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Abstract
We study a generalization of the classical secretary prob-
lem which we call the “matroid secretary problem”. In this
problem, the elements of a matroid are presented to an on-
line algorithm in random order. When an element arrives,
the algorithm observes its value and must make an irrevo-
cable decision regarding whether or not to accept it. The
accepted elements must form an independent set, and the ob-
jective is to maximize the combined value of these elements.
This paper presents an O(log k)-competitive algorithm for
general matroids (where k is the rank of the matroid), and
constant-competitive algorithms for several special cases in-
cluding graphic matroids, truncated partition matroids, and
bounded degree transversal matroids. We leave as an open
question the existence of constant-competitive algorithms for
general matroids. Our results have applications in welfare-
maximizing online mechanism design for domains in which
the sets of simultaneously satisfiable agents form a matroid.

1 Introduction
Online mechanism design concerns markets in which agents
arrive and depart over time. In this paper we consider the
goal of welfare-maximization1 and seek truthful mechanisms
which provide a guaranteed performance with respect to this
goal.

As in the offline counterpart, such online mechanism
design problems suffer from two key difficulties: computa-
tional constraints and incentive constraints. Progress toward
proving positive theoretical results in the online setting has
been considerably slower than in the offline setting, largely
because both of these constraints are considerably more se-
vere in the online setting:

Computational constraints. The model of online compu-
tation imposes severe restrictions on the class of allocation
rules which can be implemented. Even for the simplest imag-
inable online mechanism design problem — a single-item
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1Another commonly studied objective is revenue-maximization.

auction — the corresponding algorithmic problem (select-
ing the maximum element in a worse case sequence) has no
non-trivial online approximation algorithm due to its online
constraints.

Incentive constraints. It is exceedingly rare for an online
algorithm to achieve exactly the optimum value of its objec-
tive function in the worst case. (At best, one hopes for a
constant competitive ratio.) This means that, in general, one
cannot design truthful mechanisms using the VCG paradigm.
In fact, it has been shown that even for a simple expiring-
goods model where constant-competitive allocation rules ex-
ist, there is no truthful online mechanism achieving a non-
trivial approximation to the optimum social welfare [11].

Recently, it has been observed that these constraints are
considerably less severe when one assumes that agents ar-
rive in random order. For example, the algorithmic prob-
lem corresponding to the single-item auction then becomes
the famous secretary problem introduced by Dynkin [3],
i.e. the problem of selecting the maximum element in a
randomly-ordered sequence. This observation leads to a
rich interplay between secretary problems and online mech-
anism design [7, 10]. On one hand, existing algorithms
for secretary problems can be transformed into truthful2 on-
line mechanisms which are constant-competitive for agents
with random arrival order. On the other hand, the goal of
designing online mechanisms for unit-demand multi-item
auctions has led to the formulation and solution of new
multiple-choice secretary problems interesting in their own
right. Can we extend these techniques and design truthful
constant-competitive mechanisms for online domains with
richer combinatorial constraints on the feasible allocations?

This question has not been answered to date because of
a lack of algorithms for these sorts of generalized secretary
problems. Despite the rich literature on generalizations of
secretary problems (see [6] for a survey), we are not aware
of any previous work on multiple-choice secretary problems
in which there is a non-trivial combinatorial structure con-
straining the sets which may be simultaneously selected. In
this paper, we formulate a generalization of the secretary
problem, which we call the matroid secretary problem, and

2These mechanisms are truthful under the assumption that agents can
lie arbitrarily about their value but only unidirectionally about their arrival
time.



design algorithms and truthful mechanisms for this problem
and its special cases. In a matroid secretary problem, the el-
ements of a matroid are presented to an online algorithm in
random order. As each element arrives and reveals its value,
the algorithm must make an irrevocable decision whether to
select the element, with the constraint that the set of all se-
lected elements must be an independent set in the underlying
matroid. The objective is to maximize the combined value
of the selected elements. The case of uniform matroids cor-
responds to the multiple-choice secretary problem consid-
ered in [10]; that paper provides a constant-competitive al-
gorithm for that special case.3 In this paper, we design an
O(log k)-competitive algorithm for general matroids (where
k is the rank of the matroid), and give constant-competitive
algorithms for several special cases including graphic ma-
troids, transversal matroids of bounded left degree, and their
truncations. We leave open the question of whether there is
a constant-competitive secretary algorithm for general ma-
troids.

Connecting these results to mechanism design, we de-
fine a notion of matroid domains, a special case of single-
value domains [1] which themselves generalize single-
minded combinatorial auctions [12, 14]. In matroid domains,
there is a set of outcomes, each agent is characterized by a set
of satisfying outcomes and a value for receiving one of these
outcomes, and for every profile of types the sets of agents
who can be simultaneously satisfied constitute a matroid. A
key example of a matroid domain is the unit-demand domain
corresponding to transversal matroids, in which there is a fi-
nite set of goods for sale and each agent wants to receive one
good from a specified subset of the set of all goods. For each
of the algorithmic results quoted above, we provide an ac-
companying truthful mechanism for the corresponding ma-
troid domain.

It is also worth mentioning the thematic connection be-
tween our work and recent work on random sampling meth-
ods for approximate revenue maximization in truthful offline
mechanisms [2, 4, 5, 8]. In those works, the mechanism
randomly partitions the set of agents and sets prices for the
agents in one piece of the partition based on information de-
rived from the “sample set” consisting of the other pieces of
the partition. Similarly, our mechanisms sample a constant
fraction of the input without making any decisions and then
use information from this sample to guide future decisions.
While sampling constitutes an important shared technique
between our paper and [2, 4, 5, 8], most of their techniques
are not directly applicable to the online setting, because the
algorithm must contend with the fact that the second piece

3A key distinction between [7, 10] and ours is that their mechanisms are
temporally strategyproof in the sense that agents can not gain by overstating
their arrival times and/or understating their departure times. In our setting,
agents depart immediately after arriving and hence our mechanisms are
trivially temporally strategyproof.

of the partition (i.e. the set of elements remaining after the
sampling phase of the algorithm) arrives online.

