing (by the Green-Laffont theorem [8]),
the RBR rule and payment scheme (2) constitute exactly the
VCG mechanism.

In the VCG mechanism an agent pays the externality he
imposes on others. To understand payment (2) in this sense,
note that the first term is the added utility (due to an in-
creased clickthrough rate) agents in slots k + 1 to K would
receive if they were all to move up a slot; the last term is the
utility that the agent with the K +1st revenue would receive
by obtaining the last slot as opposed to nothing. The lead-
ing coefficient simply reduces the agent’s expected payment
to a payment per click.

13In a dynamic setting with second pricing, there may be an
incentive to bid higher than one’s true value in order to ex-
haust competitors’ budgets. This phenomenon is commonly
called “bid jamming” or “antisocial bidding” [4].



3.2 Equilibrium Analysis
To understand the efficiency and revenue properties of

the various auction formats, we must first understand which
rankings of the bidders occur in equilibrium with different
allocation and payment rule combinations. The following
lemma essentially follows from the Monotonic Selection The-
orem by Milgrom and Shannon [16].

Lemma 1. In a RBB (RBR) auction with either a first-
or second-price payment rule, the symmetric Bayes-Nash
equilibrium bid is strictly increasing with value ( revenue).

As a consequence of this lemma, we find that RBB and
RBR auctions allocate the slots greedily by the true values
and revenues of the agents, respectively (whether using first-
or second-price payment rules). This will be relevant in
Section 3.3 below. For a first-price payment rule, we can
explicitly derive the symmetric Bayes-Nash equilibrium bid
functions for RBB and RBR auctions. The purpose of this
exercise is to lend qualitative insights into the parameters
that influence an agent’s bidding, and to derive formulae for
the expected revenue in RBB and RBR auctions in order
to make a revenue ranking of these two allocation rules (in
Section 3.4).

Let G(y) be the expected resulting clickthrough rate, in
a symmetric equilibrium of the RBB auction (with either
payment rule), to a bidder with value y and relevance α =
1. Let H(y) be the analogous quantity for a bidder with
revenue y and relevance 1 in a RBR auction. By Lemma 1,
a bidder with value y will obtain slot k in a RBB auction
if y is the kth highest of the true realized values. The same
applies in a RBR auction when y is the kth highest of the true
realized revenues. Let FX(y) be the distribution function for
value, and let FR(y) be the distribution function for revenue.
The probability that y is the kth highest out of N values is 

N − 1

k − 1

!
(1− FX(y))k−1FX(y)N−k

whereas the probability that y is the kth highest out of N
revenues is the same formula with FR replacing FX . Hence
we have

G(y) =

KX
k=1

γk

 
N − 1

k − 1

!
(1− FX(y))k−1FX(y)N−k

The H function is analogous to G with FR replacing FX .
In the two propositions that follow, g and h are the deriva-
tives of G and H respectively. We omit the proof of the
next proposition, because it is almost identical to the deriva-
tion of the equilibrium bid in the single-item case (see Kr-
ishna [11], Proposition 2.2).

Proposition 1. The symmetric Bayes-Nash equilibrium
strategies in a first-price RBB auction are given by

x̃B(x, α) =
1

G(x)

Z x

0

y g(y) dy

The first-price equilibrium above closely parallels the first-
price equilibrium in the single-item model. With a single
item g is the density of the second highest value among all
N agent values, whereas in a slot auction it is a weighted
combination of the densities for the second, third, etc. high-
est values.

Note that the symmetric Bayes-Nash equilibrium bid in
a first-price RBB auction does not depend on a bidder’s
relevance α. To see clearly why, note that a bidder chooses
a bid b so as to maximize the objective

αG(x̃−1(b))(x− b)

and here α is just a leading constant factor. So dropping
it does not change the set of optimal solutions. Hence the
equilibrium bid depends only on the value x and function
G, and G in turn depends only on the marginal cumulative
distribution of value FX . So really only the latter needs to
be common knowledge to the bidders. On the other hand,
we will now see that information about relevance is needed
for bidders to play the equilibrium in the first-price RBR
auction. So the informational requirements for a first-price
RBB auction are much weaker than for a first-price RBR
auction: in the RBB auction a bidder need not know his own
relevance, and need not know any distributional information
over others’ relevance in order to play the equilibrium.

