Multiagent Reinforcement Learning in
Stochastic Games

Junling Hu and Michael P. Wellman
Artificial Intelligence Laboratory
University of Michigan
Ann Arbor, MI 48109-2110, USA

{junling, wellman}@umich.edu
http://ai.eecs.umich.edu/people/{junling,wellman }

Abstract

We adopt stochastic games as a general framework for dynamic
noncooperative systems. This framework provides a way of describing
the dynamic interactions of agents in terms of individuals’ Markov
decision processes. By studying this framework, we go beyond the
common practice in the study of learning in games, which primar-
ily focus on repeated games or extensive-form games. For stochastic
games with incomplete information, we design a multiagent reinforce-
ment learning method which allows agents to learn Nash equilibrium
strategies. We show in both theory and experiments that this algo-
rithm converges. From the viewpoint of machine learning research,
our work helps to establish the theoretical foundation for applying
reinforcement learning, originally defined for single-agent systems, to
multiagent systems.

1 Introduction

The goal of an agent in a dynamic environment is to make optimal decisions
over time. Learning servers such purpose by biasing the agent’s action choices
through information gathered over time. An agent can base its action choice
on prediction of the environment or directly on the reward received from the
environment. Reinforcement learning is a systematic method that associates
an agent’s action with its rewards.

Reinforcement learning is related to two other types of learning. In su-
pervised learning, an agent observes input/output pairs as examples, and
learns about the function mapping the inputs to the outputs. The values of
the outputs are provided by the environment, which can be thought of as a
supervisor or a teacher. Decision tree methods [15, 11] and neural network
learning [6] fall into this category. In unsupervised learning, the agent is given
a collection of input values but no output values. The agent has to find “reg-
ularity” in the inputs by itself. Clustering [5] and discovery [8] methods fall
into this category. Unsupervised learning methods are widely applied under
the popular name data mining nowadays. Reinforcement learning [19] falls
in between supervised and unsupervised learning. In reinforcement learning,
an agent does not receive input/output examples from the environment. But
the agent receives rewards from the environment, and it can use the rewards
as feedback (reinforcement) for its actions. In this sense, the agent is guided
or supervised by the environment.

In reinforcement learning, an agent need not explicitly model the envi-
ronment since its actions can be directly based on the rewards. Thus this
learning method is particularly useful for the cases where agents have little
knowledge of the environment.

An agent in a multiagent system may know little about others because
information is distributed. Even when an agent has some prior information
about others, the behavior of others may change over time because they are
learning. It is therefore natural to apply reinforcement learning. We have
seen such applications, for example, in robotic soccer [1, 18|, the pursuit
game [21, 3], and distributed team coordination [2].

In most cases, single-agent reinforcement learning methods are applied
without much modification. Such an approach treats other agents as a part
of the environment. There are two problems with this approach: First, the
environment in this treatment is non-stationary: other agents are learning
and changing their responses. But the convergence of single-agent reinforce-

ment learning is based on the assumption that the environment is stationary.
Second, an agent who does not take into account of other agents may have
worse performance than the one does. In Claus and Boutilier’s study of a
repeated coordination game [2], two types of learning agents are compared:
the individual learner who uses the standard reinforcement learning method,
and the joint learner who incorporate joint actions in reinforcement learn-
ing. The learning object is one-period’s reward function. Claus and Boutilier
show that the joint learner performs better because it uses extra information
in the game. Even though their result is not conclusive because it concerns
only one-period’s decision while standard reinforcement learning problems
concern sequential decisions, it is one of the first attempts to model the
joint actions in reinforcement learning. Littman [9] implement agents who
use minimax Q-learning method in 2-player zero-sum stochastic games. In
minimax Q-learning, an agent chooses an action based on possible reactions
from the other agent. Such agents are compared to the ones who use stan-
dard (single-agent) Q-learning method. He found that agents using minimax
Q-learning are more likely to win.

We propose that a learning agent should explicitly consider other agents
in the system. We formulate the multiagent reinforcement learning problem
in the framework of general-sum stochastic games. This framework can be
used to model a wide range of dynamic multiagent systems. By studying
reinforcement learning in this framework and investigating the convergence
of our learning algorithm, we want to provide a theoretical foundation for
applying reinforcement learning to multiagent systems.

Our work is closely related to Littman’s [9], which studies reinforcement
learning in zero-sum stochastic games. In zero-sum games, one agent’s gain
is always the other agent’s loss, thus agents have strictly opposite interests.
In general-sum games, the payoffs of agents are not always correlated. The
solution concept for general-sum games is Nash equilibrium. In a Nash equi-
librium, each agent’s choice is the best response to the other agents’ choices.
No agent can gain by unilateral deviation.

If the payoff structure and state transition probabilities are known to all
the agents, we can solve for Nash equilibrium using a nonlinear programming
method proposed by Filar and Vrieze [4]. We are interested in situations
where agents have little information of other agents’ payoff functions and the
state transition probabilities. We show that a multiagent Q-learning algo-
rithm can be designed, and it converges to the Nash equilibrium Q values
(defined later in this chapter) under certain assumptions of the games dur-

3

ing learning. Our algorithm is designed for 2-player general-sum stochastic
games, but can be extended to n-player general-sum cases.

We implement the multiagent Q-learning algorithm in a grid-world game,
and show that agents can use this learning algorithm to learn stationary
Nash equilibrium strategies. In our theory, the convergence of our learning
algorithm relies on certain restrictions of the game structure during learning,
which imply a unique Nash equilibrium value in each bimatrix game. In
the experiments, we relax the restrictions and show that convergence is still
possible when there are multiple Nash equilibria.

2 Single-Agent Reinforcement Learning

The concept of reinforcement learning originated from Thorndike’s research
on animals in 1911 [19]. Animals could learn to associate their actions with
the rewards through trial and errors. Reinforcement learning was first for-
malized in the learning automata model in 1970s [13]. In early 1980s, Sutton
and Barto [19] developed temporal-difference learning, which is another form
of reinforcement learning. Further attention was drawn to reinforcement
learning after Watkins and Dayan proposed Q-learning in 1992 [22], which
established the connection between reinforcement learning and Markov deci-
sion processes. Our work is a further development of Q-learning. Originally,
Q-learning is designed for single-agent systems. We define Q-learning in a
general class of multi-agent systems. We also redefine the learning algorithm
itself. For a comprehensive survey of reinforcement learning, see [7, 19].
Q-learning is defined in the framework of Markov decision process.

Definition 1 A Markov Decision Process is a tuple < S, A,r,p >, where S
s the discrete state space, A is the discrete action space, v : S X A — R is
the reward function, and p: S x A — A is the transition function, where A
is the set of probability distributions over state space S.

In a Markov decision process, the objective of the agent is to find a strategy
(policy) 7 so as to maximize the expected sum of discounted rewards,

o0

v(s,m) = ZﬁtE(rtkr, So = 8), (1)

t=0

where s is the initial state, r; is the reward at time ¢, and 8 € [0,1) is the
discount factor. We can rewrite Equation (1) as

v(s,m) =r(s,a,) + ﬂZp(S'|s, ar)v(s',), (2)

s!

where a, is the action dictated by policy 7 given initial state s. It has been
proved that there exists an optimal policy 7* such that for any s € S, the
following equation holds:

v(s,) = max {7‘(8, a) + ﬂZ’p(s'|s, a)v(s', 71'*)}, (3)

where v(s, 7*) is called the optimal value for state s.