The rest of this paper is organized as follows. Section 2
gives precise definitions of the algorithmic model (the ma-
troid secretary problem) and the strategic model (matroid
domains). Section 3 presents a log-competitive algorithm for
general matroids as well as a discussion of whether constant-
competitive algorithms exist in general. Sections 4 and 5
give constant-competitive algorithms for the transversal and
graphic matroids, respectively. Finally, Section 6 defines a
truncation operation which generalizes the notion of supply
constraints to the matroid setting, and notes that if a matroid
domain has a constant-competitive secretary algorithm, then
every truncation of that domain has a constant-competitive
secretary algorithm. Each of the algorithms we describe can
be implemented by a truthful mechanism.

2 Model
The main technical results in this paper address algorithms
for the matroid secretary problem, a generalization of the
classical secretary problem. In the matroid secretary prob-
lem, there is a matroid4 with ground set U and independent
sets I, and a weight function assigning a weight w(i) to each
element i ∈ U . We wish to design an algorithm which given
the matroid structure5 (U , I) (but not the weights w(i)) se-
lects online an independent set of (approximately) maximal
weight in the following setting. The ground set of the ma-
troid is presented in random order to the online algorithm.
The algorithm maintains a set S of selected elements. When
an element i arrives, the algorithm learns the weight w(i) of
the element. If S ∪ {i} is an independent set, the algorithm
may choose whether to select i (i.e., S ← S ∪ {i}). Note,
the algorithm must decide whether to select an element be-
fore the next element arrives, and it is not allowed to later
discard selected elements. The goal of the algorithm is to
output a final selected set S of maximum weight. If the ex-
pected weight of the selected set (over a uniform random or-
dering of elements) is always within a c factor of the weight
of the maximum weight basis for any assignment of weights
to the ground set, we say the algorithm is c-competitive or a
c-approximation. We call such an algorithm a matroid secre-
tary algorithm and the problem it solves is the matroid sec-
retary problem. Although we chose not to specify computa-
tional efficiency as part of our definition, it is worth noting
that all algorithms we present in this paper are polynomial
in the succinct representation of the matroid. Note this is a

4A matroid (U ,I) is constructed from a ground set U 6= ∅ and a
nonempty family of subsets of U , called the independent subsets of U , such
that if B ∈ I and A ⊆ B then A ∈ I (I is hereditary). Additionally, if
A,B ∈ I and |A| < |B|, then there is some element x ∈ B \ A such that
A ∪ {x} ∈ I (exchange property).

5As noted throughout the text, many of our algorithms work in a setting
where the matroid structure is revealed online as well.



generalization of the classical secretary problem introduced
by Dynkin [3] in which the independent sets are precisely
the sets of singletons (i.e. the uniform matroid of rank 1).
Throughout this paper we will make the simplying assump-
tion of well-behaved inputs, meaning that elements of the
matroid have distinct values unless their value is 0. The as-
sumption is essentially without loss of generality, because
any algorithm which achieves competitive ratio c on well-
behaved inputs can be easily transformed into an algorithm
which is (1 + ε)c-competitive on all inputs (the proof is de-
ferred to the journal version).

The matroid secretary problem can be used to design
online mechanisms for matroid preference domains, a spe-
cial case of single-value preference domains. In single-value
preference domains, there is a set U of n agents with pref-
erences over a set Ω of possible outcomes. The preference
domain is single-valued if each agent i has a value vi ∈ <+

and a satisfying set Ai ⊆ Ω of outcomes such that agent i
obtains value vi from outcomes in Ai and 0 from outcomes
in Ω \ Ai. We will occasionally use xi : Ω → {0, 1} as an
indicator function for the set Ai (i.e., xi(ω) = 1 if and only
if ω ∈ Ai). We assume the value vi of an agent is private
information known only to him6. A set of agents S ⊆ U is
independent if there is an outcome ω ∈ Ω that satisfies ex-
actly the agents in S (i.e., xi(ω) = 1 if and only if i ∈ S).
A single-value preference domain is a matroid domain if for
any profile of types the family of independent sets of agents
form a matroid over the set U of all agents. Similarly, given
a matroid, it is possible to define the corresponding matroid
domain where the agents are the ground set of the matroid,
the satisfying outcomes for an agent are the independent sets
which include the corresponding element, and the value vi of
an agent i is the weight w(i) of the corresponding element i
in the matroid.

Matroid domains are of particular economic interest.
For example, transversal matroids correspond to preference
domains in which agents have unit demand, are indifferent
between a subset of goods, and are unsatisfied by the remain-
ing goods as might be the case when allocating condos in a
complex to agents with preferences of the sort “I want to live
on the first floor” or “I want a south-facing window”. Some
examples of matroid domains include:

Domain 1: Selling k Identical Items There are n agents,
and k identical items. Each agent wants to buy a single item,
and agent i has a value of vi if he gets an item. An outcome
is a set S of at most k agents (winners), such that each agent

6The domain described here is called the known single-value domain
as the set Ai of desired outcomes for agent i is assumed to be public
knowledge (creating a single-parameter domain). It is also possible to define
the unknown single-value domain in which the set Ai is private knowledge,
but coming from publicly known family of possible sets. We consider the
unknown setting in Section 4.

in S gets an item. The underlying matroid of the preference
domain is then the uniform matroid of rank k.
Domain 2: Unit-Demand Domain There are n agents, and
a set M of m non-identical items. Each agent i has a set
Ti ⊆ M of desired items, that is, agent i has a value of vi if
he gets an item j ∈ Ti. An outcome is one-to-one matching
of agents to items. The underlying matroid of the preference
domain is then the transversal matroid7.
Domain 3: Gammoids In the gammoid matroid domain,
the agents correspond to sources in a graph, all of which
wish to be routed to a common sink. A set S of sources
is independent if there exist internally vertex-disjoint paths
routing each source in S to the sink.
Domain 4: Graphical Matroids In the graphical matroid
domain the agents are the edges of an undirected graph
G = (V, E). A set of edges is independent if it does not
contain a cycle in the graph.
Domain 5: Truncated Partition Matroids There are n
agents, and a set M of m non-identical items. Each agent
wants to buy exactly one of the items in M (and is not
satisfied by any other element of M ), but the seller is allowed
to sell only k ≤ m items. The underlying matroid of the
preference domain is then a truncated partition matroid of
rank k.