Again we omit the next proposition’s proof since it is so
similar to the one above.

Proposition 2. The symmetric Bayes-Nash equilibrium
strategies in a first-price RBR auction are given by

x̃R(x, α) =
1

αH(αx)

Z αx

0

y h(y) dy

Here it can be seen that the equilibrium bid is increasing
with x, but not necessarily with α. This should not be much
of a concern to the auctioneer, however, because in any case
the declared revenue in equilibrium is always increasing in
the true revenue.

It would be interesting to obtain the equilibrium bids
when using a second-price payment rule, but it appears that
the resulting differential equations for this case do not have a
neat analytical solution. Nonetheless, the same conclusions
about the informational requirements of the RBB and RBR
rules still hold, as can be seen simply by inspecting the ob-
jective function associated with an agent’s bidding problem
for the second-price case.

3.3 Efficiency
A slot auction is efficient if in equilibrium the sum of the

bidders’ revenues from their allocated slots is maximized.
Using symmetry as our equilibrium selection criterion, we
find that the RBB auction is not efficient with either pay-
ment rule.

Claim 2. The RBB auction is not efficient with either
first or second pricing.

Example. There are two agents and one slot, with γ1 =
1. Agent 1 has a value of x1 = 6 per click and relevance
α1 = 1/2. Agent 2 has a value of x2 = 4 per click and
relevance α2 = 1. By Lemma 1, agents are ranked greedily
by value. Hence agent 1 obtains the lone slot, for a total
revenue of 3 to the agents. However, it is most efficient to
allocate the slot to agent 2, for a total revenue of 4.

Examples with more agents or more slots are simple to
construct along the same lines. On the other hand, under
our assumptions on how clickthrough rate decreases with
lower rank, the RBR auction is efficient with either payment
rule.



Theorem 1. The RBR auction is efficient with either
first- or second-price payments rules.

Proof. Since by Lemma 1 the agents’ equilibrium bids
are increasing functions of their revenues in the RBR auc-
tion, slots are allocated greedily according to true revenues.
Let σ be a non-greedy allocation. Then there are slots s, t
with s < t and rσ(s) < rσ(t). We can switch the agents in
slots s and t to obtain a new allocation, and the difference
between the total revenue in this new allocation and the
original allocation’s total revenue is`

γtrσ(s) + γsrσ(t)

´
−
`
γsrσ(s) + γtrσ(t)

´
= (γs − γt)

`
rσ(t) − rσ(s)

´
Both parenthesized terms above are positive. Hence the
switch has increased the total revenue to the bidders. If we
continue to perform such switches, we will eventually reach
a greedy allocation of greater revenue than the initial allo-
cation. Since the initial allocation was arbitrary, it follows
that a greedy allocation is always efficient, and hence the
RBR auction’s allocation is efficient.

Note that the assumption that clickthrough rate decays
montonically by the same factors γ1, . . . , γK for all agents is
crucial to this result. A greedy allocation scheme does not
necessarily find an efficient solution if the clickthrough rates
are monotonically decreasing in an independent fashion for
each agent.

3.4 Revenue
To obtain possible revenue rankings for the different auc-

tion formats, we first note that when the allocation rule is
fixed to RBB, then using either a first-price, second-price, or
truthful payment rule leads to the same expected revenue in
a symmetric, increasing Bayes-Nash equilibrium. Because
a RBB auction ranks agents by their true values in equi-
librium for any of these payment rules (by Lemma 1), it
follows that expected revenue is the same for all these pay-
ment rules, following arguments that are virtually identical
to those used to establish revenue equivalence in the single-
item case (see e.g. Proposition 3.1 in Krishna [11]). The
same holds for RBR auctions; however, the revenue ranking
of the RBB and RBR allocation rules is still unclear. Be-
cause of this revenue equivalence principle, we can choose
whichever payment rule is most convenient for the purpose
of making revenue comparisons.

