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Abstract. A general class of no-regret learning algorithms, called &-
no-regret learning algorithms is defined, which spans the spectrum from
no-internal-regret learning to no-external-regret learning, and beyond. &
describes the set of strategies to which the play of a learning algorithm
is compared: a learning algorithm satisfies ®-no-regret iff no regret is
experienced for playing as the algorithm prescribes, rather than playing
according to any of the transformations of the algorithm’s play prescribed
by elements of @. Analogously, a class of game-theoretic equilibria, called
P-equilibria, is defined, and it is shown that the empirical distribution
of play of #-no-regret algorithms converges to the set of @-equilibria.
Perhaps surprisingly, the strongest form of no-regret algorithms in this
class are no-internal-regret algorithms. Thus, the tightest game-theoretic
solution concept to which ®-no-regret algorithms (provably) converge is
correlated equilibrium. In particular, Nash equilibrium is not a necessary
outcome of learning via any $-no-regret learning algorithms.

1 Introduction

Consider an agent that repeatedly faces some decision problem. The agent is
presented with a choice of actions, each with a different outcome, or set of
outcomes. After each choice is made, and the corresponding outcome is observed,
the agent achieves a reward. In this setting, one reasonable objective for an agent
is to maximize its average rewards. If each outcome is deterministic, and if the
action set is finite, the agent need only undertake a linear search for an action
that yields the maximal reward, and choose that action forever after. But if there
is a set of outcomes associated with each choice of action, i.e., if the outcome
is nondeterministic, even if the action set is finite, a more complex strategy, or
learning algorithm, is called for, if indeed the agent seeks to maximize rewards.
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No-regret learning algorithms are geared toward maximizing rewards in non-
deterministic settings. The efficacy of a no-regret algorithm is determined by
comparing the performance of the algorithm with the performance of a set of
alternative strategies. For example, one might compare the performance of a
learning algorithm with the set of strategies that always choose the same action
a, for all actions a. Learning algorithms that outperform this strategy set are
said to exhibit no-external-regret [11]. As another example, consider the set of
strategies that choose action a' rather than action a, whenever a given learning
algorithm chooses a, for all possible actions a and a'. Learning algorithms that
outperform all strategies in this set are said to satisfy no-internal-regret [6].

This paper studies the outcome of no-regret learning among a set of agents,
or players, playing a repeated game. In a game, each player is presented with
a choice of actions, and the outcome of the game is jointly determined by all
players’ choices. Each outcome assigns a reward to each player. In general, play-
ers choose their actions nondeterministically; thus, the outcome of a game can
be viewed as nondeterministic, as in the single agent decision problem. Interest-
ingly, in two-player, zero-sum games, if each player plays using a no-external-
regret learning algorithm, then the empirical distribution of play converges to
the set of minimax equilibria (see, for example, Freund and Schapire [8]). Also
of interest, in multi-player games, if each agent plays using a no-internal-regret
learning algorithm, then the empirical distribution of play converges to the set
of correlated equilibria (see, for example, Hart and Mas-Colell [12]).

In this article, we define a general class of no-regret learning algorithms, called
d-no-regret learning algorithms, which spans the spectrum from no-internal-
regret learning to no-external-regret learning, and beyond. ¢ describes the set
of strategies to which the play of a learning algorithms is compared: a learning
algorithm satisfies @-no-regret iff no regret is experienced for playing as the
algorithm prescribes, rather than playing according to any of the transformations
of the algorithm’s play prescribed by elements of . Analogously, we define a class
of game-theoretic equilibria, called $-equilibria, and we show that the empirical
distribution of play of #-no-regret algorithms converges to the set of $-equilibria.
Perhaps surprisingly, no-internal-regret algorithms are the strongest form of no-
regret algorithms in this class. Thus, the tightest game-theoretic solution concept
to which #-no-regret algorithms (provably) converge is correlated equilibrium.
In particular, Nash equilibrium is not a necessary outcome of learning via any
&-no-regret learning algorithms.