If the agent knows the reward function and the state transition function, it
can solve for 7* by iterative search methods [14]. The learning problem arises
when the agent does not know the reward function or the state transition
probabilities. Now the agent needs to interact with the environment to find
out its optimal policy. The agent can learn about the reward function and
the state transition function, and then solve for its optimal policy using
Equation (3). Such an approach is called model-based reinforcement learning.
The agent can also directly learn about its optimal policy without knowing
the reward function or the state transition function. Such an approach is
called model-free reinforcement learning. One of the model-free reinforcement
learning methods is Q-learning.

The basic idea of Q-learning is that we can define the right-hand side of
(3) as

Q*(5,0) = r(s,a) + B p(s'|s, a)o(s', =) (4)

By this definition, Q*(s, a) is the total discounted reward attained by taking
action a in state s and then following the optimal policy thereafter. Then by

(3),
v(s,) = max Q*(s,a). (5)

If we know Q*(s, a), then the optimal policy 7* can be found, which is always
taking an action so as to maximize Q*(s,a) under any state s.

In Q-learning, the agent starts with arbitrary initial values of Q(s, a) for
all s € S;a € A. At each time ¢, the agent chooses an action and observes
its reward, r;. The agent then updates its Q-values as follows:

Qir1(8,a) = (1 —) Qy(8,) + ayre + ﬁml?x Q+(8¢41,b)]- (6)

where o € [0, 1) is the learning rate. The learning rate oy needs to decay over
time in order for the learning algorithm to converge. Watkins and Dayan [22]
proved that sequence (6) converges to Q*(s,a) under the assumption that all
states and actions have been visited infinitely often.

3 The stochastic game framework

Markov decision process (MDP) is a single agent decision problem. A nat-
ural extension of MDP to multiagent systems is stochastic games, which
essentially are n-agent Markov decision processes. In this paper, we focus on
2-player stochastic games since they have been well studied.

3.1 Definition of stochastic games

Definition 2 A 2-player stochastic game T is a 6-tuple < S, A, A%, r1 r2, p >,
where S is the discrete state space, A* is the discrete action space of player

k for k =1,2, r% : S x A' x A2 — R is the payoff function for player k,

p: S x A x A2 — A is the transition probability map, where A is the set of

probability distributions over state space S.

To have a closer look at a stochastic game, consider a process that is
observable at discrete time points t = 0,1,2,.... At each time point ¢, the
state of the process is denoted by s;. Assume s; takes on values from the
set S. The process is controlled by 2 decision makers, referred to as player
1 and player 2, respectively. In state s, each player independently chooses
actions a' € A',a? € A? and receives rewards r!(s,a!,a?) and r%(s,a!, a?),
respectively. When r!(s, al,a?) + r%(s,a!, a?) = 0 for all s,a', a?, the game
is called zero sum. When the sum is not restricted to 0 or any constant, the
game is called a general-sum game.

It is assumed that for every s,s’ € S, the transition from s to s’ given
that the players take actions a' € A! and a? € A2, is independent of time.

That is, there exist stationary transition probabilities p(s'|s, a*, a®) for all
t=0,1,2,... , satisfying the constraint

Zp(5'|s,a1,a2) =1, (7)

s'=1
The objective of each player is to maximize a discounted sum of rewards.
Let 3 € [0,1) be the discount factor, let 7! and 72 be the strategies of players
1 and 2 respectively. For a given initial state s, the two players receive the
following values from the game:

vl (s, Zﬂt ri|mt, w2, 50 = s) (8)
v (s, mt, Zﬂt (r2|mt, 72, sp = 8) 9)
A strategy m = (mg, ..., 7, ...) is defined over the whole course of the

game. m; is called the decision rule at time t. A strategy =« is called a
stationary strategy if m; = 7 for all ¢, where the decision rule is fixed over
time. 7 is called a behavior strategy if m, = f(h:), where h; is the history up
to time ¢,

_ 1.2 1 2 1 2
hs = (S0, Qg Gy, 51,07, 0q,--- 5, 01,041, 5¢). (10)

A stationary strategy is a special case of behavior strategy when h; = @.

A decision rule assigns mixed strategies to different states. A decision
rule of a stationary strategy has the following form: 7 = (7(s!),... ,7(s™)),
where m is the maximal number of states. 7(s) is a mixed strategy under
state s.

A Nash equilibrium for stochastic games is defined as following, assuming
that the players have complete information about the payoff functions of both
players.

Definition 3 In stochastic game I', a Nash equilibrium point is a pair of
strategies (ml,72) such that for all s € S

vl (s, mr, 2) > vl (s, 7, 72) vat e It
and

v2(s, Ty, m2) > v3(s, ml, %) Va? €112

The definition of Nash equilibrium requires that each agent’s strategy is a
best response to the other’s strategy. Such definition of Nash equilibrium is
similar as in other games. The strategies that constitute a Nash equilibrium
can be behavior strategies, Markov strategies, or stationary strategies. In
this paper, we are interested in stationary strategies, which are the most
simple strategies. The following theorem shows that there always exist a
Nash equilibrium in stationary strategies for any stochastic game.

Theorem 1 (Filar and Vrieze [4], Theorem 4.6.4) Every general-sum dis-
counted stochastic game possesses at least one equilibrium point in stationary
strategies.

3.2 Stochastic games and bimatrix games

We can view each stage of a stochastic game as a bimatrix game, as in Figure
2.

At each time period of a stochastic game, under state s, agent 1 and 2
choose their actions independently and receive their payoffs according to the
bimatrix game (r!(s),r%(s)). Repeated games can be seen as a degenerate
case of stochastic games when there is only one state. For example, let s be
the index of the only state, a repeated game will always have the bimatrix
game (r'(5),7%(5)) at each time period.

4 A Multiagent Q-Learning Algorithm

The central issue of learning in multiagent systems is an agent’s conjectures
about other agents. Although from any individual agent’s perspective the
other agents may well be treated as part of the environment, a decision on
the analyst’s part to accord all of them agent status imposes an essential
symmetry on the problem. It also helps the analyst to take into account
the non-stationarity of the environment resulting from the learning behavior
of others. An equilibrium concept characterizes some steady-state balance
relationship among the agents. In multiagent systems, all the agents are
simultaneously optimizing. The equilibrium (consistent joint optimization)
thus represents the logical multiagent extension of individual optimization.

Nash equilibrium is a steady state of the play of a game in which each
player holds the correct expectation about the other players’ behavior and act

rl(sl) r2(sl)
rl(s) r2(s)
s(62ls.al a2, rl(s2) r2(s2)
| N
4 1
p(s2|s,al,a2) |
rl(sm) rZ(Sm)

Figure 1: Stochastic games and bimatrix games

rationally. Acting rationally means each agent’s strategy is the best response
to the others’ strategies. The justification for applying Nash equilibrium
as a solution concept is based on the assumption of common knowledge of
rationality and strategic behavior of all agents.

