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ABSTRACT
Ranking systems are a fundamental ingredient of basic e-
commerce and Internet Technologies. In this paper we con-
sider the issue of incentives in ranking systems, where agents
act in order to maximize their position in the ranking, rather
than to get a correct outcome. We consider two different no-
tions of incentive compatibility and several basic properties
of ranking systems, and show that in general no incentive
compatible ranking system satisfying the conditions exist.
However, we show that some artificial incentive compatible
ranking systems do exist, satisfying only some of the prop-
erties.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory; J.4 [Social

and Behavioral Sciences]: Economics
; H.3.3 [Information Storage and Retrieval]: Infor-

mation Search and Retrieval

General Terms
Algorithms, Economics, Human Factors, Theory

Keywords
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1. INTRODUCTION
The ranking of agents based on other agents’ input is fun-

damental to e-commerce and multi-agent systems (see e.g.
[5, 14]). Moreover, the ranking of agents based on other
agents’ input have become a central ingredient of a variety
of Internet sites, where perhaps the most famous examples
are Google’s PageRank algorithm[11] and ebay’s reputation
system[13].
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This basic problem introduces a new social choice model.
In the classical theory of social choice, as manifested by Ar-
row[3], a set of agents/voters is called to rank a set of alter-
natives. Given the agents’ input, i.e. the agents’ individual
rankings, a social ranking of the alternatives is generated.
The theory studies desired properties of the aggregation of
agents’ rankings into a social ranking. In particular, Arrow’s
celebrated impossibility theorem[3] shows that there is no
aggregation rule that satisfies some minimal requirements,
while by relaxing any of these requirements appropriate so-
cial aggregation rules can be defined. The novel feature of
the ranking systems setting is that the set of agents and
the set of alternatives coincide. Therefore, in such setting
agents consider the effect of their votes on their own rank-
ing, sometimes even more than they consider the effect the
vote has on the agents actually voted for.

Notice that a natural interpretation/application of this
setting is the ranking of Internet pages. In this case, the set
of agents represents the set of Internet pages, and the links
from a page p to a set of pages Q can be viewed as a two-
level ranking where agents in Q are preferred by agent(page)
p to the agents(pages) which are not in Q. The problem of
finding an appropriate social ranking in this case is in fact
the problem of (global) page ranking. Particular approaches
for obtaining a useful page ranking have been implemented
by search engines such as Google[11].

In the ranking systems setting, an agent(page) can only
vote(link) to a set of agents(pages), leading to a dichotomous
setting in which classical impossibility results do not ap-
ply. In particular, in the classical dichotomous social choice
setting, the Approval Voting social choice rule satisfies all
classical requirements of Arrow’s and similar impossibility
theorems.

The theory of social choice consists of two complementary
axiomatic perspectives:

• The descriptive perspective: given a particular rule r
for the aggregation of individual rankings into a social
ranking, find a set of axioms that are sound and com-
plete for r. That is, find a set of requirements that r
satisfies; moreover, every social aggregation rule that
satisfies these requirements should coincide with r. A
result showing such an axiomatization is termed a rep-
resentation theorem and it captures the exact essence
of (and assumptions behind) the use of the particular
rule.

• The normative perspective: devise a set of require-



ments that a social aggregation rule should satisfy, and
try to find whether there is a social aggregation rule
that satisfies these requirements.

Many efforts have been invested in the descriptive approach
in the framework of the classical theory of social choice. In
that setting, representation theorems have been presented
for major voting rules such as the majority rule[9] (see [10]
for an overview). Recently, we have successfully applied the
descriptive perspective in the context of ranking systems
by providing a representation theorem[2] for the well-known
PageRank algorithm [11], which is the basis of Google’s
search technology. Still in the descriptive approach, var-
ious known ranking systems have been recently compared
with regard to certain criteria by [4], and several ranking
rules have been axiomatized [12, 16].

An excellent example for the normative perspective is Ar-
row’s impossibility theorem[3]. In [1], we have proven an
impossibility theorem for ranking systems where the set of
voters and the set of alternatives coincide, when assuming
two moderately strong axioms.

Although the above mentioned work consists of a sig-
nificant body of rigorous research on ranking systems, the
study did not consider the effects of the agents’ incentives
on ranking systems. The issue of incentives has been exten-
sively studied in the classical social choice literature. The
Gibbard–Satterthwaite theorem[7, 15] shows that in the clas-
sical social welfare setting, it is impossible to aggregate the
rankings in a strategyproof fashion under some basic condi-
tions. The incentives of the candidates themselves were also
considered in the context of elections[6], where a related im-
possibility result is presented. However, these impossibility
results do not apply to the ranking systems setting due to
its dichotomous nature.

In this paper we consider the issue of incentives in ranking
systems. We define a notion of strong incentive compatibil-
ity, where an agent is concerned with its exact position in
the ranking, and a notion of k-incentive compatibility, where
the agent is concerned in its expected position in the rank-
ing with tolerance of k. We see that when we assume some
very basic properties, such 0-incentive compatible ranking
systems do not exist. However, if we assume only some of
these properties, some artificial incentive compatible rank-
ing systems do exist.

Our results expose some surprising and illuminating ef-
fects of some basic properties one may require a ranking
system to satisfy on the existence of incentive compatible
ranking systems.