Using Propositions 1 and 2, it is a simple matter to de-
rive formulae for the expected revenue under both allocation
rules. The payment of an agent in a RBB auction is

mB(x, α) = αG(x)x̃V (x, α)

The expected revenue is then N · E
ˆ
mV (X, A)

˜
, where the

expectation is taken with respect to the joint density of value
and relevance. The expected revenue formula for RBR auc-
tions is entirely analogous using x̃R(x, α) and the H func-
tion. With these in hand we can obtain revenue rankings
for specific numbers of bidders and slots, and specific distri-
butions over values and relevance.

Claim 3. For fixed K, N , and fixed γ1, . . . , γK , no rev-
enue ranking of RBB and RBR is possible for an arbitrary
density f .

Example. Assume there are 2 bidders, 2 slots, and that
γ1 = 1, γ2 = 1/2. Assume that value-relevance pairs are

uniformly distributed over [0, 1]× [0, 1]. For such a distribu-
tion with a closed-form formula, it is most convenient to use
the revenue formulae just derived. RBB dominates RBR in
terms of revenue for these parameters. The formula for the
expected revenue in a RBB auction yields 1/12, whereas for
RBR auctions we have 7/108.

Assume instead that with probability 1/2 an agent’s value-
relevance pair is (1, 1/2), and that with probability 1/2 it
is (1/2, 1). In this scenario it is more convenient to appeal
to formulae (1) and (2). In a truthful auction the second
agent will always pay 0. According to (1), in a truthful
RBB auction the first agent makes an expected payment of

E
ˆ
(γ1 − γ2)Aσ(1)Xσ(2)

˜
=

1

2
E
ˆ
Aσ(1)

˜
E
ˆ
Xσ(2)

˜
where we have used the fact that value and relevance are
independently distributed for different agents. The expected
relevance of the agent with the highest value is E

ˆ
Aσ(1)

˜
=

5/8. The expected second highest value is also E
ˆ
Xσ(2)

˜
=

5/8. The expected revenue for a RBB auction here is then
25/128. According to (2), in a truthful RBR auction the
first agent makes an expected payment of

E
ˆ
(γ1 − γ2)Rσ(2)

˜
=

1

2
E
ˆ
Rσ(2)

˜
In expectation the second highest revenue is E

ˆ
Rσ(2)

˜
=

1/2, so the expected revenue for a RBR auction is 1/4.
Hence in this case the RBR auction yields higher expected
revenue.1415

This example suggests the following conjecture: when
value and relevance are either uncorrelated or positively cor-
related, RBB dominates RBR in terms of revenue. When
value and relevance are negatively correlated, RBR domi-
nates.

4. COMPLETE INFORMATION
In typical slot auctions such as those run by Yahoo! and

Google, bidders can adjust their bids up or down at any
time. As Börgers et al. [2] and Edelman et al. [6] have
noted, this can be viewed as a continuous-time process in
which bidders learn each other’s bids. If the process stabi-
lizes the result can then be modeled as a Nash equilibrium
in pure strategies of the static one-shot game of complete in-
formation, since each bidder will be playing a best-response
to the others’ bids.16 This argument seems especially ap-
propriate for Yahoo!’s slot auction design where all bids are

14To be entirely rigorous and consistent with our initial as-
sumptions, we should have constructed a continuous proba-
bility density with full support over an appropriate domain.
Taking the domain to be e.g. [0, 1]× [0, 1] and a continuous
density with full support that is sufficiently concentrated
around (1, 1/2) and (1/2, 1), with roughly equal mass around
both, would yield the same conclusion.

15Claim 3 should serve as a word of caution, because Feng
et al. [7] find through their simulations that with a bivari-
ate normal distribution over value-relevance pairs, and with
5 slots, 15 bidders, and δ = 2, RBR dominates RBB in
terms of revenue for any level of correlation between value
and relevance. However, they assume that bidding behavior
in a second-price slot auction can be well approximated by
truthful bidding.