In stochastic games with incomplete information, agents do not know
other agents’ (and even their own) payoff functions. We assume that the
agents can observe the immediate payoff of everyone at each time period.
Using this information, the agents can gradually construct the payoff func-
tion of every other agent. Similarly, agents can learn about the transition
probabilities in the game. Over time, all the information in the game is re-
vealed to the agents, and the game becomes a complete information game,
for which a Nash equilibrium can be derived. Q-learning serves two purposes.
First, as a computational method it solves for the Nash equilibrium without
requiring the knowledge of the transition probabilities. Second, the Q-values
during learning provides the best approximation to the optimal values under
complete information.

4.1 Multiagent Q Functions

For an n-player stochastic game, we define the Nash equilibrium Q-values for
agent k, k =1,...,n, as the following:

Qk(s,at,...,a") =1*(s,at,... a") +ﬁ2p(s'|s,a1,... LaMR (s Tl L)
s'es
(11)

The Nash equilibrium Q-value is defined on state s and joint action (a', ... , a").
It is the total discounted reward received by an agent when the agents ex-
ecute the joint action (a',...,a") in state s and follow Nash equilibrium
strategies (ml,...,7") thereafter.

To learn about these Q-values, an agent needs to maintain n Q-tables,
one for each agent in the game. For agent £, an element of its own Q-table
QF is represented by Q*(s,al,...,a"). The total number of entries in a Q-
table is m [}, |AY, where m is the number of states, and |A’| is the size
of action space A*. Thus an agent needs to maintain nm [[}_, |A*| entries
in its memory. Assuming |A!| = --- = |A"| = |A|, the space requirement
is nm|A|", which is exponential in the number of agents. Thus for large
numbers of agents, we would need to find some compact representation of
action space.

10

update
& e Q(s.aha) a5,
§ atl rtl §+1 Ql(S ’ a’[1’ at2) at1+l

>
t t+1 time

Figure 2: Time line of actions

As in single-agent Q-learning, the learning agent in multiagent systems
updates its Q tables for a given state after it observes the state, actions taken
by all the agents, and the rewards received by all the agents. The difference
is in the updating rule. In single-agent Q-learning, the Q-values are updated
as in (6). In multiagent Q-learning, we cannot just maximize over our own
actions since the Q-values depend on the action of the other agent. We
propose that an agent adopt a Nash strategy to update its Q-values. Given
our argument at the beginning of this chapter, this is the most reasonable
strategy an agent can take in noncooperative games.

4.2 Algorithm Description

Let QF = (Q*(s1),...,Q%(s™)) be agent k’s own Q-table. QF(s?) is the
Q-table under state s/, with each element represented by Q*(s?,al,... ,a").
The total number of entries in Q*(s?) is [[_, |AY|. Agent k& updates its
Q-values according to the following rule:

QfH(S, at,...,a") = (1— at)Qf(s, a',...,a") + at[rf + Bt (5441) - - -7r"(3t+1)Qf(st+1)]
(12)

where (7!(s441),...,7(8¢11)) is a mixed-strategy Nash equilibrium for the
normal-form game (Q} (S¢+1), - - , @F(S¢+1))- Thus agent k needs to know all
Qi (st41), -+

Q% (s¢+1) in order to derive (7'(s411),--- ,m(s¢+1)). The information about
other agents’ Q-tables are not given, and agent k£ has to learn about them
in the game. At the beginning of the game, agent k£ has no knowledge about
other agents except their action spaces. As the game proceeds, agent k
observes other agents’ immediate rewards and previous actions. That infor-
mation can then be used to update agent k’s conjectures on other agents’

11

Q-tables. Agent k updates its belief on agent j’s Q-table, for all j # k,
according to the following rule:

{—{—1(87 ala s ,an) = (1 - th)Q{(S, ala cee ’an) + O‘t[rz + ﬂ’]rl(st-}-l) oo ',/Tn(st-l—l)Qz(st-f-l)]

(13)

Our multiagent Q-learning algorithm is stated in Table 1.

Table 1: Multiagent Q-learning algorithm for Agent ¢

Initialize:
Let t = 0.
Foralls€ S, alla* € A* k=1,... n, let Q¥(s,al,... ,a") = 0.
Initialize the state, assign a value to sg.
Loop
Choose action a.
Observe r},... ,r%a},... ,a?, and sS4
Update Q7 for j=1,...,n
Qlii(s,aty...,a") = (1—a)Qi(s,al,... ,a™) + ay[rf + B (s141) - 7" (541)Q (5641)]
where (7! (s¢41),... ,m(8¢11)) is a mixed-strategy Nash equilibrium for
the normal-form game (Qj (S¢41), - - , QP (Se41))-
Lett:=t+ 1.
When the game is a 2-player zero-sum game, Q' (s, a', a?) = —Q?(s, a*, a?) =

Q(s,a',a?). Thus agent 1 needs to learn only one Q-table for every state.
Our Q-learning algorithm becomes

Qt+1 (57 ala CL2) =

(1 — ay)Qy4(s,at,a?) + ag[ry + 8 max min T (8441) Qe (Se41) T2 (S¢41)]
ml(st41)€0(A)m2(s¢41)€E0(A?)

This is different from Littman’s minimax-Q learning algorithm where Q-value
is updated as

Qt+1 (5, ala Gz) =

1— 1,2 a 1 2
(1 = a)Qu(s,a', a%) + oufre + ﬂwl(sﬂ)éml)afzﬂggf (st41)Qe(5¢41, a%)]

12

In Littman’s Q-learning algorithm, it is assumed that the other agent will
always choose a pure strategy rather than a mixed strategy.

Note that an agent’s action choice at each time ¢ is not essential for the
convergence of learning as long as the agent choose each action in each state
for infinitely many times. But the action choices are important for short-
term performance. We will discuss the issue of action choice in the end of
this chapter.

4.3 Convergence of the Algorithm

We prove the convergence of our Q-learning algorithm for 2-player games.
The results can be extended to n-player games, but with some modification.
Following (11), the Nash equilibrium Q-values in 2-player games are defined
as

Qi(s,a',a®) = rl(s,a’,a®) + BY_p(s'|s,a',a®)v’ (s, 7l w2) (14
s'es

Q%(s,a',a%) = 1%(s,a’,a®) + BY_p(s']s, al,a®)v?(s', 7k, w2) (15)
s'es

Our convergence result relies on certain assumptions. The first two as-
sumptions are standard ones in Q-learning;:

Assumption 1 FEvery state and action have been visited infinitely often.

Assumption 2 The learning rate oy satisfies the following conditions for all
s, t,al,a?:

1. 0 < ay(s,at,a?) < 1,32, (s, at,a?) = oo, and Y12 [ou(s, at,a?)]? <
m)

2. ay(s,at,a?) = 0if (s,al,a?®) # (s4,af,a?).