This paper is structured as follows: In Section 2 we for-
mally introduce the notion of ranking systems and in Sec-
tion 3 we define some basic properties of ranking systems.
In Section 4 we introduce our two notions of incentive com-
patibility. We then show a strong possibility result in Sec-
tion 5, when we do not assume the minimal fairness prop-
erty. In Section 6 we provide a full classification of the ex-
istence of incentive compatible ranking systems when we do
assume minimal fairness. Section 7 provides some illumi-
nating lessons learned from this classification. Finally, in
Section 8 we introduce the isomorphism property and rec-
ommend further research with regard to the classification of
incentive compatibility under isomorphism.

2. RANKING SYSTEMS
Before describing our results regarding ranking systems,

we must first formally define what we mean by the words
“ranking system” in terms of graphs and linear orderings:

Definition 1. Let A be some set. A relation R ⊆ A×A
is called an ordering on A if it is reflexive, transitive, and
complete. Let L(A) denote the set of orderings on A.

Notation 1. Let � be an ordering, then ' is the equal-
ity predicate of �, and ≺ is the strict order induced by �.
Formally, a ' b if and only if a � b and b � a; and a ≺ b if
and only if a � b but not b � a.

Given the above we can define what a ranking system is:

Definition 2. Let GV be the set of all graphs on a vertex
set V that do not include self edges1. A ranking system F is
a functional that for every finite vertex set V maps graphs
G ∈ GV to an ordering �F

G∈ L(V ).

One can view this setting as a variation/extension of the
classical theory of social choice as modeled by [3]. The rank-
ing systems setting differs in two main properties. First, in
this setting we assume that the set of voters and the set
of alternatives coincide, and second, we allow agents only
two levels of preference over the alternatives, as opposed to
Arrow’s setting where agents could rank alternatives arbi-
trarily.

3. BASIC PROPERTIES OF RANKING SYS-
TEMS

Now we define some basic properties of ranking systems to
guide our classification. Most properties have two versions
– one weak and one strong.

First of all, we define the notion of a trivial ranking sys-
tem, which ranks any two vertices the same way in all graphs.

Definition 3. A ranking system F is called trivial if for
all vertices v1, v2 and for all graphs G, G′ which include these
vertices: v1 �F

G v2 ⇔ v1 �F
G′ v2. A ranking system F is

called nontrivial if it is not trivial.
A ranking system F is called infinitely nontrivial if there

exist vertices v1, v2 such that for all N ∈ N there exists n >
N and graphs G = (V, E) and G′ = (V ′, E′) s.t. |V | =
|V ′| = n, v1 �F

G v2, but v2 ≺F
G′ v1.

A basic requirement from a ranking system is that when
there are no votes in the system, all agents must be ranked
equally. We call this requirement minimal fairness2.

Definition 4. A ranking system F is minimally fair if
for every graph G = (V, ∅) with no edges, and for every
v1, v2 ∈ V : v1 'F

G v2.

Another basic requirement from a ranking system is that as
agents gain additional votes, their rank must improve, or
at least not worsen. Surprisingly, this vague notion can be
formalized in (at least) two distinct ways: The monotonic-
ity property considers the situation where one agent has a

1Our results are still correct when allowing self-edges, but
for the simplicity of the exposition we assume none exist.
2A stronger notion of fairness, the isomorphism property,
will be considered in Section 8.
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Figure 1: Example graphs for the basic properties

of ranking systems

superset of the votes another has in the same graph, where
the positive response property considers the addition of a
vote for an agent between graphs. This distinction is impor-
tant because, as we will see, the two properties are neither
equivalent, nor imply each other.

Notation 2. Let G = (V, E) be a graph, and let v ∈ V
be a vertex. The predecessor set of v is PG(v) = {v′|(v′, v) ∈
E}. The successor set of v is SG(v) = {v′|(v, v′) ∈ E}.

Definition 5. Let F be a ranking system. F satisfies
weak positive response if for all graphs G = (V, E) and for
all (v1, v2) ∈ (V × V ) \ E, and for all v3 ∈ V : Let G′ =
(V, E ∪ (v1, v2)). Then, v3 �F

G v2 implies v3 ≤F
G′ v2 and

v3 <F
G v2 implies v3 <F

G′ v2. F furthermore satisfies strong
positive response if v3 �F

G v2 implies v3 <F
G′ v2.

Definition 6. A ranking system F satisfies weak mono-
tonicity if for all G = (V, E) and for all v1, v2 ∈ V : If
P (v1) ⊆ P (v2) then v1 �F

G v2. F furthermore satisfies
strong monotonicity if P (v1) ( P (v2) additionally implies
v1 ≺F

G v2.

Example 1. Consider the graphs G1 and G2 in Figure
1. Further assume a ranking system F ranks a 'F

G1
d in

graph G1. Then, if F satisfies weak positive response, it
must also rank a �F

G2
d in G2. If F satisfies the strong

positive response, then it must strictly rank a ≺F
G2

d in G2.

However, if we do not assume a �F
G1

d, F may rank a and
d arbitrarily in G2.