In the online setting, agents arrive in a random order.
When an agent arrives, he announces a value v′

i. The
mechanism then must commit to either choosing an outcome
ω ∈ Ai or an outcome ω 6∈ Ai as well as a price
pi. After all agents have arrived, the mechanism chooses
a final outcome ω which satisfies all prior commitments.
Alternatively, one could describe the mechanism as choosing
online an independent set S of agents and a price pi for each
agent i ∈ U . Our goal is to design mechanisms which are
truthful (each agent maximizes his utility vi · xi(ω) − pi by
announcing his true value vi for any declaration of the others
and any ordering of agents) and maximize the social welfare
(the final outcome ω is the one which maximizes the sum
∑

i∈N vi ·xi(ω)). Our final mechanisms will fall short of this
goal and instead approximately maximize the social welfare.
We say a mechanism is c-competitive or a c-approximation
if for any profile of types the expected social value of the
selected outcome is within a factor of c of the maximum
social welfare. Typically (and in all cases derived in this
paper), a c-competitive algorithm for the matroid secretary
problem implies a c-competitive online mechanism for the
corresponding matroid preference domain.

7A distinction can be made based on whether the set Ti of desired
items for agent i is private knowledge. The algorithms we develop for this
domain are truthful regardless of this distinction. See Section 4 for further
discussion.



3 An Algorithm for Matroid Domains
Our work focuses on matroid domains. Intuitively, matroid
domains are more likely to be tractable than general set
systems since in the offline setting a simple greedy algorithm
selects the welfare-maximizing solution (i.e. the maximum
weight basis). In fact, our hypothesis is that any matroid
domain has a constant-competitive algorithm.

QUESTION 1. Is there an algorithm which is constant com-
petitive for every matroid domain?

It can be shown (see Appendix A) that various intu-
itively natural algorithms fail to be constant-competitive. For
example, it is impossible to achieve a constant competitive
ratio using any algorithm which observes elements until it
reaches a (possibly random) stopping time τ , sets a thresh-
old value at time τ , and selects every subsequent element
which is independent of the previous selections and exceeds
the threshold value. Another intuitively natural algorithm
observes a constant fraction of the elements (the “sample”)
without making any selections. Afterward, it keeps track of
an independent set which is initially a maximum-value in-
dependent subset of the sample. Whenever it is possible to
improve the value of the independent set by incorporating
the current element (and possibly swapping out one of the
elements of the sample) the algorithm selects the current el-
ement and incorporates it into the independent set. This al-
gorithm, too, fails to be constant-competitive.

We do not yet know how to settle Question 1, but
we present a series of results supporting an affirmative an-
swer which are interesting in their own right. First, we
observe that the assumption of matroid domains is essen-
tial. Namely, for some hereditary set systems, there is no
constant-competitive algorithm. (In a matroid, choosing one
suboptimal element can exclude at most one element of the
maximum-weight basis from being selected in the future.
In general set systems, this property does not hold; a sin-
gle early mistake can exclude a large number of elements of
the optimum from being selected afterward.) Next we show
that there is an algorithm which is logarithmically competi-
tive for any matroid domain. The following sections present
improved algorithms with constant competitive ratio for spe-
cific matroid domains of particular economic or combinato-
rial interest.

We remark that there are alternative assumptions which
also generalize the multiple choice secretary problem of [10]
to matroids: one could assume that the set of n numerical
values are assigned to the matroid elements using a ran-
dom one-to-one correspondence (the “random assignment”
model) but that the elements are presented in an adversarial
order, or that both the assignment of values and the ordering
of the elements in the input are random (the “random order
and random assignment” model). Question 1 appears to be
non-trivial in all of these cases.

3.1 Lower bound for general set systems

For an integer n with k = bln(n)c, let (U , I) be the
set system defined as follows. The set U consists of n
elements partitioned into m = dn/ke subsets S1, . . . , Sm,
each having k or k − 1 elements. A set A ⊆ U belongs to
I if and only if it is contained in one of the pieces of the
partition, Si. Suppose that we assign independent random
values in {0, 1} to the elements of U such that for each x,
w(x) = 1 with probability 1/k, 0 with probability 1− 1/k.

THEOREM 3.1. The expected value of the maximum-weight
set in I is Ω(log n/ log log n). For any randomized online
algorithm to select a set in I, the expected value of the set
selected when the elements are presented to the algorithm in
random order is less than 2.

Proof. Suppose the algorithm makes its first selection at
time t, and that it chooses an element x ∈ Si. All future
selections must be elements of Si. Let Ti be the subset of Si

consisting of elements which have not yet been observed at
time t. The values of the elements of Ti are independent of
all the information observed up to time t; there are less than
k elements in Ti and each of them has expected value 1/k,
so the expected combined value of all remaining elements
which the element could potentially select after time t is less
than 1. The only element selected up to time t is x, whose
value is at most 1. This proves that the expected value of the
set selected by the algorithm is less than 2.