This article is organized as follows. In the next section, we present Blackwell’s
approachability theory, which provides the technology for the proofs that appear
throughout this work. In Section 3, we define $-no-regret learning, and we show
that no-external-regret and no-internal-regret are special cases of $-no-regret.
We also directly establish the existence of an algorithm that exhibits #-no-regret,
for an arbitrary choice of @. In Section 4, we define #-equilibrium, and we prove
that ®#-no-regret learning converges to the set of $-equilibria. The content of this
article is largely based on Jafari’s Master’s thesis [14].
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2 Approachability

Consider an agent with a set of actions A (a € A) playing a game against a set
of opponents with joint action set A’ (a' € A’). Associated with each possible
outcome is some vector given by the vector-valued function p: Ax A’ = V. The
sets A and A’ are o-algebras, and V is a vector space with an inner product -
and a distance metric d defined by the inner product.

Given a game with the vector-valued function p, a (deterministic) learning
algorithm A is a sequence of functions ¢; = g;(p) : (A x A")=1 — A(A), for
t=1,2,..., where A(A) is the set of all probability measures on 4 and (A4 x A’)°
is defined as a single point: i.e., g € A(A). Note that a deterministic learning
algorithm 4 generates nondeterministic actions. A nondeterministic learning
algorithm 4 assumes values in P(A(A)), the set of all subsets of A(A).

Many examples of learning algorithms appear throughout the literature. A
history-independent learning algorithm returns some constant element of A(A).
The best-reply learning algorithm [4] returns an element of A(A4), at time ¢, that
maximizes the agent’s rewards w.r.t. only a;_,. Fictitious play [3,15] returns
returns an element of A(A), at time ¢, that maximizes the agent’s rewards w.r.t.
the empirical distribution of play through time ¢ — 1.

Following Blackwell [2], we define the notion of approachability as follows.

Definition 1. Given a game with vector-valued function p, a subset G CV is
said to be p-approachable iff there exists learning algorithm A = q1,qo, - .. s-t.
for any sequence of opponents’ actions aj,ab, ..., for all € > 0, there exists to
s.t. for all t > to, d(G, p) = inf e d(g, pr) < €, almost surely, where p; denotes
the average value of p through time t: i.e., py = 1 (p(a1,a}) + ... + pla, ay)).

Technically, for any sequence of opponents’ actions ay,al,..., for all €,6 > 0,
there ezists to s.t. for all t > to, Pt ((a1,...,a:)|d(G,pt) > ) < €, where P is
the product measure on At induced by q1,...,q as follows:

P' =q x ga(as,a}) x ... x ¢((ar,a}),...,(a;_1,a;_;))

In other words, a subset G C V is p-approachable iff there exists a learning
algorithm for an agent that generates nondeterministic actions for the agent
which ensure that the distance from the set G to the average value of p through
time ¢ tends to zero as t tends to infinity, almost surely, for any sequence of
opponents’ actions aj, ah, .. ..

Throughout the remainder of this paper, we restrict attention to V = RS
and G = RS = {(z;)ses|zs < 0}, for various choices of some finite set S.
Ultimately, we interpret the vector-valued function in games as regrets (rather
than rewards). Thus, we seek learning algorithms that approach the negative
orthant: i.e., learning algorithms that achieve no-regret.

Blackwell’s seminal approachability theorem [2] gives a sufficient condition
on learning algorithms which ensures that RS C RS (or, more generally, any
convex subset G C V) is approachable. We present Blackwell’s condition, as
well as a generalization of the approachability theorem due to Jafari [14].
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Definition 2. Let A: R® — RS be a function that is zero on RS . Given a game

with vector-valued function p, a learning algorithm A = q1,qa, - .. is A-compatible
iff there exists some constant ¢ € R and there exists tg € N s.t. for all t > to,
c
A(py) - < 1
(Pe) - pge41,0') < 5y (1)

for alla’ € A'. Here p(q,a’) = [, p(a,a’)dq(a) is the expected value of p.

This definition of A-compatibility is inspired by Hart and Mas-Colell [13],
who introduce the notion of A-compatibility for ¢ = 0. Blackwell’s condition can
be stated in terms of A-compatibility for a particular choice of A, namely Ao,
which is defined as follows: Ag((zs)ses) = (#F)ses, where 7 = max{z,,0}.