Assumption 2 states that the learning rate is decreasing. Item 2 in the
assumption states that the agent updates only the element in its Q-table
corresponding to current state s; and joint actions (aj, a?).

Notice that the learning rate o (s, al, a?) is local to each tuple (s, al, a?).
This allows the agent to keep high learning rates for states that have not
been visited much and low learning rates for frequently visited states.

We make further assumptions regarding the structure of the game:

13

Assumption 3 The bimatriz game (Q(s), Q2(s)), whose elements defined
as in (14) and (15), as well as any bimatriz game (Q*(s), Q*(s)) encountered
during learning has a Nash equilibrium (7'(s),7%(s)) satisfying one of the
following properties:

1. The Nash equilibrium is optimal for both agents, meaning both agents
recewwe their highest payoffs when they choose the Nash equilibrium
strategies.

m(s)QF(s)m2(s) > #(s)QF(s)A2(s) for all 71(s) € a(Al),7%(s) €
(A%, and k =1,2.

2. The Nash equilibrium s a saddle point, which means an agent receives
a higher payoff when the other agent deviates from the equilibrium strat-
eqy.

T (s)Q (s)m%(s) < wH(s)Q(s)72(s) for all #*(s) € o(A?), and
7 (s)Q*(s)m%(s) < 7(5)Q*(s)w?(s) for all 7*(s) € o(AY).

Assumption 3 implies that a Nash equilibrium is either unique or has the
same value as all others.

Our convergence proof is based on the following two Lemmas proved by
Szepesvari and Littman [20].

Lemma 1 (Conditional Average Lemma) Under Assumptions 1-2, the pro-
cess

Qi1 = (1 — ay) Q¢ + aywy converges to E(wg|hy, o), where hy is the history
at time t.

Lemma 2 Under Assumptions 1-2, if the process defined by

Uii1(z) = (1 — ap)Us(z) + au[Pw*](x) converges to v* , and Py satisfies ||
PV — Pu* ||< vy ||V —=v* || +A for all V, where 0 < v < 1 and Ay > 0
converges to 0, then the iteration defined by

Vi () = (1 — a)Vi(2) + o[V (2) (16)

converges to v*.

This lemma can be explained as following: Given a sequence {V;} defined as
n (16), if P, maps every V; closer to v*, then the sequence {V;} updated by
P; will converge to v*.

14

Our convergence proof is also based on a theorem by Filar and Vrieze [4].
The theorem states a Nash equilibrium of the bimatrix game (Q(s), Q%(s)),
with (Q}(s) and Q?(s)) defined as in (14) and (15), is also a part of a sta-
tionary Nash equilibrium of the whole game.

Theorem 2 (Filar and Vrieze [4]) The following assertions are equivalent:
1. For each s € S, the pair (Wl(s), 7r2(s)) constitutes an equilibrium point

in the static bimatriz game <Q1(s),Q2(s)) with equilibrium payoffs
(01(8,77'1,7'('2),1)2(8,77'1,7'('2)), and for k =1,2,

QH(s, 0, a%) = r*(s, al, a®) + B3 p(s']s, al, a)k(s', 7!, 7).
seS
2. (ml,7?) is an equilibrium point in the discounted stochastic game T with
equilibrium payoff (v (7', 7?), v?(7?, 7r2)) ,
where v*(rt, 72) = (v*(st, 7t w2), - - oF(s™, T, w?)), k=1, 2.

The above theorem states that the Nash solution of the bimatrix game
(Q*(s),

Q?(s)), where Q'(s) and Q?(s) are defined as in Theorem 2, will also be part
of the Nash solution for the whole dynamic game. If the sequence in our
Q-learning algorithm converges to the Q-values defined in Theorem 2, then a
pair of stationary Nash equilibrium strategies (7!, %) can be derived, where
7k = (7*(s),--- 7k (s™)) for k = 1,2. For each state s, 7*(s) is part of a
Nash equilibrium solution of the bimatrix game (Q(s), Q*(s)).

Lemma 3 Let P,Q = (P'Q', P?Q?), with
PtlQl (87 ala a2) = Irtl + ﬂﬂ-l (St)Ql (St)ﬂz(st)
Pt2Q2(Sa ala a’2) = Tt2 + ﬁﬂ-l (St)Q2(St)7T2(St)

where (7r1 (st),7r2(st)) is a mized strategqy Nash equilibrium for the bimatriz

game (Q(s:), Q%(5¢)).! Then || P,Q—PQ. ||< B]| @ —Qx || for all Q, where
Q. = (QL,Q?) is defined as in (14) and (15).

1A more precise notation would write (7r1 (s8¢), 72 (st)) as

(Wl(Ql(St), Qz(st)),ﬂz(Ql(st),Qz(st))). We use the notation (wl(st),ﬂz(st)) with
the understanding that both 7!(s;) and 72(s;) are functions of Q!(s;) and Q2(s;).

15

Proof. Case 1: PFQ*(s,a',a®) > PFQ"(s,a',a?) for k=1 or 2.
k = 1. Suppose property 1 of Assumption 3 is satisfied, meaning a Nash
equilibrium is also a global optimal point, we have

0 < PQY(s)— PQy(s)
= p (Wl(s)Ql(s)ﬂ2(s) — ! (S)Qi(s)wf(s))
< B (rH(5)Q (s)m*(s) — ' (5)Qu(s)7°(s)) (17)
= f Z Z 7' (s, a')72 (s,a®)(Q' (s, a', a?) —
Q.(s,a',a?)) (18)

< BY Y w(s,a)m’(s,a’) | Q1(s) — Qi) |
= BlQY(s) - Q) Il

where || Q*(s) — QL(s) [|= maxa o2 |Q*(s, @', a®) — Q%(s,a’, a®)|. Inequality
(17) is from property 1 of Assumption 3.
Suppose property 2 of Assumption 3 is satisfied, we have

0 < P'QY(s)— P/Qui(s)
= B(r'(9)Q' ()7 (s) — m(s)Qu(5)7(5))
< B (rH(s)Q(s)m(s) — ' (s)Qi(s)7E(5)) (19)
< B (r(s)QN(s)me(s) — ' (s)Qu(s)i(5)) (20)
= ﬂZZWl(S,al)Wf(s, a®)(Q'(s,a',a®) —
Qi(s,a',a%)) (21)
< BY D m(s,a)mi(s,a?) || Q(s) — Qi(s) |

al a?

= BlQY(s) - Q) Il

Inequality (19) derives from the fact that 7} (s) is the best response to 72(s)
since they constitute a Nash equilibrium. Inequality (20) derives from prop-
erty 2 of Assumption 3.

k = 2, similar proof as above.

Case 2: PFQF(s,at,a®) < PFQ*(s,a',a®) for k =1 or 2. Similar proof as
in Case 1.

16

For k£ = 1, under property 1 of Assumption 2, we have
0 < PFQ.(s) = PfQ(s)
< BY Y mi(s,a)mi(s,a®) || Qi(s) — Q'(s) |

= BIQ:s) - Q () Il
under property 2 of Assumption 2, we have
0 < PfQi(s) — PfQ'(s)
< BY Y mi(s,a)m(s,a%) || Qi(s) — Q'(s) |
Bl Qus) Q' (s) |l -

k = 2, similar proof as above.