The proof that the expected value of the maximum-
weight set in I is Ω(log n/ log log n) is similar to a standard
balls-in-bins calculation [13]; we include it here to make
the exposition self-contained. Let j = bk/(2 ln(k))c,
and let Ei denote the event that at least j elements of Si

have value 1. The probability of Ei is at least (1/k)j ≥
(1/ lnn)ln n/2 ln ln n = 1/

√
n. Since the events Ei are

independent for i = 1, 2, . . . , m, the probability that none
of them occur is at most (1−1/

√
n)m = o(1). If at least one

event Ei occurs, then the maximum-weight element of I has
weight at least j = Ω(log n/ log log n). �

3.2 Logarithmically competitive algorithm
for matroid domains

The above result demonstrates that without imposing any
structure on the preference domain, it is impossible to
achieve constant competitive algorithms. Unfortunately, we
do not know how to prove that constant-competitive algo-
rithms exist for general matroid domains. However, it is not
hard to see that the following simple algorithm is O(log k)-
competitive for any matroid domain where k is the rank of
the matroid.



Threshold Price Algorithm

1. Observe s = dn/2e elements without picking any
element, and let S ⊂ U be the set of observed elements
(S is called the sample).

2. Let l∗ ∈ S be the element of S with maximum weight:
l∗ = argmaxl∈S(w(l)). Pick a random number j
between 0 and dlog ke. The threshold price will be the
weight of l∗, w(l∗), divided by 2j .

3. Initialize the set of selected elements B to be the empty
set.

4. Let lt be the element in U \ S observed at time t =
s + 1, . . . , n. If w(lt) ≥ w(l∗)/2j and lt ∪ B is an
independent set, then select lt (i.e., B := B ∪ lt).

THEOREM 3.2. The threshold price algorithm is 32dlog ke-
competitive for any matroid domain where k is the rank of
the matroid.

Proof. Let B∗ denote the max-weight basis of the matroid,
consisting of elements x1, ..., xk with values v1, ..., vk, such
that v1 ≥ v2 ≥ ... ≥ vk. Let q be such that vq ≥ v1/k
and either q = k or vq+1 < v1/k. Note that the elements
of B∗ whose value is less than v1/k sum up to less than
v1, so they contribute less than half the value of B∗; hence
v1 + v2 + . . . + vq is more than half the value of B∗.

For any set A ⊂ U , let ni(A) denote the number of
elements of A whose value is at least vi and let mi(A) denote
the number of elements of A whose value is at least vi/2.
The sum of the q largest values of elements of B∗ is then

[

q−1
∑

i=1

(vi+1 − vi)ni(B
∗)

]

+ vqnq(B
∗).

Let B be the independent set output by the threshold price
algorithm. The value of B is then at least

(1/2) ·
[

q−1
∑

i=1

(vi+1 − vi)mi(B)

]

+ (1/2) · vqmq(B).

Thus, in order to prove that the threshold price algorithm is
32(log k)-competitive, it suffices to prove that the expected
value of mi(B) is within a 8(log k) factor of ni(B

∗) for all
i ∈ 1, ..., q. (Recall we lost a factor of two by comparing the
value of B with v1 + . . . + vq instead v1 + . . . + vk.) The
case i = 1 is a special case. With probability 1/4 the sample
does not contain the maximum-weight element but does con-
tain the element with the second-highest weight. Conditional
on this event, with probability 1/ log(k) this second-highest
weight becomes the threshold price, in which case the al-
gorithm is guaranteed to select the element with weight v1.
Thus E(m1(B)) ≥ 1/(4 log k) whereas n1(B

∗) = 1.

Assume from now on that i > 1, and note that
ni(B

∗) = i by definition. We condition on the event
E that the sample contains the maximum-weight element
in the matroid and that j, the threshold-setting parame-
ter in step 2 of the algorithm, is such that w(l∗)/2j is
the maximum element less than or equal to vi in the set
{w(l∗), w(l∗)/2, . . . , w(l∗)/2dlog ke}. Under the assump-
tion that vq ≥ v1/k, for every i such a j exists, and the al-
gorithm has a 1/ log(k) probability of selecting this j. Thus
event E has probability 1/(2 log k). Given event E, there is
an independent set A of size at least i each of whose values
exceeds the threshold price (namely, {x1, . . . , xi}). In ex-
pectation, at least (i − 1)/2 ≥ i/4 elements of A appear in
the second half of the input. By the exchange property, this
implies that the expected value of |B| conditioned on event
E is at least i/4.8 As every element of B has value exceed-
ing the threshold price which is at least vi/2, mi(B) = |B|
conditioned on event E. Removing the conditioning, we see
that the expected value of mi(B) is at least (1/8 log k) times
ni(B

∗) for each i. �

REMARK 1. The threshold price algorithm, as stated, takes
the rank of the matroid as an input. However, at the cost
of a constant factor in the competitive ratio, the algorithm
can be modified so that it does not need to know the value of
k at the start (and thus the entire matroid structure may be
revealed online). Instead, it can estimate k to be twice the
rank of the matroid induced on the sampled elements. This is
never more than twice the true rank of the matroid, and with
constant probability is it at least equal to the true rank of the
matroid. A formal proof of this observation is deferred to the
full version.

4 The Unit-Demand Domain
In this section we consider the unit-demand domain. In this
domain there are n agents, and a set M of m non-identical
items. Each agent i has a set Ti ⊆ M of desired items and
receives a value of vi for any item j ∈ Ti. We assume that
there is a constant d such that |Ti| ≤ d, for all i, that is, each
agent desires one of at most d items. An outcome is mapping
of agents to items, such that each agent is matched to at most
one item. In this case Ai are all the outcomes in which i
is matched to an item in Ti. We assume the values vi are
private information. If the sets Ti are private information as
well, we say the domain is an unknown single-value (USV)
domain.

The unit-demand domain is a matroid domain in which
independent sets of agents form a transversal matroid of
bounded left-degree. The matroid elements of a transversal

8The exchange property states that if A and B are two independent sets
and A has more elements than B, then there exists an element in A which is
not in B and when added to B still gives an independent set.



matroid correspond to vertices on the left side (L) of a
bipartite graph G = (L, R, E) (thus the size of the ground
set is |L| = n). A set S ⊆ L is independent if there is
a perfect matching of S to nodes in R. The unit-demand
domain is a transversal matroid domain in which L is the set
of agents, R is the set of items, and there is an edge from
l ∈ L to r ∈ R if r ∈ Tl. The bound on the number of items
an agent desires translates to a bound of d on the maximal
degree of any node in L. The value of an agent l corresponds
to the weight of the node l ∈ L and is denoted by w(l).