Now consider the graph G1, and note that P (a) = {c} (
{c, d} = P (b). This is the requirement of the weak (and
strong) monotonicity property, and thus any ranking system
F that satisfies weak monotonicity must rank a �F

G1
b, and it

is satisfies strong monotonicity, it must strictly rank a ≺F
G1

b.

Note that the weak monotonicity property implies minimal
fairness. This is due to the fact that when no votes are cast,
all vertices have exactly the same predecessor sets and thus
must be ranked equally.

Yet another simple requirement from a ranking system is
that it does not behave arbitrarily differently when two sets
of agents with their respective votes are considered one set.

Definition 7. Let F be ranking system and let G1 =
(V1, E1) and G2 = (V2, E2) be graphs s.t. V1 ∩ V2 = ∅ and

let v1, v2 ∈ V1 be two vertices. Let G1 ∪G2 = (V1 ∪ V2, E1 ∪
E2). F satisfies the weak union condition if v1 �F

G1
v2 ⇔

v1 �F
G1∪G2

v2. Let G′ = (V1 ∪ V2, E1 ∪ E2 ∪ E), where
E ⊆ V1 ×V2 is in an arbitrary set of edges from V1 to V2. F
satisfies the strong union condition if v1 �F

G1
v2 ⇔ v1 �F

G′

v2.

Surprisingly, we will see that even the weak union condition
has great significance towards the existence of a ranking
system or lack thereof. One reason for this effect, is that
a ranking system satisfying this condition cannot behave
differently depending on the size of the graph.

3.1 Satisfiability
Now that we have defined some properties, the question

arises whether these properties can be satisfied simultane-
ously, and if so, which known ranking systems have which
properties.

It turns out that, with the exception of the strong union
condition, all the properties above are satisfied by almost
all known ranking systems such as the PageRank[11] ranking
system (with a damping factor) and the authority ranking by
the Hubs&Authorities algorithm[8]. These ranking systems
do not satisfy the strong union condition, as in both systems
outgoing links outside an agent’s strongly connected compo-
nent may affect ranks inside the strongly connected compo-
nent, either by dividing the importance (in PageRank) or
by affecting the hubbiness score in Hubs&Authorities.

Furthermore, the simple approval voting ranking system
satisfies all the strong properties mentioned above. The ap-
proval voting ranking system can be defined as follows:

Definition 8. The approval voting ranking system AV
is the ranking system defined by:

v1 �AV
G v2 ⇔ |P (v1)| ≤ |P (v2)|.

Fact 1. The approval voting ranking system AV satis-
fies minimal fairness, strong monotonicity, strong positive
response, the strong union condition, and infinite nontrivi-
ality.

The proof is this fact is left as an exercise to the reader.
These facts lead us to believe that the properties defined

above (perhaps with the exception of the strong union con-
dition), should all be satisfied by any reasonable ranking
system, at least in their weak form. We will soon show that
this is not possible when requiring incentive compatibility.

4. INCENTIVE COMPATIBILITY
Ranking systems do not exist in empty space. The results

given by ranking systems frequently have implications for
the agents being ranked, which are the same agents that are
involved in the ranking. Therefore, the incentives of these
agents should in many cases be taken into consideration.

In our approach, we require that our ranking system will
not rank agents better for stating untrue preferences, but
we assume that the agents are interested only in their own
ranking (and not, say, in the ranking of those they prefer).

The strong incentive compatibility property further as-
sumes a strong preference of the agents with regard to their
rank: Each agent would like to minimize the number of
agents ranked higher than herself, and then minimize the
number of agents ranked the same as herself.
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Definition 9. Let F be a ranking system. F satisfies
strong incentive compatibility if for all true preference graphs
G = (V, E), for all vertices v ∈ V , and for all prefer-
ences Vv ⊆ V reported by v: Let E′ = E \ {(v, x)|x ∈
V }∪{(v, x)|x ∈ Vv} and G′ = (V, E′) be the reported prefer-
ence graph. Then, |{x ∈ V |v ≺F

G′ x}| ≥ |{x ∈ V |v ≺F
G x}|;

and if |{x ∈ V |v ≺F
G′ x}| = |{x ∈ V |v ≺F

G x}| then |{x ∈
V |v 'F

G′ x}| ≥ |{x ∈ V |v 'F
G x}|.

We can weaken this requirement by assuming that an agent
in interested in its expected rank, assuming equally ranked
agents are ordered randomly. Formally, the expected rank
(henceforth referred to simply as rank) is defined as follows:

Definition 10. The rank of a vertex v in a graph G un-
der the ranking system F is defined as

rF
G(v) = 1

2

˛

˛{v′|v′ ≺ v}
˛

˛ + 1
2

˛

˛{v′|v′ � v}
˛

˛ .

Given this definition of rank, we can now require that an
agent cannot improve its rank by more than some constant
k.

Definition 11. Let F be ranking system and let G1 =
(V, E1) and G2 = (V, E2) be graphs s.t. for some v ∈ V , and
for all v′ ∈ V \ {v}, v′′ ∈ V : (v′, v′′) ∈ E1 ⇔ (v′, v′′) ∈ E2.
F is called k-incentive compatible if

˛

˛rF
G2

(v) − rF
G1

(v)
˛

˛ ≤ k.