Therefore we have |PFQ*(s) — PFQ%(s)| < B || Q%(s) — Q*(s) ||. Since
this holds for every state s, we have || PFQ* — PFQ* ||< 8| Q- Q% ||. O

Now we proceed to prove our main theorem, which states that the mul-
tiagent Q-learning methods converges to the Nash equilibrium Q-values.

Theorem 3 In stochastic game I', under Assumptions 1-3, the coupled se-
quences {Q1, Q?}, updated by

Qipi(s,a'a%) = (1 —)@ (s,a",0%) + aulry + B () Qi (s)7*(s)] (22)

where k = 1,2, and (7'(s"),72(s")) is a mized strategy Nash equilibrium for
the bimatriz game (Qf(s'), Q*(s")). The sequences {Qy, Q?} converge to the
Nash equilibrium Q values (Q, Q?), with elements of QL and Q? defined as
in (14) and (15).

Proof. By Lemma 3, || PFQ* — PFQY < 81| Q" — QL I
From Lemma 1, the sequence

Qiii(s,a',0%) = (1 =)@ (s, 0", 0) + culr + B (") Q" (s")m*(s)]
converges to
E(r{ + Br'Q"(s')n*) =
Yo P(s's,al, a?) (rk(s, al,a?®) + ﬂwl(s’)Qk(s’)w2(s’)>.

17

Define T* as

(Tka (s, al a ZP Is, at a ((S,CLl,az)+571(3')Qk(51)7r2(sl))

From above, the sequence {Q%} converges to T*Q*. It is easy to show that
T* is a contraction mapping. To see this, rewrite 7% as

Tka ZP '|s,a',a)PtQk().

Since P; is a contraction mapping of Q¥ and P(s'|s,at,a?) > 0, T is also a
contraction mapping of Q. We proceed to show that Q* defined in (12) is
the fixed point of T*. From the definition of T*, we have

(T*Q¥)(s,0%,a%) = D P(s']s,a",a?) (r¥(s, ', a?) + Brl(s) QH(s)m2(s)))
= rh(s,al,a?) + 3 P(s']s,at,a?)Br(s) Q5 (s))n3(s))

By Theorem 2, 71 (s")Q¥(s')n2(s") = vF(s', 7}, 72), thus Q% = T*Q*. There-
fore the sequence

Qfa(s,a',a”) = (1 — ar)Qf (s, 0, a®) + aufry + B Qi (s")m] (23)

converges to T*Q* = Q*. By Lemma 2, the sequence (22) converges to Q. O

We want to point out several things. First, the convergence result does
not depend on the sequence of actions taken by the agents. It requires only
that every action and state have been visited infinitely often. Second, the
convergence depends on certain restrictions on the bimatrix games encoun-
tered during learning. This is required because Nash equilibrium operator is
generally not a contraction operator. It remains an open question to what
extent we can relax the restrictions. Third, the theorem implicitly assumes
that the Nash equilibrium point is either unique or has the same payoffs as
all other Nash equilibria. Thus there is no equilibrium selection problem here
because agents can only use one Nash value to update their Q-tables.

18

5 An Example

In our experiments, we want to see whether the algorithm leads to conver-
gence after a large number of trials. Even though we have proved in theory
that the multiagent Q-learning algorithm will converge to a Nash equilib-
rium, our theorem did not address situations where some assumptions are
violated. Our experiments also serve as illustrative examples on how the
multiagent Q-learning method is implemented for a specific problem.

In applying the algorithm to situations where some assumptions are vio-
lated, we have to address many different issues. Suppose there are multiple
Nash equilibria with distinct values for the bimatrix games during learning,
we want to see the effect of agents’ equilibrium selection. If agents choose
the same equilibrium every time, would that lead to convergence? What if
agents choose different equilibria? Suppose a Nash equilibrium is unique, but
it is neither a saddle point nor an optimal point for both agents, does our
Q-learning still converge?

We tested our learning algorithm on the game shown in Figure 3. This
game is closely related to the one used by Littman [9], the grid-games stud-
ied by Sutton and Barto [19], and an example by Mitchell [12]. The main
difference between our game and Littman’s is that we allow agents to receive
positive (or negative) payoffs at the same time while in Littman’s game one
agent’s gain is always the other agent’s loss. Sutton’s and Mitchell’s games
have only one agent, while we have two agents.

5.1 The Grid-World Game

In a 3 x 3 grid world, two agents move around the grid, trying to reach a
goal square. Initially, the two agents are located at the lower left corner and
lower right corner respectively, and the goal is located at the upper middle
cell. An agent can move only one cell at each step. There are at most 4
directions to go from a cell: Left, Right, Up, Down. If two agents attempt
to move into the same cell (excluding the goal cell), they are bounced back
to their previous cells. The game ends when at least one agent reaches the
goal. The two agents can reach the goal at the same time.

At the beginning of the game, each agent does not know the position
of the goalstrategy, but we assume that they know the position of the other
agent. In the terminology of game theory, agents have incomplete but perfect
information. By incomplete information, we mean an agent does not know

19

o 4> e
1N O T MNo

Figure 3: The Grid world game

another agent’s payoff function. In the game here, an agent does not know
the reward the other agent might get from their joint actions. By perfect
information, we mean the current state and previous actions of all agents
are observable. In the grid game, the agents know their positions and all
previous movements taken by all the agents.

The task of each agent is to find its own shortest path to the goal. Since
there are two agents in the system, they have to find shortest paths that do
not interfere with each other. A path represents an agent’s moves (actions) in
different locations. Therefore a path can be viewed as an agent’s stationary
. A shortest path represents an optimal strategy. Two shortest paths that
do not interfere with each other constitute a Nash equilibrium. When state
transition is deterministic, meaning there is no uncertainty for the effect of
the two agents’ moves, there are 5 possible Nash equilibria in this game, as
shown in Figure 4.

This grid-world game can be modeled as a stochastic game. The action
space of agent 4, 1 = 1,2, is A* ={ Left, Right, Down, Up}, with each element
be an action a*. The state spaceis S = {((1,1)(1,2)), ((1,1)(1,3)),...,((3,3)(3,2))},
where each state s = (I',?) represents the agents’ joint location. Agent 7’s
location [, 7 = 1 or 2, is represented by (X,Y’) coordinates, as shown in
Figure 5. Since two agents cannot occupy the same position, neither can
they rest in the goal position before the end of game, the number of possible
joint positions is 8 X 7 = 56.

20

1) (@) (3)
—‘A '
i

—
|

(4) (5)

Figure 4: Nash equilibria of the grid-word game when state transition is
deterministic

If an agent reaches the goal position, it scores 100 points. If it reaches
other positions without colliding with the other agent, it scores 0 points. If it
collides with the other agent, it scores —1 and both agents are bounced back
to their previous positions. Let L(l%, a’) be agent i’s potential new location
resulting from choosing action @ in position I*. The reward function is, for
i=1,2,

| 100 if L(li, a}) = Goal
T;: -1 if L(Z%,a%) :L(l%aa%) #Goa’l
0 otherwise.