We first present a 4d-approximation algorithm to the
matroid secretary problem for transversal matroids with
left-degree at most d; we later show that this algorithm
also creates a truthful online mechanism for the USV unit-
demand domain. The algorithm is as follows.

Price Sampling Algorithm:

• Observe s = dn/2e elements without picking any
element, and let S ⊂ L be the set of observed elements
(S is called the sample). For a right node r ∈ R,
let l∗s(r) ∈ S be the sampled left node with maximal
weight that is a neighbor of r. Let the price of r ∈ R be
w(l∗s(r)).

• At time t = s + 1, . . . , n we observe element l ∈ L
with weight w(l). Let R∗(l) be the set of unmatched
neighbors of l with price lower than w(l). If R∗(l) is
not empty, match l to the node with the lowest price in
R∗(l).

THEOREM 4.1. For any transversal matroid with bounded
left degree d, the above algorithm is a 4d-approximation.

Proof. Let OPT be a maximum weight matching in the
graph, with weight w(OPT ) =

∑

l∈OPT w(l). For a right
node r ∈ R, let w(m(r)) be the weight of the element that
is matched to r in OPT (0 if no node is matched). Note that
w(OPT ) =

∑

r∈R w(m(r)). Additionally, for each right
node r ∈ R, let h(r) be the neighbor of r with maximal
weight (w.l.o.g. r has neighbors). Let H = {h(r)|r ∈ R}
and let w(H) =

∑

l∈H w(l).

CLAIM 1. w(OPT ) ≤ d · w(H).

Proof.

w(OPT ) =
∑

r∈R

w(m(r))

≤
∑

r∈R

w(h(r))

≤ d ·
∑

l∈H

w(l)

= d · w(H)

where
∑

r∈R w(h(r)) ≤ d · ∑l∈H w(l) as each l ∈ H
appears at most d times in

∑

r∈R w(h(r)). �

CLAIM 2. w(H) ≤ 4 · E[w(ALG)], where ALG denotes
the set of elements selected by the price sampling algorithm.

Proof. For each l ∈ H we prove that with probability at least
1/4, l is matched by ALG. This implies that the expected
weight of ALG is E[w(ALG)] ≥ ∑

l∈H 1/4 · w(l) =
1/4 · w(H).

For l ∈ H , let r ∈ R be a right node with h(r) = l
(l is the highest weight neighbor of r). We show that with
probability at least 1/4, l comes after the sample and the
only element that can be matched to r is l = h(r). If r has
only one neighbor, this clearly holds (with probability 1/2, l
comes after the sample). Otherwise, let s(r) be the neighbor
of r with second to maximal weight.

Let A and B be the events that h(r) was not sampled
and s(r) was sampled, respectively. Then Pr(A ∧ B) =

Pr(B) · Pr(A|B) = s
n · n−s

n−1
= dn/2e

n · n−dn/2e
n−1

> 1/4.
Thus with probability at least 1/4, h(r) was not sampled and
s(r) was sampled. This implies that with probability at least
1/4, l∗s(r) = s(r) and when h(r) arrives after the sample,
r is unmatched. This means that r ∈ R∗(h(r)) and thus
R∗(h(r)) is not empty, therefore when l = h(r) arrives after
the sample, it will be matched by the algorithm. �

By the two claims we derive that w(OPT ) ≤ d ·
w(H) ≤ 4d · E[w(ALG)] which concludes the proof of the
theorem. �

We next observe that the above algorithm creates a
truthful mechanism for the unit demand matroid domain
(even without the bounded degree assumption), in the USV
case in which the set of desired items is private information.

THEOREM 4.2. For any unit demand matroid domain with
a bound of d on the number of items an agent desires, the
above is a truthful mechanism for the USV model, and it
achieves 4d-approximation to the social welfare.

Proof. We need to show that the mechanism is truthful, both
with respect to the value and with respect to the set of desired
items. Clearly, any agent in the sample has no incentive to
lie, as his utility is 0 for any declaration. An agent that is not
in the sample is facing the following problem: given prices
for each item, pick a desired item that has minimal price and
is not taken yet, and pay its price. Clearly being truthful
about this item will maximize the agent’s utility (he answers
a demand query). �

Note that the mechanism need not solicit the value and
desired items of agents not in the sample. Such agents can
simply be presented with item prices and be allowed to pick
the item which maximizes their utility.

5 Graphic Matroids
In this section we consider graphic matroids. In a graphic
matroid, a matroid element corresponds to an edge e ∈ E



of an undirected graph G(V, E). A set of edges S ⊆ E
is independent if it does not contain a cycle. We denote
|E| = n.

We next present a 16-approximation algorithm for this
family of matroids based on a modification of the algorithm
for transversal matroids. Given a graph G = (V, E), we
create a bipartite graph G′ = (L, R, E′) by mapping each
edge e = (v, u) ∈ E, to a left node which we denote by
nvu ∈ L. We map each node u ∈ V , to a right node u ∈ R.
This creates a one-to-one mapping from edges and nodes
in G to left nodes and right nodes in G′, respectively. For
each node nuv ∈ L, there are two edges (nvu, v) ∈ E′ and
(nvu, u) ∈ E′. G′ is a bipartite graph with left degree 2.

Any tree T in G corresponds to a matching in the G′:
each edge e = (v, u) ∈ T is matched to a node as follows.
We pick a node r and look at the tree as rooted at r. Assume
that for an edge e = (v, u) ∈ T , u is closer to r then
v, then we match the edge to v. On the other hand, note
that a matching in G′ might correspond to a cycle in G:
given a triangle, fix an orientation and match each edge to
its left node. This implies that if we ran the algorithm for the
transversal matroids on G′, we might get a matching in G′

that corresponds to cycle in G.
To overcome this problem we modify the algorithm for

transversal matroids as follows: if an edge (v, u) ∈ E, that
corresponds to a left node nvu ∈ L will close a cycle in G
(when added to the already matched edges in G), it cannot
be matched (even if it beats the price of one of its endpoints).