16We do not claim that bidders will actually learn each oth-
ers’ private information (value and relevance), just that for
a stable set of bids there is a corresponding equilibrium of
the complete information game.



made public. Google keeps bids private, but experimenta-
tion can allow one to discover other bids, especially since
second pricing automatically reveals to an agent the bid of
the agent ranked directly below him.

4.1 Equilibrium Analysis
In this section we ask whether a pure-strategy Nash equi-

librium exists in a RBB or RBR slot auction, with either
first or second pricing.

Before dealing with the first-price case there is a technical
issue involving ties. In our model we allow bids to be non-
negative real numbers for mathematical convenience, but
this can become problematic because there is then no bid
that is “just higher” than another. We brush over such
issues by assuming that an agent can bid “infinitesimally
higher” than another. This is imprecise but allows us to
focus on the intuition behind the result that follows. See
Reny [17] for a full treatment of such issues.

For the remainder of the paper, we assume that there are
as many slots as bidders. The following result shows that
there can be no pure-strategy Nash equilibrium with first
pricing.17 Note that the argument holds for both RBB and
RBR allocation rules. For RBB, bids should be interpreted
as declared values, and for RBR as declared revenues.

Theorem 2. There exists no complete information Nash
equilibrium in pure strategies in the first-price slot auction,
for any possible values of the agents, whether using a RBB
or RBR allocation rule.

Proof. Let σ : [K] → [N ] be the allocation of slots to
the agents resulting from their bids. Let ri and bi be the
revenue and bid of the agent ranked ith, respectively. Note
that we cannot have bi > bi+1, or else the agent in slot
i can make a profitable deviation by instead bidding bi −
ε > bi+1 for small enough ε > 0. This does not change
its allocation, but increases its profit. Hence we must have
bi = bi+1 (i.e. with one bidder bidding infinitesimally higher
than the other). Since this holds for any two consecutive
bidders, it follows that in a Nash equilibrium all bidders
must be bidding 0 (since the bidder ranked last matches the
bid directly below him, which is 0 by default because there
is no such bid). But this is impossible: consider the bidder
ranked last. The identity of this bidder is always clear given
the deterministic tie-breaking rule. This bidder can obtain
the top spot and increase his revenue by (γ1−γK)rK > 0 by
bidding some ε > 0, and for small enough ε this is necessarily
a profitable deviation. Hence there is no Nash equilibrium
in pure strategies.

On the other hand, we find that in a second-price slot auc-
tion there can be a multitude of pure strategy Nash equilib-
ria. The next two lemmas give conditions that characterize
the allocations that can occur as a result of an equilibrium
profile of bids, given fixed agent values and revenues. Then
if we can exhibit an allocation that satisfies these conditions,
there must exist at least one equilibrium. We first consider
the RBR case.

17Börgers et al. [2] have proven this result in a model with
three bidders and three slots, and we generalize their argu-
ment. Edelman et al. [6] also point out this non-existence
phenomenon. They only illustrate the fact with an example
because the result is quite immediate.

Lemma 2. Given an allocation σ, there exists a Nash equi-
librium profile of bids b leading to σ in a second-price RBR
slot auction if and only if„

1− γi

γj+1

«
rσ(i) ≤ rσ(j)

for 1 ≤ j ≤ N − 2 and i ≥ j + 2.

Proof. There exists a desired vector b which constitutes
a Nash equilibrium if and only if the following set of inequal-
ities can be satisfied (the variables are the πi and bj):

πi ≥ γj(rσ(i) − bj) ∀i, ∀j < i (3)

πi ≥ γj(rσ(i) − bj+1) ∀i, ∀j > i (4)

πi = γi(rσ(i) − bi+1) ∀i (5)

bi ≥ bi+1 1 ≤ i ≤ N − 1 (6)