Different state transition mappings define different equilibrium strategies.
When state transition is deterministic for every state, the Nash equilibria
are shown in Figure 4. We can see that there is one dominating strategy
for each agent. Agent 1’s dominating strategy is the left path, and agent 2’s
dominating strategy is the right path. Therefore it is relatively easy for a

21

3F—--= n n
2F=—=--nm n n
1L - - —
Plom | o
I I I
I I I
1 1 1 >
0 1 2 3 X

Figure 5: The coordinate for positions of agents in the grid game

learning algorithm to converge to the Nash equilibrium consisting of these
two dominating strategies, which is (1) in Figure 4.

We want to test convergence in a more

difficult case where the domi-

nating Nash equilibrium is eliminated. We define the state transition to be
deterministic for all states except the states with position (1,1) or (3,1). If
an agent chooses Up from position (1,1) or (3, 1), it moves up with probabil-
ity 0.5 and remains in its previous position with probability 0.5. The joint
probabilities of reaching new states from state ((1 1)(3 1)) and agent 1 taking

Up, agent 2 taking Up are therefore

P 1)E D)1 1)E 1), Up,
P(((12)(3 1)I(1 1)(3 1), Up,
P(((11)(32))/(1 1)(3 1), Up,

S
[
o
DN

S

S
N— ——
Il
e
(]

\.C)'l

S

0.25,

Up) — 0.25.

We are interested in state ((1 1)(3 1)) because it is the initial state for our

game.

When agent 1 chooses Up and agent 1 chooses Left from state ((1 1)(3

22

1)), the probabilities for reaching the new states are:

P(((l 1)(2 1)|(1 1)(3 1), Up, Left) = 0.5, (24)
P(((l 2)(21))|(1 1)(3 1), Up, Left) =0.5. (25)

Similarly, we have

P(((2 1)(3 1))|(1 1)(3 1), Right, Up) ~ 0.5,

P(((z 1)(3 2))|(1 1)(3 1), Right, Up) = 0.5.

If the two agents move from other positions, then we have to check
whether they run into the same new position. If so, the agents will be
bounced back to the previous positions with probability 1; if not, the agents
will end up in the new positions with probability 1.

5.2 Stationary Nash Equilibrium Strategies

A stationary Nash equilibrium strategy assigns a mixed strategy to each
state. For example, in state s = ((1,1)(3,1)), agent 1 can have a strategy
7'(s) = {0,1}, and agent 2 can choose 7%(s) = {0, 1}, which are the proba-
bility distributions over each agent’s available actions. In state s, the payoff
matrixes for agents 1 and 2 are, respectively,

ro=[5t 5] =[5 5]

where (r!(s),7%(s)) constitutes a bimatrix game. Such a game can be thought
of as a simplified stochastic game with one period.

Agents’ reward functions for each state can be represented as tables, as
shown in Table 2 and 3.

Right Up
Left | -1,-1 | 0,0
Up|0,0 |00

Table 2: Reward table in state ((1,1)(3,1))

23

Agent 2
Left Right Down Up
Right | 100,0 | 100,0 | 100,0 | 100,100
Down | 0,0 0,0 0,0 100,0

Agent 1

Table 3: Reward table in state ((1,3)(2,2))

A pair of stationary Nash equilibrium strategies is denoted by (7!, 72) =
(=,
L, (%), (72 (sh), . .. ,7r2(s56))>,where mi(s*) = {Pr(Left), Pr(Right), Pr(Down),
Pr(Up)} fori=1,2and k=1,...,56.
The discount rate (3 is 0.99 for both agents in our game.

To see whether a pair of stationary strategies (7}, 72) is a Nash equilib-

rium, we can check whether the following two conditions are satisfied:

bl * 9

7l = arg max vl(s, 7, %) = arg max <ZﬁtE(rt1|7rl 2, 80 = s)) (26)

72 = arg m%xvz(s,wi,ﬂz) = argmax (ZﬁtE(r?\wi,w2, S = s)) (27)
=0
Ifr2(((1,1)(3,1))) = {1, 0}, which means in state ((1,1)(3,1)) agent 2 chooses
Left with probability 1 and Up with probability 0, then agent 1’s best response
to this strategy is always choosing Up. Suppose agent 1 chooses Right in-
stead, the two agent will be bounced back to their original position again
and again. The accumulated discounted payoff for agent 1 is then

vl (st mt,w?) = —1—0.99 — 0.99% — .- . = —100.

If agent 1 chooses Up, the probabilities of transition to new states ((1,2)(2,1))
and ((1,1)(2,1)) are given by equations (24) and (25). Thus the accumulated
discounted payoff for agent 1 is

v'(st,wt, m2) = %(O +.9901(((1,2)(2,1)), 74, 72)) + %(0 +.990 (((1,1)(2,1)), 7", 72)).

Assuming agent 1 chooses the best-response strategies in all other states, we
can propagate back the v-values, and get

x (97) + % x (0) = 48.5.

N | =

vi(st) =

24

where 97 = 0.99 x 0.992 x 100 is agent 1’s discounted Nash equilibrium payoff
at state ((1,2)(2,1)), and 0 is agent 1’s discounted Nash equilibrium payoff
at state ((1,1)(2,1)).

Thus agent 1’s strategy of moving Up in state ((1,1)(3,1)) satisfies equa-
tion (26), and is part of a Nash equilibrium strategy. In this Nash equilib-
rium, agent 2 choose Left in state ((1,1)(3,1)), Left in state ((1,2)(2,1)) and
((1,3)(2,2)), and any action in any other state. Similarly, we can show that
when agent 1 chooses Up in state ((1,1)(3,1)), the best response for agent
2 is moving left. Thus the strategy pair (w1(s!),72(s!)) = ({0,1},{1,0}),
meaning agent 1 taking Up and agent 2 taking Left in state ((1,1)(3,1)), is
part of the Nash equilibrium strategies.

Following the above reasoning, we can see that there are only two sta-
tionary Nash equilibria for the grid game, which are shown as (2) and (3)
in Figure 4. These figures show that given that agent 1 chooses Up in state
((1,1)(3,1)), the best response for agent 2 is choosing Left. Therefore (1), (4)
and (5) are not represent Nash equilibria because agent does not choose its
best response action in those cases.

5.3 Off-line Learning

Our experiments aim to show that with enough training, our multiagent Q-
learning method converges to stationary Nash equilibrium strategies. The
learning results are the final Q-values for all state-action tuples. Each tuple
(s,a',a?) is an entry for the bimatrix game (Q*(s), @*(s)). For 56 states, we
have 56 bimatrix games. According to Theorem 2, a Nash equilibrium for
the bimatrix game (Q*(s), @*(s)) is part of the stationary Nash equilibrium
of the whole game.
In our experiments, agents start with arbitrary Q-values. We let Q' (s, a*, a?) =

0 and Q*(s,a',a?) = 0 for all s,a, a®. The initial state is ((1,1)(3,1)), which
means agent 1 is in the left lower corner and agent 2 is in the right lower
corner. Given the current state, agents choose their actions simultaneously.
They then observe their own and the other’s rewards and the next state.
After that, agents update their Q-values according to (23). In the new state,
agents repeat the above process. When one or both agents move into the
goal position, the game re-starts with a new episode. In the new episode,
each agent is randomly assigned a new position (except the goal), and the
training repeats. The training stops after 5000 episodes. Each episode on
average takes about 5 steps. So a complete training lasts about 25,000 steps.