Theorem 1 (Blackwell, 1956). Given a game with vector-valued function p,
if A and A' finite, then the set RS is p-approachable iff there ewists learning
algorithm A that is Ag-compatible, with ¢ = 0: i.e., for all times t and for all
a € A, pf - plgi1,a') < 0. Conversely, if no such learning algorithm eists,
then the set RS is not p-approachable.

The following generalization of Blackwell’s theorem, due to Jafari [14], states
that Ag-compatibility implies p-approachability, even for ¢ # 0.

Theorem 2 (Jafari, 2003). Given a game with vector-valued function p, if
p(A x A") is bounded, then the set RS is p-approachable by learning algorithm
A if A is Ag-compatible: i.e., there exists some constant ¢ € R and there exists
to € N s.t. for all t > to, pf - p(qi41,0a') < w1, for all o' € A'. Conversely, if no

such learning algorithm exists, then the set RS is not p-approachable.

3 No-Regret Learning

Let @ be a finite subset of the set of linear maps ¢ : A(4) — A(A): i.e., for all
0<a<l,forall g,¢ € A(A),

plags + (1 - a)gz2) = ad(qr) + (1 — a)¢(q2) ()

Thus, each ¢ € ® converts one nondeterministic action for an agent into another.
Given &, and given one distinguished agent’s reward function r : A x A’ —» R,
we define regret vector pg : A x A" — R® as follows:

pa(a,a’) = (r(¢(da),a') — r(a,a'))gea 3)

Here §, is the Dirac ¢ function: i.e., all mass is concentrated at a. In words,
pa(a,a’) is a vector indexed by ¢ € & for which each entry describes the regret
the agent feels for choosing action a rather than action ¢(d,), given action a’.
Using this framework, we define #-no-regret learning.

Definition 3. A &-no-regret learning algorithm is one that pg-approaches R .
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Given a game, if an agent with reward function r learns to play in such a way
that pg approaches the negative orthant, then the agent’s learning algorithm is
said to exhibit no-regret. There are two well-studied examples of the #-no-regret
property: no-external-regret and no-internal-regret.

Given an agent with finite action set A, let $pxr = {¢a]a € A} be the set of
constant maps: i.e., ¢,(q) = d,. Thus, ¢, (q) is a probability density concentrated
at a—it ascribes zero probability to any action b # a. Intuitively, a learning
algorithm satisfies $pxr-no-regret iff it precludes the agent from experiencing
regret relative to any fixed strategy. $rxr-no-regret corresponds to no-external-
regret, also known as Hannan, or universal, consistency [11].

Our next choice of @, once again for A finite, gives rise to the definition of
no-internal-regret [6]. Let $iny = {dap|a # b € A}, where

qc if c#a,b

($ar(9)). = { O ifc=a (4)
ot qifc=0b

For a # b, ¢4, maps nondeterministic action ¢ into another that ascribes zero
probability to a, but instead adds a’s probability mass according to ¢ to the
probability g ascribes to b. Thus, an algorithm satisfies &yr-no-regret if the
agent does not feel regret when it plays a instead of b, for all pairs of distinct
actions a # b. Following Foster and Vohra [6], we call this property no-internal-
regret, but it is sometimes called conditional universal consistency [9].

Perhaps surprisingly, no-internal-regret is the strongest form of #-no-regret,
as Proposition 1 demonstrates. To prove this claim, we rely on the next lemma.

Lemma 1. If learning algorithm A satisfies &-no-regret, then A also satisfies
&' -no-regret, for all finite subsets ¥ C SCH(®), the super conver hull of &,
defined as follows:

k+1
SCH(®) = {Z a;id; | ¢; €D, for1 <i <k, ¢ppy1 = I, the identity map,

i=1

k+1
a; >0, for1<i<k,art1 €ER, and Zaizl}

i=1

Proof. Let ¢ € ScH(®). By the calculation below, py = Ele aipg;. Thus,
per = M pg, for some matrix M with non-negative entries. If learning algorithm
A satisfies $-no-regret (i.e., if R? is pg-approachable), then d(R?,54 ;) — 0,
as t — oo, almost surely. But then, by the continuity of M, d(MR? , Mpg,) =
d(MRf,ﬁ@’t) — 0, as t = oo, almost surely. In other words, MR? is pg:-
approachable. Now since all entries in M are non-negative, it follows that MR C
R®'. Therefore, R?' is per-approachable: i.e., A satisfies #'-no-regret.
Finally,