In the rest of this paper we will focus on 0-incentive com-
patible ranking systems and those that satisfy strong incen-
tive compatibility. Interestingly, we will see in the remain-
der of this paper that these incentive compatibility prop-
erties are very hard to satisfy, and no common nontrivial
ranking system satisfies them. In particular, the PageR-
ank, Hubs&Authorities and Approval Voting ranking sys-
tems mentioned above are not 0-incentive compatible. In
fact, these systems are not even ( n

2
− 1)-incentive compati-

ble when n is the number of vertices in the graph.

Example 2. To see that the approval voting ranking sys-
tem AV is not (n

2
−1)-incentive compatible, consider a graph

G with n vertices {v1, . . . , vn}, where v1 points to {v2, . . . , vn},
and no other edges exist, as illustrated in Figure 2. In this
graph, AV ranks v1 � v2 ' · · · ' vn, and thus rAV

G (v1) = 1
2
.

However in the graph G′ where v1 does not point to any
vertex, the ranking is be v1 ' v2 ' · · · ' vn, and thus
rAV

G′ (v1) = n
2
. We see that v1 can improve its rank by n−1

2
,

and thus the ranking system cannot be ( n
2
−1)-incentive com-

patible.

5. POSSIBILITY WITHOUT MINIMAL FAIR-
NESS

To begin our classification of the existence of incentive
compatible ranking systems, we first consider ranking sys-
tems which do not satisfy minimal fairness. We have already
seen that minimal fairness is implied by weak monotonicity,
so we cannot hope to be satisfy weak monotonicity without
minimal fairness. As it turns out, the strong versions of all
the remaining properties considered above can, in fact, be
satisfied simultaneously.

Proposition 1. There exists a ranking system F1 that
satisfies strong incentive compatibility, strong positive re-
sponse, infinite nontriviality, and the strong union condi-
tion.

Proof. Assume a lexicographic order < over vertex names,
and assume three consecutive vertices v1 < v2 < v3. Then,
F1 is defined as follows (let G = (V, E) be some graph):

v �F1

G u ⇔ [v ≤ u ∧ (v 6= v2 ∨ u 6= v3)] ∨

[v = v2 ∧ u = v3 ∧ (v1, v2) /∈ E] ∨

[v = v3 ∧ u = v2 ∧ (v1, v2) ∈ E].

That is, vertices are ranked strictly according to their lexico-
graphic order, except when (v1, v2) ∈ E, whereas the ranking
of v2 and v3 is reversed.

F1 is infinitely nontrivial because graphs with the vertices
v1, v2, v3 are ranked differently depending on the existence of
the edge (v1, v2), and these exist for any |V | ≥ 3.

F1 satisfies strong incentive compatibility because the only
vertex that can make any change in the ranking is v1 and it
cannot ever change its own position in the ranking at all.

F1 satisfies strong positive response because the ordering of
the vertices remains unchanged by anything but the (v1, v2)
edge, and is always strict. The addition of the (v1, v2) edge
only increases the relative rank of v2 as required.

Assume for contradiction that F1 does not satisfy the strong
union condition. Then, there exist two disjoint graphs G1 =
(V1, E1), G2 = (V2, E2) and an edge set E ⊆ V1 × V2 such

that the ranking �F1

G of graph G = (V1 ∪ V2, E1 ∪ E2 ∪ E)

is inconsistent with �F1

G1
. First note that the only inconsis-

tency that may arise is with the ranking of v2 compared to
v3. Therefore, {v2, v3} ⊆ V1. Furthermore, for the ranking
to be inconsistent (v1, v2) /∈ E1 and (v1, v2) ∈ E1 ∪ E2 ∪ E
(the opposite is impossible due to inclusion). Furthermore,
v2 ∈ V1 ⇒ v2 /∈ V2 ⇒ (v1, v2) /∈ V1 × V2 ⇒ (v1, v2) /∈ E.
Thus we conclude that (v1, v2) ∈ E2, and thus v2 ∈ V2, in
contradiction to the fact that v2 ∈ V1.

6. FULL CLASSIFICATION UNDER MINI-
MAL FAIRNESS

We are now ready to state our main results:

Theorem 1. There exist 0-incentive compatible, infinitely
nontrivial, minimally fair ranking systems F2, F3, F4 that
satisfy either one of the three properties: weak monotonic-
ity; weak positive response; and the weak union condition.
However, there is no 0-incentive compatible, nontrivial, min-
imally fair ranking system that satisfies any two of those
properties.



Theorem 2. There is no 0-incentive compatible, nontriv-
ial, minimally fair ranking system that satisfies either one
the four properties: strong monotonicity, strong positive re-
sponse, the strong union condition and strong incentive com-
patibility.

The proof of these two theorems is split into ten different
cases that must be considered – three possibility proofs for
F2, F3. and F4, three impossibility results with pairs of
weak properties, and four impossibility results with each of
the strong properties. We will now prove each of these cases.

6.1 Possibility Proofs

Proposition 2. There exists a 0-incentive compatible rank-
ing system F2 that satisfies minimal fairness, weak positive
response, and infinite nontriviality.

Proof. Let v1, v2, v3 be some vertices and let G = (V, E)
be some graph, then F2 is defined as follows:

v � u ⇔ [v 6= v3 ∧ u 6= v2] ∨ v = u ∨

(v1, v3) /∈ E ∨ v2 /∈ V.