THEOREM 5.1. For any graphic matroid the algorithm is a
16-approximation. Moreover, the algorithm with the defined
payments creates a truthful mechanism.

Proof. Let T ∗ be a maximum weight tree in the graph G,
with weight w(T ∗), and let OPT be a maximum weight
matching in the graph G′, with weight w(OPT ). As we
have shown that any tree in G corresponds to a matching in
G′, w(T ∗) ≤ w(OPT ). We next bound w(OPT ) by the
weight of the matching picked by the algorithm.

As before, for a right node r ∈ R, let h(r) be a neighbor
of r with maximum weight. Let H = {h(r) | r ∈ R}, and
let w(H) =

∑

l∈H w(l). By Claim 1 in Section 4, we have
w(OPT ) ≤ 2 · w(H).

Now let ALG denote the set of edges selected by the
algorithm. To finish proving the theorem, it suffices to prove
that w(H) ≤ 8 · E[w(ALG)], as this implies that

w(T ∗) ≤ w(OPT ) ≤ 2 · w(H) ≤ 16 · E[w(ALG)].

In fact, we will prove the stronger assertion that for each
l ∈ H , with probability at least 1/8, l is selected by the
algorithm.

For l ∈ H , let r ∈ R be a right node with h(r) = l
(l is the highest weight neighbor of r). We show that with

probability at least 1/8, l comes after the sample, the only
element that can be matched to r is l = h(r), and matching l
to r will not close a cycle in G. (Note that these if these three
criteria hold, then the algorithm selects l.) If r has only one
neighbor, this clearly holds, because with probability 1/2, l
comes after the sample; also l is the only element that can be
matched to r, and matching it to r never closes a cycle in G
because r has degree 1. Otherwise, as l = nru for some node
u (i.e., l is an edge in G, incident on r and one more node
u), let s(r) and s(u) be the two maximal weight neighbors
— aside from l — of r and u, respectively.

Let A be the event that l was not in the sample, and
let B and C be the events that s(r) and s(u), respectively,
were in the sample. Let X = A ∧ B ∧ C. Then
Pr(X) = s

n · s−1
n−1
· n−s

n−2
> 1/8. Thus with probability

at least 1/8, h(r) was not sampled and s(r) and s(u) were
sampled. This implies that with probability at least 1/8,
l∗s(r) = s(r) and when h(r) arrives after the sample, r is
unmatched (R∗(h(r)) is not empty). Moreover, matching
l cannot close a cycle, as l is the only possible matching
to both r and u when the event X happen, so both are not
matched yet, but to close a cycle every node in the cycle
must be matched (on a cycle of k edges there are k nodes).
Thus, when the event X happens l = h(r) arrives after the
sample and will be matched by the algorithm.

Finally, note that the algorithm with the defined pay-
ments creates a truthful mechanism with respect to the val-
ues, as exactly the same arguments that prove that the
transversal matroid mechanism is truthful still hold. �

6 Truncations of Matroids
Truncation is an operation which decreases the rank of a ma-
troid by throwing away all independent sets whose cardinal-
ity exceeds a specified limit. In a matroid domain, this corre-
sponds to a sort of limited-supply assumption: we modify the
outcome set by eliminating all outcomes which satisfy more
than a specified number of agents. A motivating example is
a truncated partition matroid, i.e. the matroid whose ground
set is a set U partitioned into subsets U1, . . . ,Uk and whose
independent sets are all the subsets which have at most r ele-
ments and intersect each piece of the partition in at most one
element. Truncated partition matroids correspond to the fol-
lowing natural selection problem: a department has the op-
portunity to hire up to r new faculty members, subject to the
constraint that no two new hires should belong to the same
subfield.

DEFINITION 1. Let M = (U , I) be a matroid of rank k, and
let r be a number less than or equal to k. The truncation
τr(M) = (U , τr(I)) is the matroid whose collection of
independent sets consists of all sets in I with at most r
elements. If D is a matroid domain with outcome set Ω, then
τr(D) is the domain obtained by deleting all outcomes ω ∈ Ω



which satisfy more than r agents.

The following theorem provides a general reduction
from the secretary problem for a matroid M to the secretary
problem for any truncation of M, at the cost of a constant
factor in the competitive ratio. Since we know, for example,
that partition matroids have an e-competitive algorithm (run
an independent copy of the original secretary algorithm
on each piece of the partition) this implies in particular
that truncated partition matroids have a constant-competitive
algorithm.

THEOREM 6.1. Let M = (U , I) be a matroid. If ALG is a
c-competitive algorithm for the M-secretary problem, then
there is another algorithm τr(ALG) for the τr(M)-secretary
problem whose competitive ratio is at most max(13c, 400).
If D is a matroid domain and there is a truthful mechanism
for D with approximation ratio c and allocation rule ALG,
then there is a truthful mechanism for τr(D) with approxi-
mation ratio at most max(13c, 400) and with alloction rule
τr(ALG).

Proof. Without loss of generality, we may assume that ALG

never selects an element whose value is 0. (Otherwise we
may modify ALG, without changing its competitive ratio, by
throwing away elements with zero value.) We will prove
the theorem by reducing the τr(M)-secretary problem to
the M-secretary problem using Karger’s matroid sampling
theorem [9]. This reduction will be achieved using an online
procedure for mapping any input instance to a modified
instance in which each element’s value is either unchanged
or reduced to 0. With constant probability, the modified input
instance will satisfy three properties:

1. The value of its maximum-weight basis is at least a
constant fraction of the value of the original maximum-
weight basis of τr(M).