ps(a,a’) =r(¢(da),a’) — r(a,a’)
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k+1
r ((Z ai¢z’> (5a),a'> —r(a,a’)

k+1

- Z a;r($i(da),a') = r(a,a’)
o

=Y air(¢i(8),a) = ) air(a,a)
i=1 =1
k+1

= 3" 04 (r(61(60), o)~ (0,0)
::-}—1

= Z QiPg; (a7 al)
i=1
k
= Z AiPg; (a7 al)
i=1

The last step follows from the fact that pg,,,(a,a’) = pr(a,a’) = r(I(8,),a’) —
r(a,a') =r(a,a’) —r(a,a’) = 0.

Corollary 1. If learning algorithm A satisfies ®-no-regret, then A also satisfies
&' -no-regret, for all finite subsets ' C cH(P), the conver hull of .

Proof. Choose a1 = 0.

Proposition 1. If learning algorithm A satisfies no-internal-regret, then A also
satisfies P-no-regret for all finite subsets @ of the set of stochastic matrices.

Proof. An elementary matrix is one with exactly one 1 per row, and 0’s else-
where. By Corollary 1, if an algorithm is ®#-no-regret for the set @ of elementary
matrices, then the algorithm satisfies '-no-regret for all finite subsets @' of the
set of stochastic matrices, since the set of stochastic matrices is the convex hull
of the set of elementary matrices. Thus, it suffices to show that an algorithm that
satisfies no-internal-regret is @-no-regret for the set @ of elementary matrices.

But by Lemma 1, it further suffices to show that any elementary matrix M
can be expressed as follows: M = ai1¢1 + ... + ardr — ar+1l, where ¢; € Py
and a; > 0,for 1 <i <k, apt1 € R Zfill a; =1, and [ is the identity map.

Let A=1{1,...,m}. Let M(n,...,n,) denote the elementary matrix with
0’s everywhere except 1’s at entries (i,n;) for 1 <4 < m. Now the linear map ¢; ;
defined in Equation 4 is represented by the elementary matrix with 1’s on the
diagonal except in row ¢, where the 1 appears in column j. Thus, ¢1p, +- . .+ Pmn,.,
corresponds to the matrix with 0’s everywhere, except 1’s at entries (i,n;) for
1 <i <m, and m — 1’s on the diagonal. It follows that

M, ...,nm) = d1ny + -+« + dmn,, — (m—=1DI (5)
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Indeed, ®-no-regret learning algorithms exists. In particular, no-external-
regret algorithms pervade the literature. The earliest date back to Blackwell [2]
and Hannan [11]; but, more recently, Foster and Vohra [5] Freund and Schapire [7],
Fudenberg and Levine [10], Hart and Mas-Colell [13], and others have studied
such algorithms. To our knowledge, only Foster and Vohra [6] have proposed an
algorithm that satisfies no-internal-regret.

The next theorem establishes the existence of $-no-regret algorithms, for all
sets @. The method of proof is related to that of Foster and Vohra [6].

Theorem 3. Given reward functionr : A x A" = R. If r(A x A’) is bounded,
then there exists a learning algorithm that satisfies ®-no-regret, for all finite
subsets @ of the set of continuous, linear maps on A(A).

Proof. Tt suffices to show that for all z € R? \ R? , there exists ¢ = q(z) € A(A)

s.t. zt - pa(g,a’) <0, for all ' € A. Letting z = p,, for t = 1,2,..., the result

follows from Blackwell’s approachability theorem. In fact, we show equality:
0=2""-pas(g,a’)

=Y« (r(8(a), @) — (g, )

peP
=Y wfr(d(g),a) = Y wfr(ga)
peP oD
=r{ | X afe) @.a ) -r || Do) |0

pED ped

Now it suffices to show the following:

doaie|@={d %) |a (6)

1S4 ped

Define M : A(A) — A(A) as follows:

+
_ 2pea¥s®
- +
Z¢e¢ Ty
The function M maps a compact space, namely A(A), into itself. Moreover,

it is continuous, since all ¢ € & are continuous, by assumption. Therefore, by
Brouwer’s fixed point theorem, M has a fixed point.