25

The Nash equilibrium Q-values predicted by theory for state ((1,1)(3,1))
is shown in Figure 6. In this figure, (R;, Rs) represents a pair of Nash equi-
librium payoffs result from the fact that agent 1 and 2 follow their stationary
Nash equilibrium strategies from state ((1,1)(3,1)). The values of Ry and R»
depend on which Nash equilibrium the agents choose.

Agent 2
Left Up
Agent 1 pioht [1+ 0.09/;, 110098, [009x99, Tx071 %0
Up| 3x97+3x0,099%x99 [2x97+ 1R,z X97+ 1R,
Agent 1 Up and agent 2 left Agent 1 Up and agent 2 left
Agent 2 Agent 2
Agent 1 Left Up Left Up
Right | 47, 96 | 98,48.5 Right | 96,47 | 98,48.5
Up | 48.5,98 | 60.6, 73 Up | 48.5,98 | 73, 60.6

! !

(1‘,1) T3 @O | 31

Figure 6: Nash equilibrium Q-values in state ((1,1)(3,1))

During learning, each agent maintains its own Q-values and the Q-values
of its counterpart. When updating the Q-values, an agent has to choose a
Nash equilibrium value from the next bimatrix game (Q'(s'), @*(s')), where
s' is the next state. There may be multiple Nash equilibria. We assume that
the agents choose the same Nash equilibrium to update their Q-values. If
both agents observe the same information in the game, choosing the same
Nash equilibrium to update their Q-values, and use the same updating rule,
they would be able to learn the Q-values of the other agent.

Our experiments suggest that the final Q-values are sensitive to the learn-
ing rate. When the learning rate decreases too fast, oy = 1/t, the old results
are not passed to the new one and there is very little learning. When learning

26

}

Agent 2 ‘
-

Left Up (1,1 (3,1

Right [39,84 | 97,51

Up | 46,93 | 59,74

Agent 1

Figure 7: Final Q-values in state ((1,1)(3,1))

rate decrease too slow, oy = 0.999¢, the new results have little weight in the
whole evaluation. We also have set learning rate to constant 0.5 and 0.9, in
which the Q-learning does not converge to a Nash equilibrium. The learn-
ing rate we finally adopt is ay(s, a', a?) = m, where ny(s,a', a?) is the
number of times the tuple (s, al, a?) has been visited. It is easy to show that
this definition of learning rate satisfies the conditions Y, (s, a',a?) = oo
and Y, (s, a', a®) < oo of Assumption 2.

When there are multiple Nash equilibria, we order them in a list. We
show the experimental results for two cases. In case 1, agents always agree
to choose the first Nash equilibrium; in case 2, agents always agree to choose
the second Nash equilibrium if there is more than one. The results for Case 1
are shown in Figures 7, 8, and 9. The results for Case 2 are shown in Figures
10, 11, and 12.

Our experimental results show that when agents agree on their choice of
Nash equilibrium of each bimatrix game during learning, their learning con-
verges to a Nash equilibrium of the whole (stochastic) game. This means the
Q-learning method still converges when there exist multiple Nash equilibria.

We further test the cases where agents disagree on the Nash equilibrium
they choose. When there exist multiple Nash equilibria, if agents choose
actions that belong to different Nash equilibria, the resulting joint action is
not, a Nash equilibrium. This is called the equilibrium selection problem. We
test two cases. In case 1, agent 1 always chooses the first Nash equilibrium,
agent 2 always chooses the second Nash equilibrium; in case 2, agent 1 chooses
the Nash equilibrium that yields that highest expected payoff to agent 1
itself, agent 2 chooses the Nash equilibrium that yields that highest expected

27

Nash equilibrium Q-values

Left Right Up
Agent 1 Right | 99, 0 99, 0 97, 97
Down | 97, 97 | 0.99R;,0.99R, | 0, 99
Up| 99,0 99, 0 99, 99
Agent 2
Left Right Up
Agent 1 Right | 97,0 | 98,0 | 84, 87
Down | 86, 86 | 41, 88 | 0, 99
Up| 99,0 | 99,0 | 99, 96

(1.2) A

(21)

Figure 8: Final Q-values in state ((1,2)(2,1))

28

Nash equilibrium Q-values
Left Right Down Up
Right | 100, 0 | 100, 0 | 100, 0 | 100, 100
Down | 98,98 | 98,98 | 98,98 | 0, 100
Agent 2
Left Right Down Up
Right | 100,0 | 100,0 | 100,0 | 100,100
Down | 95,95 | 98,98 | 85,85 | 0,100

@w3) | A

Agent 1

Agent 1

(2.2)

Figure 9: Final Q-values in state ((1,3)(2,2))

payoff to agent 2 itself. The results for Case 1 under state ((1, 1)(3, 1)) are
shown in Figure 13. The results for state ((1,2)(2,1)) and ((1,3)(2,2)) are not
shown because they have the same Nash equilibria as in previous cases. Our
experiments for Case 1 show that even though agents have learned different
final Q-values due to their different choices of Nash equilibria, their final Q-
values are still close to each other. There is a unique Nash equilibrium for
each of the final bimatrix games, and both agents agree on them.

The results for Case 2 under state ((1, 1)(3, 1)) are shown in Figure 14.
The agents have learned very similar Q-values, and they are able to agree on
the final Nash equilibrium.

6 Discussions on Online Learning Performance

We are interested in applying the multiagent Q-learning method to online
learning. In off-line learning, action choices during learning are not impor-
tant as long as agents try out all possible actions with infinitely times. In
online learning, however, an agent has to choose actions at each step so as
to maintain a reasonable run-time performance.

29

}

Agent 2 ‘
-

Left Up (1.1) (3.1

Right [49, 82 | 46, 51

Up | 51,92 | 62, 73

Agent 1

Figure 10: Final Q-values of choosing second Nash in state ((1,1)(3,1))

(1.2) A
Agent 2 ‘
Left Right Up (2,2)
Agent 1 Right| 96,0 | 98,0 | 94, 84
Down | 97, 85 | 50, 85 | 0, 99
Up| 99,0 | 99,0 |99, 96

Figure 11: Final Q-values of choosing second Nash in state ((1,2)(2,1))

There are two reasons that an agent might care about its run-time perfor-
mance. First, the agent is uncertain about when the game will end. Therefore
it cannot solely rely on the asymptotic property of the Q-learning algorithm.
By getting a reasonable payoff at each step, the agent can maintain a payoff
as good as possible when the game ends. Second, In certain games, each
agent has to maintain some minimum payoff above a threshold throughout
the game. The payoff can be thought of as the agent’s energy level or food
storage level. Below the threshold, the agent will die.