πi ≥ 0, bi ≥ 0 ∀i

Here rσ(i) is the revenue of the agent allocated slot i, and
πi and bi may be interpreted as this agent’s surplus and
declared revenue, respectively. We first argue that con-
straints (6) can be removed, because the inequalities above
can be satisfied if and only if the inequalities without (6) can
be satisfied. The necessary direction is immediate. Assume
we have a vector (π, b) which satisfies all inequalities above
except (6). Then there is some i for which bi < bi+1. Con-
struct a new vector (π, b′) identical to the original except
with b′i+1 = bi. We now have b′i = b′i+1. An agent in slot
k < i sees the price of slot i decrease from bi+1 to b′i+1 = bi,
but this does not make i more preferred than k to this agent
because we have πk ≥ γi−1(rσ(k) − bi) ≥ γi(rσ(k) − bi) =
γi(rσ(k)− b′i+1) (i.e. because the agent in slot k did not orig-
inally prefer slot i − 1 at price bi, he will not prefer slot i
at price bi). A similar argument applies for agents in slots
k > i + 1. The agent in slot i sees the price of this slot
go down, which only makes it more preferred. Finally, the
agent in slot i + 1 sees no change in the price of any slot, so
his slot remains most preferred. Hence inequalities (3)–(5)
remain valid at (π, b′). We first make this change to the bi+1

where bi < bi+1 and index i is smallest. We then recursively
apply the change until we eventually obtain a vector that
satisfies all inequalities.

We safely ignore inequalities (6) from now on. By the
Farkas lemma, the remaining inequalities can be satisfied if
and only if there is no vector z such thatX

i,j

(γjrσ(i)) zσ(i)j > 0

X
i>j

γjzσ(i)j +
X
i<j

γj−1zσ(i)j−1 ≤ 0 ∀j (7)

X
j

zσ(i)j ≤ 0 ∀i (8)

zσ(i)j ≥ 0 ∀i, ∀j 6= i

zσ(i)i free ∀i

Note that a variable of the form zσ(i)i appears at most once
in a constraint of type (8), so such a variable can never be
positive. Also, zσ(i)1 = 0 for all i 6= 1 by constraint (7),
since such variables never appear with another of the form
zσ(i)i.

Now if we wish to raise zσ(i)j above 0 by one unit for j 6= i,
we must lower zσ(i)i by one unit because of the constraint
of type (8). Because γjrσ(i) ≤ γirσ(i) for i < j, raising



zσ(i)j with i < j while adjusting other variables to maintain
feasibility cannot make the objective

P
i,j(γjrσ(i))zσ(i)j pos-

itive. If this objective is positive, then this is due to some
component zσ(i)j with i > j being positive.

Now for the constraints of type (7), if i > j then zσ(i)j

appears with zσ(j−1)j−1 (for 1 < j < N). So to raise the

former variable γ−1
j units and maintain feasibility, we must

(I) lower zσ(i)i by γ−1
j units, and (II) lower zσ(j−1)j−1 by

γ−1
j−1 units. Hence if the following inequalities hold:

rσ(i) ≤
„

γi

γj

«
rσ(i) + rσ(j−1) (9)

for 2 ≤ j ≤ N − 1 and i > j, raising some zσ(i)j with
i > j cannot make the objective positive, and there is no
z that satisfies all inequalities above. Conversely, if some
inequality (9) does not hold, the objective can be made pos-
itive by raising the corresponding zσ(i)j and adjusting other
variables so that feasibility is just maintained. By a slight
reindexing, inequalities (9) yield the statement of the theo-
rem.

The RBB case is entirely analogous.

Lemma 3. Given an allocation σ, there exists a Nash equi-
librium profile of bids b leading to σ in a second-price RBB
slot auction if and only if„

1− γi

γj+1

«
xσ(i) ≤ xσ(j)

for 1 ≤ j ≤ N − 2 and i ≥ j + 2.

Proof Sketch. The proof technique is the same as in the
previous lemma. The desired Nash equilibrium exists if and
only if a related set of inequalities can be satisfied; by the
Farkas lemma, this occurs if and only if an alternate set of
inequalities cannot be satisfied. The conditions that deter-
mine whether the latter holds are given in the statement of
the lemma.

The two lemmas above immediately lead to the following
result.

Theorem 3. There always exists a complete information
Nash equilibrium in pure strategies in the second-price RBB
slot auction. There always exists an efficient complete in-
formation Nash equilibrium in pure strategies in the second-
price RBR slot auction.