M (7)

Technically speaking, this theorem does not establish the existence of an
“algorithm,” as stated, because the proof of Brouwer’s fixed point theorem is not
constructive. Moreover, the solution to Equation 6 need not be unique. Thus, at
best, this theorem establishes the existence of a nondeterministic, $-no-regret
“algorithm.” But if A is finite, then the function M defined in Equation 7 is
a stochastic matrix, and a solution to Equation 6 arises from the fact that any
stochastic matrix has a positive fixed point. In this case, the least squares method
of solving systems of equations yields a deterministic, $-no-regret algorithm.
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4 &-Equilibrium

In this section, we define the notion of @-equilibrium, and we prove that learning
algorithms that satisfy #-no-regret converge to $-equilibria. In particular, @gyr-
no-regret algorithms (i.e., no-external-regret algorithms) converge to (general-
ized) minimax equilibria; and $;yr-no-regret algorithms (i.e., no-internal-regret
algorithms) converge to correlated equilibria.

Consider an n-player game where each player i chooses an action from the
set A;, and rewards are determined by the function r : 47 x...x A, — R". Let
&; be a finite subset of the set of linear maps ¢; : A(A4;) = A(A;). A linear map
¢; extends to a linear map ¢; : A(4; X ...x A,) = A(A4; x...x Ap) as follows:

#i(q)(bi,a—; ¢i((9(ai; a—i))a;ea;)(bi)
= ¢ ( q(ai,a 1)60i> (bi)
a;EA;
q(ai,a_;)$i(da,)(bi) (8)
a;€EA;

An element ¢ € A(A; X ... x Ap) is called independent iff it can be written
as the product ¢ = g1 X ... X g, of n independent elements ¢; € A(A4;). For
independent ¢ € A(A; x ... X A,),

(,ZSZ( )(al,.. , Aj— 1,bz,a,+1,...,an)
=> (n X g XX gn)(ans -G an) i (84, ) (B)
a;€EA;

(a;) - - - gnlan)di(8a;) (b)

Il
M 1

a;€EA;
= qi(a1) - gi-1(ai-1)gir1(@is1) - - gnlan) DY qi(ai)i(da,)(b:)
a;€EA;
=qi(a1) ... ¢i—1(ai—1)qi+1(@i+1) - - . gn(an) @; ( Z qi(ai)éai> (bs)
a;€EA;

=qi(a1) - ¢i-1(ai—1)Gi+1(@it1) - - - gn(an)di(gi) (b:)

The stated definition of the extended map ¢; applies to all ¢ € A(4; x...x A,),
with the property that ¢(q) = ¢1 X ... X ¢;(g;) X ... X gy, for independent g. Note
also that this definition yields an extension that is indeed a probability measure,
since

Z #i(q)(bi,a_;) = Z (Z q(ai,a—;)¢i(da;) (b Z)>

b;,a—; bi,a—; \a;EA;
= Y alai,a-i) Yy ¢i(0a,)(bi)
ai,a—; b;

=1
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Definition 4. Given a game (i.e., given reward function r), and given vector
b = (Pi)i<i<n, an element ¢ € A(A; x ... x Ay) is called a $-equilibrium iff
ri(q) > 1i(6i(q)), for all players i and for all ¢; € J;.

Generalized minimax and correlated equilibrium are both special cases of @-
equilibrium. We define generalized minimax equilibria as $-equilibria, with &; =
Ppxr for all players i. Correlated equilibria are $-equilibria, where &; = &1 for
all players i. Next we discuss two convexity properties of the set of #-equilibria,
and the relationship between @-equilibria and Nash equilibria.

Lemma 2. Given a game (i.e., given reward function r), and given vector & =
(Pi)1<i<n, the set of $-equilibria is convex.

Proof. If g and ¢' are both $-equilibria, then r;(q) > 7;(diq) and r;(¢') > ri(di¢'),
for all players i and for all ¢; € ®;. Since r; and ¢; are linear on A(A; x...x 4,),
it follows that

ri(ag + (1 —a)q)
=ari(q) + (1 —a)ri(q)
> ari(¢iq) + (1 — a)ri(¢:q’)
=ri(adig + (1 — a)diq’)
=ri(¢i(aq + (1 - @)q"))

Lemma 3. Given a game (i.e., given reward function r), and given vector & =
(Pi)i<i<n, if ¢ € A(A1 X ... x Ay) is a P-equilibrium, then it is also o &'-
equilibrium, where &' = (P})1<i<n and &} is the convez hull of &;, for 1 < i < n.