That is, F2 ranks all vertices equally, except when the edge
(v1, v3) exists. Then, F2 ranks v2 ≺ v ' u ≺ v3 for all
v, u ∈ V \ {v2, v3}.

F2 satisfies minimal fairness because when no edges exist,
the clause (v1, v3) /∈ E always matches, and thus all vertices
are ranked equally, as required. F2 satisfies infinite non-
triviality, because for all |V | ≥ 3 there exists a graph which
includes the vertices v1, v2, v3 and the edge (v1, v3), which is
ranked nontrivially.

F2 satisfies weak positive response because the only edge
addition that changes the ranks of the vertices in the graph
(the addition of (v1, v3)) indeed doesn’t weaken the target
vertex v3.

F2 is 0-incentive compatible because only v1 can affect the
ranking of the vertices in the graph (by voting for v3 or not),

but r(v1) is always |V |
2

.

Proposition 3. There exists a 0-incentive compatible rank-
ing system F3 that satisfies minimal fairness, the weak union
condition, and infinite nontriviality.

Proof. Let v1, v2, v3 be some vertices and let G = (V, E)
be some graph, then F3 is defined as follows:

v � u ⇔ [v 6= v3 ∧ u 6= v2] ∨ v = u ∨

{(v1, v2), (v1, v3)} 6⊆ E.

That is, F3 ranks all vertices equally, except when the edges
(v1, v2), (v1, v3) exist. Then, F3 ranks v2 ≺ v ' u ≺ v3 for
all v, u ∈ V \ {v2, v3}.

F3 satisfies minimal fairness because when no edges ex-
ist, the clause {(v1, v2), (v1, v3)} 6⊆ E always matches, as
required. F3 satisfies infinite nontriviality, because for all
|V | ≥ 3 there exists a graph which includes the vertices
v1, v2, v3 and the edges {(v1, v2), (v1, v3)}, which is ranked
nontrivially.

To prove F3 satisfies the weak union condition, let G1 =
(V1, E1) and G2 = (V2, E2) be some graphs such that V1 ∩
V2 = ∅, and let G = G1 ∪ G2. If {(v1, v2), (v1, v3)} 6⊆ E1 ∪
E2 then by the definition of F3, it must rank all vertices in
all graphs G1, G2, G equally, as required. Otherwise, for all
v, u ∈ (V1 ∪ V2) \ {v2, v3}: v2 ≺F3

G v 'F3

G u ≺F3

G v3. Assume

w

m1

m2

m3

m4

m0

s

Figure 3: Nontrivially ranked graph for F4

wlog that (v1, v2) ∈ E1 and thus v1, v2 ∈ V1. But then also
(v1, v3) ∈ E1 and thus also v3 ∈ V1. By the definition of

F3, for all v, u ∈ V1 \ {v2, v3}: v2 ≺F3

G1
v 'F3

G1
u ≺F3

G1
v3.

As v1, v2, v3 /∈ G2, trivially for all v, u ∈ V2: v 'F3

G2
u, as

required.
F3 is 0-incentive compatible because only v1 (if at all) can

affect the ranking of the vertices in the graph (by voting for

v2 and v3 or not), but r(v1) is always |V |
2

.

Proposition 4. There exists a 0-incentive compatible rank-
ing system F4 that satisfies minimal fairness, weak mono-
tonicity, and infinite nontriviality.

Proof. The ranking system F4 ranks all vertices equally,
except for graphs G = (V, E) for which |V | ≥ 7, V =
{w, s, m0, . . . , mn−1}, and for all i ∈ {0, . . . , n−1}: (mi, s) ∈
E, (mi, w) /∈ E, and for all j ∈ {0, . . . , n−1}: (mi, mj) ∈ E
if and only if j = (i+1) mod n or j = (i+2) mod n. Figure
3 includes an example graph that satisfies these conditions.
In such graphs, F4 ranks w ≺F4

G m1 'F4

G · · · 'F4

G mn ≺F4

G s.
F4 is minimally fair because when there are no edges, all

vertices are ranked equally. F4 satisfies infinite nontriviality
because such nontrivially ranked graphs G exist for all |V | ≥
7.

F4 satisfies weak monotonicity because in the graphs that it
doesn’t rank all vertices equally we see that P (w) 6⊇ P (mi) 6⊇
P (s) for all i ∈ {0, . . . n − 1}, which is consistent with the
ordering F4 specifies.

To prove F4 is 0-incentive compatible, we let G1, G2 be
two graphs that differ only in the outgoing edges of a single
vertex v, and show that rF4

G1
(v) = rF4

G2
(v). Because all graphs

in which not all vertices are ranked equally are of the form
defined above, at least one of the graphs G1, G2 must have
this form. Let us assume wlog that this graph is G1, and
mark the vertices of this graph as defined above.



Now consider two cases:

1. If v = w or v = s, then by the definition of F4,
�F4

G1
≡�F4

G2
, thus trivially, rF4

G1
(v) = rF4

G2
(v), as required.