Proof. First consider RBB. Suppose agents are ranked
according to their true values. Since xσ(i) ≤ xσ(j) for i > j,
the system of inequalities in Lemma 3 is satisfied, and the
allocation is the result of some Nash equilibrium bid profile.
By the same type of argument but appealing to Lemma 2
for RBR, there exists a Nash equilibrium bid profile such
that bidders are ranked according to their true revenues.
By Theorem 1, this latter allocation is efficient.

This theorem establishes existence but not uniqueness.
Indeed we expect that in many cases there will be multiple
allocations (and hence equilibria) which satisfy the condi-
tions of Lemmas 2 and 3. In particular, not all equilibria of
a second-price RBR auction will be efficient. For instance,
according to Lemma 2, with two agents and two slots any
allocation can arise in a RBR equilibrium because no con-
straints apply.

Theorems 2 and 3 taken together provide a possible ex-
planation for Yahoo!’s switch from first to second pricing.
We saw in Section 3.1 that this does not induce truthfulness
from bidders. With first pricing, there will always be some
bidder that feels compelled to adjust his bid. Second pricing
is more convenient because an equilibrium can be reached,
and this reduces the cost of bid management.

4.2 Efficiency
For a given allocation rule, we call the allocation that

would result if the bidders reported their values truthfully
the standard allocation. Hence in the standard RBB alloca-
tion bidders are ranked by true values, and in the standard
RBR allocation they are ranked by true revenues. Accord-
ing to Lemmas 2 and 3, a ranking that results from a Nash
equilibrium profile can only deviate from the standard al-
location by having agents with relatively similar values or
revenues switch places. That is, if ri > rj then with RBR
agent j can be ranked higher than i only if the ratio rj/ri is
sufficiently large; similarly for RBB. This suggests that the
value of an equilibrium allocation cannot differ too much
from the value obtained in the standard allocation, and the
following theorems confirms this.

For an allocation σ of slots to agents, we denote its to-
tal value by f(σ) =

PN
i=1 γirσ(i). We denote by g(σ) =PN

i=1 γixσ(i) allocation σ’s value when assuming all agents
have identical relevance, normalized to 1. Let

L = min
i=1,...,N−1

min


γi+1

γi
, 1− γi+2

γi+1

ff
(where by default γN+1 = 0). Let ηx and ηr be the standard
allocations when using RBB and RBR, respectively.

Theorem 4. For an allocation σ that results from a pure-
strategy Nash equilibrium of a second-price RBR slot auc-
tion, we have f(σ) ≥ Lf(ηr).

Proof. We number the agents so that agent i has the
ith highest revenue, so r1 ≥ r2 ≥ . . . ≥ rN . Hence the
standard allocation has value f(ηr) =

PN
i=1 γiri. To prove

the theorem, we will make repeated use of the fact thatP
k akP
k bk

≥ mink
ak
bk

when the ak and bk are positive. Note

that according to Lemma 2, if agent i lies at least two slots

below slot j, then rσ(j) ≥ ri

“
1− γj+2

γj+1

”
.

It may be the case that for some slot i, we have σ(i) > i
and for slots k > i + 1 we have σ(k) > i. We then say that
slot i is inverted. Let S be the set of agents with indices at
least i+1; there are N − i of these. If slot i is inverted, it is
occupied by some agent from S. Also all slots strictly lower
than i + 1 must be occupied by the remaining agents from
S, since σ(k) > i for k ≥ i + 2. The agent in slot i + 1 must
then have an index σ(i + 1) ≤ i (note this means slot i + 1
cannot be inverted). Now there are two cases. In the first
case we have σ(i) = i + 1. Then

γirσ(i) + γi+1rσ(i+1)

γiri + γi+1ri+1
≥ γi+1ri + γiri+1

γiri + γi+1ri+1

≥ min


γi+1

γi
,

γi

γi+1

ff
=

γi+1

γi

In the second case we have σ(i) > i+1. Then since all agents
in S except the one in slot i lie strictly below slot i + 1, and



the agent in slot i is not agent i + 1, it must be that agent
i+1 is in a slot strictly below slot i+1. This means that it is
at least two slots below the agent that actually occupies slot

i, and by Lemma 2 we then have rσ(i) ≥ ri+1

“
1− γi+2

γi+1

”
.