Proof. Since q is a $-equilibrium, r;(q) > r;(¢:(q)), for all players ¢ and for all
¢; € &;. In particular, r;(q) > r;(¢s,(¢)) and r;(q) > ri(di,(q)). Since 7;, ¢y,
and ¢;, are linear on A(A; x ... x Ap), it follows that

ri(q)
=ari(q) + (1 — a)ri(q)
> ari(¢i, (q)) + (1 — a)ri(¢i, ()
=ri(agi, (9) + (1 — @)¢i, (q))
=ri((agi, + (1 — a)¢i,)(q))

A Nash equilibrium ¢ € A(4; x ... x A,) is an independent $-equilibrium:
if ri(q) > ri(¢i(q)) = 7(q1,---,qi-1,9i(4i); Giv1,-- -, qn), for all players i and
for all ¢; € ®;, then r(q) > (g1, --,9i—-1,4},qi+1,---,qn), for all players i and
for all ¢} € A(A;). In other words, the set of $-equilibria contains the set of
Nash equilibria. Moreover, since the set of $-equilibria is convex, this set also
contains the convex hull of the set of Nash equilibria. But the convex hull of the
set of Nash equilibria need not contain even the smallest set of $-equilibria: in
particular, the convex hull of the set of Nash equilibria need not contain the set
of correlated equilibria [1].
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Theorem 4. Given a game described by reward function r, if all players i play
via some D;-no-regret learning algorithm, then the joint empirical distribution of
play converges to the set of ®-equilibrium, almost surely.

Proof. Define the empirical distribution z; of play through time ¢ as follows:
1t
Zt(ai7 a*i) = E Z ]-a,-’.,.:ai ]-a_,-,f =a—; (9)
T=1
for all actions a; € A; and a_; € A_; = ][, ,; 4;. (The notation 1,, , =, denotes
the indicator function, which equals 1 Whenever a;r = a;, and 0 otherwise. ) It
suffices to show that for all players ¢ and for all ¢; € &;, r;(di(2¢)) — ri(z¢) = 0,
as t — oo, almost surely.
First, for arbitrary player ¢ and for arbitrary ¢; € &;,

ri(i(z)) = Y dize)(bi, ai)ri(bi,a_s)

bi,a—;

> D zlaia-i)¢i8a,) (bi)ri(biyas)

bi,a—; a; €A;

Y ailai,azi)ri(i(da,), a-i)

@,Q—4

t

% Z ri(¢i ((54“,,. ), a_i"r)
T=1

In the first step, we expand the definition of the expectation r;(g,a—;); and in
the third step we collapse this definition. The second step relies on the extended
definition of ¢; : A(A; X ... x A,) = A(4; x ... x A,)—see Equation 8. The
last step follows from the definition of the empirical distribution z;.

Second, for arbitrary player i,

t
1
== ri(ir,aiy)
T=1

Now, by assumption all players i play according to some $;-no-regret learning
algorithm. Thus, for all players 4, for all ¢; € &;,

lim 0 Sup ri(¢i(z)) —ri(z) <0

lﬂllmsup E T ¢z a,.,- >, a— ZT - E T aZT7a—lT SO
T=1

t—o0

iff lim sup pg; : <0

t—o0

iff hm d(R? , ps, 1) =0

almost surely. In other words, the joint empirical distribution of play converges
to the set of $-equilibrium, almost surely.
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Conclusion

In this article, we defined a general class of no-regret learning algorithms, called
d-no-regret learning algorithms, which spans the spectrum from no-internal-
regret learning to no-external-regret Analogously, we defined a general class of
game-theoretic equilibria, called $-equilibria, and we showed that the empirical
distribution of play of #-no-regret algorithms converges to the set of $-equilibria.
But the set ¢ was restricted: it contained only linear maps. In future work,
we plan to generalize this framework to include nonlinear, as well as, linear
maps. Perhaps by doing so, we can obtain convergence results to tighter solution
concepts than correlated equilibrium.
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