2. The number of elements with nonzero modified value is
at most r.

3. Conditional on the modified values of all elements,
the order in which they appear in the modified input
instance is random.

The second property (along with our assumption that ALG

never selects an element of value 0) ensures that the set of
elements selected by ALG will be independent in τr(M).
The first and third properties (along with our assumption that
ALG is c-competitive) ensure that the expected value of the
elements in this set is a constant fraction of the value of the
maximum-weight basis of τr(M).

We begin by recalling the following pair of definitions
from [9].
DEFINITION 2. If T is an independent set in a matroid M,
and x is any element of the ground set of M, we say x
improves T if x belongs to the maximum-weight independent
subset of T ∪ {x}.

DEFINITION 3. If X is a set and p ∈ [0, 1], then X(p)
denotes the random subset of X obtained by sampling each
element independently with probability p.

The following theorem is proved by Karger in [9]:

THEOREM 6.2. Let M be a matroid with ground set U
in which each element has been assigned a real-valued
weight. If p > 0 and T is a maximum-weight independent
subset of U(p) then for any number ε > 0, the probability
that more than (1 + ε)r/p elements improve T is at most
exp

(

−ε2r/2(1 + ε)
)

.

Finally, we shall need the following form of the Chernoff
bound, which can be found in [13].

THEOREM 6.3. Let X1, X2, . . . , Xm be independent
Bernoulli random variables. Then for X =

∑m
i=1 Xi,

µ = E[X ], and 0 < ε ≤ 1,

Pr[X < (1− ε)µ] < exp(−µε2/2).

Let u be a sample from the binomial distribution
B(n, 3/4). The subset U ⊆ U consisting of the first u el-
ements observed in the input has the same distribution as
the random subset U(3/4). (Both subsets have cardinality
distributed as B(n, 3/4), and both of them are uniformly-
distributed conditional on their cardinality.) Let B be the
maximum-weight independent subset of U in τr(M), and let
A denote the set of all elements of U \ B that improve B in
τr(M). Define the modified value of an element x ∈ U to
be:

ŵ(x) =

{

w(x) if x ∈ A
0 otherwise .

Let OPTr(M) denote the maximum-weight basis of τr(M).
The elements of OPTr(M) improve all independent sets [9];
this fact is an easy consequence of the matroid axioms.
Consequently OPTr(M) ⊆ A ∪ B, and the elements
of OPTr(M) are randomly assigned to either A or B,
independently, with probabilities 1/4 and 3/4, respectively.
This implies the following:

1. The probability that |A ∩ OPTr| < r/6 is at most
exp(−r/72). (By Theorem 6.3 with µ = r

4
, ε = 1

3
.)

2. The probability that |B ∩ OPTr| < r/2 is at most
exp(−r/24). (By Theorem 6.3 with µ = 3r

4
, ε = 1

3
.)

3. The probability that |A ∪ B| > 3r/2 is at most
exp(−r/144). (By Theorem 6.2 with ε = 1

8
.)

Assume r > 144 — otherwise we can simply run Dynkin’s
secretary algorithm to select the maximum-weight element
of U with probability at least 1/e, and this algorithm will
have a competitive ratio of at most 144e, which is less than
400. Given that r > 144, it means that the probability
that any of the events (1)-(3) occur is at most exp(−2) +
exp(−6) + exp(−1) < 0.51. Let E denote the event that



none of (1)-(3) occur. Note that E implies |B| ≥ r/2
and |A ∪ B| ≤ 3r/2, hence |A| ≤ r. For any integer a,
conditional on the event |A∩OPTr| = a, the set |A∩OPTr|
is uniformly distributed over all a-element subsets of OPTr

and therefore E(w(A ∩ OPTr) | a) = (a/r)w(OPTr).
Hence the expected value of the set A ∩ OPTr, conditional
on E , is at least w(OPTr)/6.

Suppose that the elements of M are presented to ALG

with their modified values ŵ(x), in random order. Let T
denote the set of elements selected by ALG and let R de-
note the maximum-weight independent subset of A. (Note
that both of these sets consist of elements whose modified
value is equal to their original value, so w(T ) = ŵ(T )
and w(R) = ŵ(R).) Since ALG is c-competitive, we have
E(w(T ) | A) ≥ w(R)/c. We also have E(w(R) | E) ≥
E(w(A ∩ OPTr) | E) ≥ w(OPTr)/6. Also, E has prob-
ability at least 0.49, and conditional on E , ALG selects at
most r elements. Combining these observations, we find
that the expected combined value of the first r elements se-
lected by ALG is at least

(

0.49
6c

)

w(OPTr), which is at least
w(OPTr)/13c.

It remains to show that there is an online algorithm
(the simulation algorithm) which can observe the elements
of M (with their original values) in random order, and can
present these elements to ALG with their modified values,
also in random order, subject to the constraint that every
element x with ŵ(x) > 0 is presented to ALG before the
simulation algorithm observes any of the elements of M

following x. (This timing constraint is necessary because
if ALG decides to select an element, we want to be able to
select it before observing any of the subsequent elements in
the input.) We accomplish this simulation using a random
shuffling trick. Let z1, z2, . . . , zn denote a sequence of
independent Bernoulli random variables, each with expected
value 3/4. Let u denote the number of i such that zi = 1.
The simulation algorithm observes the first u elements of
the input without selecting anything, and it places these
elements into a set U . It also computes B, the maximum-
weight independent subset of U in τr(M). Now it presents
a sequence of elements xt (for t = 1, 2, . . . , n) to ALG as
follows: if zt = 1 then it samples xt uniformly at random
from U , deletes this element from U , and presents it to ALG

with value ŵ(xt) = 0. If zt = 0 it observes the next element
x in its own input sequence, computes whether this element
improves B in τr(M), and presents x to ALG with value
ŵ(x) = w(x) if x improves B, ŵ(x) = 0 otherwise. It is an
exercise to show that the modified values ŵ(·) defined in this
paragraph are identical with those defined earlier, and that
conditional on the modified value function ŵ, the elements
of M are presented to ALG in a random order.