Thus,

γirσ(i) + γi+1rσ(i+1)

γiri + γi+1ri+1
≥

γi+1ri + γirσ(i)

γiri + γi+1ri+1

≥ min


γi+1

γi
, 1− γi+2

γi+1

ff
If slot i is not inverted, then on one hand we may have

σ(i) ≤ i, in which case rσ(i)/ri ≥ 1. On the other hand we
may have σ(i) > i but there is some agent with index j ≤ i
that lies at least two slots below slot i. Then by Lemma 2,

rσ(i) ≥ rj

“
1− γi+2

γi+1

”
≥ ri

“
1− γi+2

γi+1

”
.

We write i ∈ I if slot i is inverted, and i 6∈ I if neither i nor
i− 1 are inverted. By our arguments above two consecutive
slots cannot be inverted, so we can write

f(σ)

f(γr)
=

P
i∈I

`
γirσ(i) + γi+1rσ(i+1)

´
+
P

i6∈I γirσ(i)P
i∈I (γiri + γi+1ri+1) +

P
i6∈I γiri

≥ min


min
i∈I


γirσ(i) + γi+1rσ(i+1)

γiri + γi+1ri+1

ff
, min

i6∈I


γirσ(i)

γiri

ffff
≥ L

and this completes the proof.

Note that for RBR, the standard value is also the effi-
cient value by Theorem 1. Also note that for an exponential
decay model, L = min

˘
1
δ
, 1− 1

δ

¯
. With δ = 1.428 (see Sec-

tion 2.1), the factor is L ≈ 1/3.34, so the total value in a
pure-strategy Nash equilibrium of a second-price RBR slot
auction is always within a factor of 3.34 of the efficient value
with such a discount.

Again for RBB we have an analogous result.

Theorem 5. For an allocation σ that results from a pure-
strategy Nash equilibrium of a second-price RBB slot auc-
tion, we have g(σ) ≥ Lg(ηx).

Proof Sketch. Simply substitute bidder values for bidder
revenues in the proof of Theorem 4, and appeal to Lemma 3.

5. CONCLUSIONS
This paper analyzed stylized versions of the slot auction

designs currently used by Yahoo! and Google, namely “rank
by bid” (RBB) and “rank by revenue” (RBR), respectively.
We also considered first and second pricing rules together
with each of these allocation rules, since both have been used
historically. We first studied the “short-run” setting with
incomplete information, corresponding to the case where
agents have just approached the mechanism. Our equilib-
rium analysis revealed that RBB has much weaker infor-
mational requirements than RBR, because bidders need not
know any information about relevance (even their own) to
play the Bayes-Nash equilibrium. However, RBR leads to
an efficient allocation in equilibrium, whereas RBB does not.
We showed that for an arbitrary distribution over value and
relevance, no revenue ranking of RBB and RBR is possible.
We hope that the tools we used to establish these results
(revenue equivalence, the form of first-price equilibria, the

truthful payments rules) will help others wanting to pursue
further analyses of slot auctions.

We also studied the “long-run” case where agents have
experimented with their bids and each settled on one they
find optimal. We argued that a stable set of bids in this
setting can be modeled as a pure-strategy Nash equilibrium
of the static game of complete information. We showed that
no pure-strategy equilibrium exists with either RBB or RBR
using first pricing, but that with second pricing there always
exists such an equilibrium (in the case of RBR, an efficient
equilibrium). In general second pricing allows for multiple
pure-strategy equilibria, but we showed that the value of
such equilibria diverges by only a constant factor from the
value obtained if all agents bid truthfully (which in the case
of RBR is the efficient value).