2. If v = mi for some i ∈ {0, . . . , n − 1}, then first note

that rF4

G1
(v) = |V |

2
. If G2 is not of the form defined

above then all its vertices are ranked equally and specif-

ically rF4

G2
= |V |

2
, as required. Otherwise, G2 is of the

form defined above. Let w′ and s′ be the w and s ver-
tices for G2 in the form defined above. By the def-
inition, 2 ≤ |PG1

(v)| ≤ 4, while |PG2
(w′)| ≤ 1 and

|PG2
(s′)| ≥ 5. Therefore, v /∈ {w′, s′}. By the defini-

tion of F4, rF4

G2
(v) = |V |

2
, as required.

6.2 Impossibility proofs with pairs of weak
properties

We prove the impossibility results with pairs of weak prop-
erties, by assuming existence of a ranking system and ana-
lyzing the minimal graph in which the ranking system does
not rank all agents equally. This is done in the following
lemma:

Lemma 1. Let F be a 0-incentive compatible minimally
fair nontrivial ranking system. Then, there exists a graph
G = (V, E) and vertices v⊥, v>, v ∈ V such that:

1. For all graphs G′ = (V ′, E′) where |E′| < |E| or |E′| =
|E| and |V ′| < |V |, v1 'F

G′ v2 for all v1, v2 ∈ V ′.

2. rF
G(v) = |V |

2

3. v⊥ ≺F
G v ≺F

G v>

4. For all v′ ∈ V : v⊥ �F
G v′ �F

G v>.

5. S(v) 6= ∅ and for all v′ ∈ V such that S(v′) 6= ∅:
v′ 'F

G v.

Proof. Let G = (V, E) be a minimal (in edges, then ver-
tices) graph such that there exist v1, v2 where v1 ≺F

G v2. Such
a graph exists because F is nontrivial. This graph immedi-
ately satisfies condition 1. Let v⊥, v> be vertices such that
for all v′ ∈ V : v⊥ �F

G v′ �F
G v> (such vertices exist because

� is an ordering). Note that these vertices satisfy condition
4.

E 6= ∅ because minimal fairness will force v1 ' v2. Let
(v, v′) ∈ E be some edge. From minimallity, rF

(V,E\{(v,v′)})(v) =
|V |
2

. From 0-incentive compatibility, rF
G(v) = |V |

2
, satisfying

condition 2. Therefore,

1
2

˛

˛{v′|v′ ≺ v}
˛

˛ + 1
2

˛

˛{v′|v′ � v}
˛

˛ = 1
2
|V |

˛

˛{v′|v′ ≺ v}
˛

˛ +
˛

˛{v′|v′ � v}
˛

˛ =
˛

˛{v′|v′ � v}
˛

˛ +

+
˛

˛{v′|v′ � v}
˛

˛

˛

˛{v′|v′ ≺ v}
˛

˛ =
˛

˛{v′|v′ � v}
˛

˛ .

From the assumption that v1 ≺F
G v2: v⊥ �F

G v1 ≺F
G v2 �F

G

v>. Therefore, v⊥ ≺ v or v ≺ v>. But as |{v′|v′ ≺ v}| =
|{v′|v′ � v}|, and at least one is nonempty, both v⊥ ≺ v ≺
v>, satisfying condition 3.

Condition 5 is satisfied by noting that for all v′ such that

S(v) 6= ∅, rF
G(v′) = |V |

2
= rF

G(v), and thus v′ 'F
G v.

Now we can prove the impossibility results for any pair of
weak properties:

Proposition 5. There exists no 0-incentive compatible
nontrivial ranking system that satisfies the weak monotonic-
ity and weak positive response conditions.

Proof. Assume for contradiction a ranking system F that
satisfies the conditions. First note that F is minimally fair,
because in a graph with no edges, all vertices have exactly
the same predecessor set. Thus, the conditions of Lemma 1
are satisfied, so we can let G = (V, E) and v, v⊥, v> ∈ V be
the graph and the vertices from the lemma.

Now, let (v1, v2) ∈ E be some edge. Let G′ = (V, E \
{(v1, v2)}). By condition 1, v2 'F

G′ v>. By weak positive
response, v> �F

G v2. Since this is true for all v2 ∈ V
with P (v2) = ∅, and v⊥ ≺F

G v ≺F
G v>, we conclude that

PG(v⊥) = PG(v) = ∅. Now, by weak monotonicity v⊥ 'F
G v,

in contradiction to the fact that v⊥ ≺F
G v.

Proposition 6. There exists no 0-incentive compatible
nontrivial ranking system that satisfies the weak monotonic-
ity and weak union conditions.

Proof. Assume for contradiction a ranking system F that
satisfies the conditions. First note that F is minimally fair,
because in a graph with no edges, all vertices have exactly
the same predecessor set. Thus, the conditions of Lemma 1
are satisfied, so we can let G = (V, E) and v, v⊥, v> ∈ V be
the graph and the vertices from the lemma.

Now let G′ = (V ∪ {x}, E) be a graph with an additional
vertex x /∈ V . By the weak union condition, v⊥ ≺F

G′ v.
By weak monotonicity, x �F

G′ v⊥. Therefore, by the weak

union condition, rF
G′ (v) = rF

G(v) + 1 = |V |
2

+ 1. Let G′′ =
(V ∪ {x}, E \ {(v′, v)|v′ ∈ V }). By condition 1 and the

fact that SG′ (v) 6= ∅, rF
G′′ (v) = |V |+1

2
. From 0-incentive

compatibility, rF
G′′ (v) = rF

G′ (v), which is a contradiction.