In a dynamic setting, an optimal action should not only maximize an
agent’s current payoff, but also future payoffs. If the agent has no uncer-
tainty of the environment, a dynamic programming method can be used to
find the optimal action. When the uncertainty exists, the agent’s current

30

13}

(2.2)

Agent 2
Left Right Down Up
Right | 100,0 | 100,0 | 100,0 | 100,100
Down | 98,95 | 98,94 | 98,85 | 0,100

Agent 1

Figure 12: Final Q-values of choosing second Nash in state ((1,3)(2,2))

Agent 1’s learning result Agent 2’s learning result
Agent 2 Agent 2
Agent 1 Left Up Agent 1 Left Up
Right | 39,84 97,51 Right | 49, 82 | 46, 51
Up | 46,93 59,74 Up | 51,92 | 62,73

! !

(1‘,1) REEE (1"1> TGy

Figure 13: Final Q-values with agent 1 choosing the first Nash and agent 2
choosing the second Nash in state ((1,1)(3,1))

31

Agent 1’s learning result Agent 2’s learning result

Agent 2 Agent 2
Agent 1 Left Up Agent 1 Left Up
Right | 84,46 92,50 Right | 83, 47 | 91, 50
Up | 54,93 73,62 Up | 52,93 | 73,62

! !

T ™ (‘3,1) o™ (L,l)

Figure 14: Different Q-values by choosing the expected Nash in state

(1,1)(3,1))

“best” action may not be the actual best. Therefore the agent has to explore
the environment to get more information, while it aspires to maintain the
good performance. The tradeoff between the current best action and a po-
tential best action in the long run is the so-called exploitation vs. exploration
tradeoff.

The uncertainty of the environment can be characterized by different
things. In a multi-armed bandit problem, the reward of each action (arm)
follows a normal distribution, whose characteristic parameters are unknown
to the agent. Meuleau and Bourgine [10] extend the exploration techniques
studied in multi-armed bandit problems to multi-state decision problems.

Different exploration strategies have different merits. For simplicity, we
adopt e-Greedy exploration strategy defined by Singh et al. [17]. In this
strategy, the agent explores with probability €;(s) and choose the optimal
action with probability 1 — €;(s). Singh et al [17] proved that when ¢/(s) =
c/ni(s) with 0 < ¢ < 1, the learning policy satisfies the GLIE (Greedy in the
Limit with Infinite Exploration) property.

The exploitation action is an action that satisfies:

max E(Q (ax, b, 5)) = max (3" P1)Q (ax. b, s)) , (28)
ag ag
b
where P(b) is agent 1’s expectation on agent 2’s probability of choosing action

32

b. Agent 1 derives P (b) from counting agent 2’s frequencies of taking different
actions. This is similar as in fictitious play.

We test agent 1’s performance under three different strategies. These
strategies include the exploit strategy, the random (exploration) strategy,
and the exploit vs. exploration strategy. In the exploit strategy, an agent
tries every action at least once, then it always chooses a best response action
based on criterion (28). In the pure exploration case, an agent always chooses
an action randomly. In a large number of trials, this usually lead to equal
chances of trying out different actions.

One of the experimental results is shown in Figures 15. The experiments
show that when agent 2 uses the exploit strategy, agent 1 performs best by
using exploit strategy too. This is as we expected because the exploit agent
takes advantage of the fixed behavior of the other agent.

Agent 2 is an exploit agent
12 T T T

‘
\."'l ! Fipes M
Tt e b
oy v

A

10

Average reward

— - Agent 1: Exploit
0l |— Agent 1:Exploit-and-exploration R
Agent 1:Random

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Steps in the game

Figure 15: Agent 1’s performance under different exploration strategies

33

7 Summary

We define a multiagent Q-learning method, and prove that it converges to
a Nash equilibrium under certain assumptions. This learning method is im-
plemented in a grid-world game. We show that agents can use this learning
method to learn stationary Nash equilibrium strategies. In theory, the con-
vergence of our learning algorithm relies on certain restrictions of the game
structure during learning, which imply a unique Nash equilibrium value in
each bimatrix game. In the experiments, we relax the restrictions and show
that convergence is still possible when there are multiple Nash equilibria. We
further discuss the application of this learning method to online settings, and
provide some preliminary results.

References

[1] Tucker Balch. Learning roles: Behavioral diversity in robot teams. In
Sen [16].

[2] Caroline Claus and Craig Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. In Proceedings of the Fif-
teenth National Conference on Artificial Intelligence, pages 746-752,
Madison, WI, 1998.

[3] Edwin De Jong. Non-random exploration bonuses for online reinforce-
ment learning. In Sen [16].

[4] Jerzy Filar and Koos Vrieze. Competitive Markov Decision Process.
Springer-Verlag, 1997.

[6] Douglas H. Fisher. Knowledge acquisition via incremental conceptual
clustering. Machine Learning, 2:139-172, 1987.

[6] John Herz, A. Krogh, and R. G. Palmer. Introduction to the Theory of
Neural Computation. Addison-Wesley, Redwood City, California, 1991.

[7] Leslie Kaelbling, Michael L. Littman, and Andrew W. Moore. Rein-
forcement learning: A survey. Journal of Artificial Intelligence Research,
4:237-285, 1996.

34

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Pat Langley, Herbert Simon, Gary L. Bradshaw, and J. M. Zytkow. Sci-
entific Discovery: Computational Explorations of the Creative Processes.
MIT Press, Cambridge, Massachusetts, 1987.

Michael L. Littman. Markov games as a framework for multi-agent
reinforcement learning. In Proceedings of the Eleventh International
Conference on Machine Learning, pages 157-163. New Brunswick, 1994.

Nicolas Meuleau and Paul Bourgine. Exploration of multi-state environ-
ments: Local measures and back-propagation of uncertainty. Machine
Learning, 35(2), May 1999.

Tom Mitchell. Generalization as search. Artificial Intelligence,
18(2):203-226, 1982.

Tom Mitchell. Machine Learning, chapter 13. Reinforcement Learning,
pages 367-390. McGraw-Hill, 1997.

Kumpati S. Narendra and Mandayam A.L. Thathachar. Learning Au-
tomata: an Introduction. Prentice Hall, 1989.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, New York, 1994.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106,
1986.

Sandip Sen, editor. Collected Papers from the AAAI-97 Workshop on
Multiagent Learning. AAAI Press, 1997.

Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba
Szepesvari. Convergence results for single-step on-policy reinforcement
learning algorithms. Machine Learning. To appear.

Peter Stone. Layered Learning in Multi-Agent Systems. PhD thesis,
Carnegie Mellon University, December 1998.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

35

[20] Csaba Szepesvari and Michael L. Littman. A unified analysis of value-
function-based reinforcement-learning algorithms. submitted for review,
October 1998.

[21] Ming Tan. Multi-agent reinforcement learning: Independent vs. coop-
erative agents. In Proceedings of the Tenth International Conference on
Machine Learning, pages 330-337, Amherst, MA, June 1993. Morgan
Kaufmann.

[22] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine
Learning, 3:279-292, 1992.

36