6. FUTURE WORK
Introducing budget constraints into the model is a nat-

ural next step for future work. The complication here lies
in the fact that budgets are often set for entire campaigns
rather than single keywords. Assuming that the optimal
choice of budget can be made independent of the choice
of bid for a specific keyword, it can be shown that it is a
dominant-strategy to report this optimal budget with one’s
bid. The problem is then to ascertain that bids and budgets
can indeed be optimized separately, or to find a plausible
model where deriving equilibrium bids and budgets together
is tractable.

Identifying a condition on the distribution over value and
relevance that actually does yield a revenue ranking of RBB
and RBR (such as correlation between value and relevance,
perhaps) would yield a more satisfactory characterization
of their relative revenue properties. Placing bounds on the
revenue obtained in a complete information equilibrium is
also a relevant question.

Because the incomplete information case is such a close
generalization of the most basic single-item auction model,
it would be interesting to see which standard results from
single-item auction theory (e.g. results with risk-averse bid-
ders, an endogenous number of bidders, asymmetries, etc...)
automatically generalize and which do not, to fully under-
stand the structural differences between single-item and slot
auctions.

Acknowledgements
David Pennock provided valuable guidance throughout this
project. I would also like to thank David Parkes for helpful
comments.

7. REFERENCES
[1] Z. Abrams. Revenue maximization when bidders have

budgets. In Proc. the ACM-SIAM Symposium on
Discrete Algorithms, 2006.

[2] T. Börgers, I. Cox, and M. Pesendorfer. Personal
Communication.

[3] C. Borgs, J. Chayes, N. Immorlica, M. Mahdian, and
A. Saberi. Multi-unit auctions with
budget-constrained bidders. In Proc. the Sixth ACM
Conference on Electronic Commerce, Vancouver, BC,
2005.

[4] F. Brandt and G. Weiß. Antisocial agents and Vickrey
auctions. In J.-J. C. Meyer and M. Tambe, editors,



Intelligent Agents VIII, volume 2333 of Lecture Notes
in Artificial Intelligence. Springer Verlag, 2001.

[5] B. Edelman and M. Ostrovsky. Strategic bidder
behavior in sponsored search auctions. In Workshop
on Sponsored Search Auctions, ACM Electronic
Commerce, 2005.

[6] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet
advertising and the generalized second price auction:
Selling billions of dollars worth of keywords. NBER
working paper 11765, November 2005.

[7] J. Feng, H. K. Bhargava, and D. M. Pennock.
Implementing sponsored search in web search engines:
Computational evaluation of alternative mechanisms.
INFORMS Journal on Computing, 2005. Forthcoming.

[8] J. Green and J.-J. Laffont. Characterization of
satisfactory mechanisms for the revelation of
preferences for public goods. Econometrica,
45:427–438, 1977.

[9] B. Holmstrom. Groves schemes on restricted domains.
Econometrica, 47(5):1137–1144, 1979.

[10] B. Kitts, P. Laxminarayan, B. LeBlanc, and
R. Meech. A formal analysis of search auctions
including predictions on click fraud and bidding
tactics. In Workshop on Sponsored Search Auctions,
ACM Electronic Commerce, 2005.

[11] V. Krishna. Auction Theory. Academic Press, 2002.

[12] D. Liu and J. Chen. Designing online auctions with
past performance information. Decision Support
Systems, 2005. Forthcoming.

[13] C. Meek, D. M. Chickering, and D. B. Wilson.
Stochastic and contingent payment auctions. In
Workshop on Sponsored Search Auctions, ACM
Electronic Commerce, 2005.

[14] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani.
Adwords and generalized on-line matching. In Proc.
46th IEEE Symposium on Foundations of Computer
Science, 2005.

[15] P. Milgrom. Putting Auction Theory to Work.
Cambridge University Press, 2004.

[16] P. Milgrom and C. Shannon. Monotone comparative
statics. Econometrica, 62(1):157–180, 1994.

[17] P. J. Reny. On the existence of pure and mixed
strategy Nash equilibria in discontinuous games.
Econometrica, 67(5):1029–1056, 1999.

[18] H. R. Varian. Position auctions. Working Paper,
February 2006.

[19] W. Vickrey. Counterspeculation, auctions and
competitive sealed tenders. Journal of Finance,
16:8–37, 1961.