Proposition 7. There exists no 0-incentive compatible
nontrivial minimally fair ranking system that satisfies the
weak union and weak positive response conditions.

Proof. Assume for contradiction a ranking system F that
satisfies the conditions. As the conditions of Lemma 1 are
satisfied, let G = (V, E) and v, v⊥, v> ∈ V be the graph and
the vertices from the lemma. Now let G1 = (V \{v⊥}, E) and
let G2 = ({v⊥}, ∅). From conditions 3 and 5, S(v⊥) = ∅.
If PG(v⊥) 6= ∅, then by condition 1 in the graph G′ =
(V, E \ {(x, v⊥)}) where x ∈ PG(v⊥), v> �F

G′ v⊥. But then
by weak positive response v> �F

G v⊥ in contradiction to con-
dition 3.

Therefore, PG(v⊥) = SG(v⊥) = ∅. Thus, G1 and G2

satisfy the conditions of the weak union condition with regard
to G. Therefore, v ≺F

G v> ⇒ v ≺F
G1

v>, in contradiction to
condition 1, because the edge set is the same and |V1| <
|V |.

6.3 Impossibility proofs with the strong prop-
erties

Proposition 8. There exists no 0-incentive compatible
minimally fair ranking system that satisfies strong positive
response.



Proof. Assume for contradiction a ranking system F that
satisfies the conditions. Assume a graph G with two ver-
tices V = {v1, v2} and no edges. By minimal fairness,
v1 'F

G v2. Now assume a graph G′ = (V, {(v1, v2)}) with
an added edge between v1 and v2. By strong positive re-
sponse, v1 ≺F

G v2. However, by 0-incentive compatibility,
1 = rF

G(v1) = rF
G′(v1) = 1

2
, which is a contradiction.

Proposition 9. There exists no 0-incentive compatible
ranking system that satisfies strong monotonicity.

Proof. Assume for contradiction a ranking system F that
satisfies the conditions. Assume a graph G with two ver-
tices V = {v1, v2} and no edges. As PG(v1) = PG(v2),
by strong monotonicity, v1 'F

G v2. Now assume a graph
G′ = (V, {(v1, v2)}) with an added edge between v1 and v2.
As PG′ (v1) ( PG′ (v2), v1 ≺F

G v2. However, by 0-incentive
compatibility, 1 = rF

G(v1) = rF
G′ (v1) = 1

2
, which is a contra-

diction.

Proposition 10. There exists no nontrivial strongly in-
centive compatible minimally fair ranking system..

Proof. We will prove that for any G = (V, E), and for
any v1, v2 ∈ V : v1 �F

G v2. The proof is by induction on |E|.
Induction Base: Assume E = ∅, and let v1, v2 ∈ V be

vertices. By minimal fairness, v1 � v2.
Inductive Step: Assume correctness for |E| ≤ n and

prove for |E| = n + 1. Assume for contradiction that for
some v1, v2 ∈ V : v2 ≺ v1. Let v ∈ V be a vertex such that
S(v) 6= ∅ (such a vertex exists because |E| > 0). Note that
|{x ∈ V |v 'F

G x}| < |V |, because otherwise v1 �F
G x �F

G v2.
Let E′ = E \ {(v, x)|x ∈ V } and G′ = (V, E′). By the
assumption of induction, |{x ∈ V |v 'F

G′ x}| = |V |. Thus,
|{x ∈ V |v ≺F

G′ x}| = 0. By strong incentive compatibility,
0 ≤ |{x ∈ V |v ≺F

G x}| ≤ |{x ∈ V |v ≺F
G′ x}| = 0, thus

|V | = |{x ∈ V |v 'F
G′ x}| ≤ |{x ∈ V |v 'F

G x}| < |V | which
yields a contradiction.

Proposition 11. There exists no 0-incentive compatible
nontrivial minimally fair ranking system that satisfies the
strong union condition.

Proof. Assume for contradiction a ranking system F that
satisfies the conditions. As the conditions of Lemma 1 are
satisfied, let G = (V, E) and v, v⊥, v> ∈ V be the graph and
the vertices from the lemma. Now let G1 = (V \ {v>}, E \
{(v′, v>) ∈ E|v′ ∈ V }) and let G2 = ({v>}, ∅). From con-
ditions 3 and 5, S(v>) = ∅ and thus G1and G2satisfy the
conditions of the strong union condition with regard to G.
Therefore, v⊥ ≺F

G v ⇒ v⊥ ≺F
G1

v, in contradiction to condi-
tion 1, because |E1| ≤ |E| and |V1| < |V |.

7. SOME ILLUMINATING LESSONS
Theorems 1 and 2 teach us some surprising lessons about

the implications of various versions of the basic properties.

7.1 Strong incentive compatibility is different
than 0-incentive compatibility

We have seen in Proposition 10 that, as one would ex-
pect, strong incentive compatibility is impossible when as-
suming minimal fairness. However, it turns out that when
we slightly weaken the requirement of incentive compatibil-
ity to cover only the expected rank of the agent, Proposition

4 shows us this is possible. This means that the level of in-
centive compatibility has an effect on the existence of rank-
ing systems. We expect that additional interesting ranking
systems will become possible as we require k-incentive com-
patibility for larger values of k.