If M is a truthful mechanism for domain D, with
allocation rule ALG, then ALG must be monotone (an agent
cannot go from winning to losing by increasing her bid).

The reduction from τr(ALG) to ALG preserves monotonicity,
so τr(ALG) will also be monotone. Then we can design a
truthful mechanism τr(M) using allocation rule τr(ALG);
the price charged to agent i is 0 if the outcome does not
satisfy i, otherwise it is the minimum value that i would have
to bid in order to get a satifying outcome.

�
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A Some Counterexamples
As evidence that Question 1 is non-trivial, we show two
natural generalizations of the secretary algorithm can not be
constant-competitive for general matroids.
A.1 Single-threshold algorithms

A single-threshold algorithm is any algorithm which has the
following format. It observes the input without making any
selections until it reaches a stopping time τ .9 At time τ
it computes a threshold value v which may depend on the
portion of the input observed thus far. After time τ it selects
every element x such that the value of x is at least v, and x
is independent of the elements previously selected.

Let m be a large positive integer. Let M = (U , I) be
a partition matroid consisting of n elements partitioned into
k = dn/Ce subsets S1, S2, . . . , Sk, each having size C or
C − 1. A set A ⊆ U belongs to I if |A ∩ Si| ≤ 1 for all i.
Assign values to the elements of U as follows. In Si there is
a single element (the good element) of value 1/i and all other
elements (the bad elements) have value 1/Ci. The value of
the maximum-weight basis of M is Hk = Ω(ln(n/C)).

Suppose we are given a single-threshold algorithm, and
we run this algorithm on the input specified in the preceding
paragraph. Let E(v) denote the event that the algorithm
sets threshold value v. We will show that the expected
value of the set selected by the algorithm, conditioned on
event E(v), is at most

(

2√
C

+ 1
C

)

Hk + ln C + 1. First,
the combined value of the bad elements selected by the
algorithm is at most 1

C Hk. Second, call a good element safe
if its value is between v and Cv; otherwise call the good
element unsafe. The combined value of the safe elements is
at most

∑

1/v≤i≤1/Cv 1/i ≤ 1 + ln( 1/v
1/Cv ) = ln C + 1.

Finally we must bound the expected value of the good
unsafe elements selected by the algorithm. Let Si be any
piece of the partition whose good element, xi, is unsafe. Let
E1

i be the event that xi is among the final b
√

Cc elements of
Si in the random ordering of the input. Note that Pr(E1

i ) ≤
1√
C

. If E1
i does not occur, then either there are fewer than√

C elements of Si which remain unobserved at time τ
— in which case the algorithm has already failed to select
xi — or there are at least

√
C elements of Si which are

unobserved at time τ . In this latter case, let E2
i be the event

that xi is the next element of Si observed after τ . Note that
Pr(E2

i |E1
i ) ≤ 1/

√
C. If neither E2

i nor E1
i occurs, then xi

will not be selected by the algorithm. This is because our
assumption that xi is unsafe implies that either v > 1/i, in
which case the algorithm can not select xi, or that v < 1/Ci,
in which case the first element of Si observed after time τ
is selected instead of xi. We conclude that the probability

9Note we allow the possibility that the algorithm uses information about
the elements observed up to time τ in deciding whether it has reached τ .

of selecting the unsafe element xi is bounded above by
Pr(E1

i ∨ E2
i ), which is at most 2√

C
.

We have proven that for every constant C, every single-
threshold algorithm has competitive ratio Ω(

√
C) on the

instance specified above. Hence there is no constant-
competitive single-threshold algorithm.
A.2 The greedy algorithm

The natural generalization of the greedy algorithm for the
matroid secretary problem is the following. The algorithm
observes a constant fraction of the elements (the “sample”)
without making any selections. Afterward, it keeps track
of an independent set which is initially a maximum-value
independent subset of the sample. Whenever it is possible
to improve the value of the independent set by incorporating
the current element (and possibly swapping out one of the
elements of the sample) the algorithm selects the current
element and incorporates it into the independent set.

This algorithm is not constant-competitive, even when
the matroid is a graphic matroid, and next we illustrate a
counterexample: we present a family of graphs with size
parametrized by m (n = 2m + 1), such that for any
sufficiently large graph in the family (for large m), the
algorithm is not C-competitive for the constant C < 1.

Let G = (V, E) be a graph with vertex set V =
{u, v, w1, w2, . . . , wm} and edge set E = {(u, v)} ∪
{(u, wi), (v, wi) | i = 1, 2, . . . , m}. Assume we are given an
arbitrarily small positive constant ε > 0. Assign weights to
the elements of E by specifying that w(u, v) = m + 1, that
ε < w(u, wi) < 2ε for each i, and that 2ε < w(v, wi) < 3ε
for each i. For the pair of edges (u, wi) and (v, wi), we call
(u, wi) the light edge of the pair, and (v, wi) the matching
heavy edge of the pair. If the algorithm does not select edge
e∗ = (u, v) then its competitive ratio is at least 1/3ε, since
it can select at most m + 1 other edges and each of them has
value less than 3ε.

To prove the claim we show that the probability of
selecting e∗ is arbitrarily small (tends to zero when m tends
to infinity). The idea is to show that conditional on e∗ not
in the sample, the following event has high probability and
ensures that e∗ is not picked by the algorithm. The event
is that the n2/3 elements coming after the sample do not
include e∗ and include a pair of matching edges that are
picked by the algorithm. To show that this event is very likely
to happen we use the “Birthday Paradox” and show that with
high probability the n2/3 elements coming after the sample
are going to include a pair of light and heavy edges, coming
in this order, and no light edge that has higher weight than
the light edge of maximum weight with matching heavy edge
in the sample is observed (as this light edge is one of the n1/6

maximum-weight light edges w.h.p.). This ensures that a
pair of matching edges is picked by the algorithm, preventing
e∗ to be selected.