7.2 Positive Response is not the same as Mono-
tonicity

The Positive response and Monotonicity properties seem,
at a glance, to be very similar, as they both informally re-
quire that the more votes an agent has, the higher it is
ranked. However, looking more deeply, we see that the Pos-
itive Response properties require this behavior to be mani-
fested across graphs, while the Monotonicity properties re-
quire that the effect be seen within a single graph.

This leads to interesting facts, such as not being able to
nontrivially satisfy both Weak Monotonicity and Weak Pos-
itive response with incentive compatibility (Proposition 5),
while each of the properties could be satisfied separately
(Propositions 4 and 1) . Furthermore, Strong Monotonicity
cannot be satisfied at all (Proposition 9) with 0-incentive
compatibility, while Strong Positive Response can be sat-
isfied even with strong incentive compatibility (Proposition
1).

7.3 The Weak Union property matters
Recall that the weak union property requires that when

two disjoint graphs are put together, the subgraphs must
still be ranked as before.

This property might seem trivial, but the impossibility
results in Theorem1 imply that this property has a part in
inducing impossibility. The reason for this is twofold:

• The combination of two graphs adds more options for
the agents in both subgraphs to vote for, which in order
to preserve incentive compatibility, must all preserve
the agent’s relative rank in the combined graph.

• The weak union property further implies that the rank-
ing system must not rely on the number of vertices in
the graph, and moreover, that the minimal nontriv-
ially ranked graph for a given ranking system must be
connected.

8. THE ISOMORPHISM PROPERTY AND
FURTHER RESEARCH

Most of the ranking systems we have seen up to now in
the possibility proofs took advantage of the names of the
vertices to determine the ranking. A natural requirement
from a ranking system is that the names assigned to the
vertices will not take part in determining the ranking. This
is formalized by the isomorphism property.

Definition 12. A ranking system F satisfies isomorphism
if for every isomorphism function ϕ : V1 7→ V2, and two iso-
morphic graphs G ∈ GV1

, ϕ(G) ∈ GV2
: �F

ϕ(G)= ϕ(�F
G).

It turns out that the ranking system F4 from the possibil-
ity proof for 0-incentive compatibility and weak monotonic-
ity (Proposition 4) satisfies isomorphism as well, and thus
there exists an 0-incentive compatible ranking system sat-
isfying isomorphism and weak monotonicity. The existence



of 0-incentive compatible ranking systems satisfying isomor-
phism in conjunction with either the weak union property
or the weak positive response is an open question.

Further research is also due for the classification of k-
incentive compatible ranking systems for k > 0.

9. REFERENCES
[1] A. Altman and M. Tennenholtz. On the axiomatic

foundations of ranking systems. In Proc. 19th
International Joint Conference on Artificial
Intelligence, pages 917–922, 2005.

[2] A. Altman and M. Tennenholtz. Ranking systems: the
pagerank axioms. In EC ’05: Proceedings of the 6th
ACM conference on Electronic commerce, pages 1–8,
New York, NY, USA, 2005. ACM Press.

[3] K. Arrow. Social Choice and Individual Values (2nd
Ed.). Yale University Press, 1963.

[4] A. Borodin, G. O. Roberts, J. S. Rosenthal, and
P. Tsaparas. Link analysis ranking: algorithms,
theory, and experiments. ACM Trans. Inter. Tech.,
5(1):231–297, 2005.

[5] C. Dellarocas. Efficiency through feedback-contingent
fees and rewards in auction marketplaces with adverse
selection and moral hazard. In 3rd ACM Conference
on Electronic Commerce (EC-03), pages 11–18, 2003.

[6] B. Dutta, M. O. Jackson, and M. Le Breton. Strategic
candidacy and voting procedures. Econometrica,
69(4):1013–37, 2001.

[7] A. Gibbard. Manipulation of voting schemes.
Econometrica, 41:587–601, 1973.

[8] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM
(JACM), 46(5):604–632, 1999.

[9] K. O. May. A set of independent, necessary and
sufficient conditions for simple majority decision.
Econometrica, 20(4):680–84, 1952.

[10] H. Moulin. Axioms of Cooperative Decision Making.
Cambridge University Press, 1991.

[11] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report, Stanford University, 1998.

[12] I. Palacios-Huerta and O. Volij. The measurement of
intellectual influence. Econometrica, 73(3), 2004.

[13] P. Resnick and R. Zeckhauser. Trust among strangers
in internet transactions: Empirical analysis of ebay’s
reputation system. Working Paper for the NBER
workshop on empirical studies of electronic commerce,
January 2001.

[14] P. Resnick, R. Zeckhauser, R. Friedman, and
E. Kuwabara. Reputation systems. Communications
of the ACM, 43(12):45–48, 2000.

[15] M. Satterthwaite. Stratey proofness and arrow’s
conditions: Existence and correspondence theorems
for voting procedures and social welfare functions.
Journal of Economic Theory, 10:187–217, 1975.

[16] G. Slutzki and O. Volij. Ranking participants in
generalized tournaments. International Journal of
Game Theory, 33(2):255–270, 2005.


