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ABSTRACT
For the problem of online real-time scheduling of jobs on a
single processor, previous work presents matching upper and
lower bounds on the competitive ratio that can be achieved
by a deterministic algorithm. However, these results only
apply to the non-strategic setting in which the jobs are re-
leased directly to the algorithm. Motivated by emerging
areas such as grid computing, we instead consider this prob-
lem in an economic setting, in which each job is released to
a separate, self-interested agent. The agent can then delay
releasing the job to the algorithm, inflate its length, and de-
clare an arbitrary value and deadline for the job, while the
center determines not only the schedule, but the payment
of each agent. For the resulting mechanism design problem
(in which we also slightly strengthen an assumption from
the non-strategic setting), we present a mechanism that ad-
dresses each incentive issue, while only increasing the com-
petitive ratio by one. We then show a matching lower bound
for deterministic mechanisms that never pay the agents.
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tation
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1. INTRODUCTION
We consider the problem of online scheduling of jobs on

a single processor. Each job is characterized by a release
time, a deadline, a processing time, and a value for successful
completion by its deadline. The objective is to maximize the
sum of the values of the jobs completed by their respective
deadlines. The key challenge in this online setting is that
the schedule must be constructed in real-time, even though
nothing is known about a job until its release time.

Competitive analysis [6, 10], with its roots in [12], is a
well-studied approach for analyzing online algorithms by
comparing them against the optimal offline algorithm, which
has full knowledge of the input at the beginning of its exe-
cution. One interpretation of this approach is as a game be-
tween the designer of the online algorithm and an adversary.
First, the designer selects the online algorithm. Then, the
adversary observes the algorithm and selects the sequence of
jobs that maximizes the competitive ratio: the ratio of the
value of the jobs completed by an optimal offline algorithm
to the value of those completed by the online algorithm.

Two papers paint a complete picture in terms of com-
petitive analysis for this setting, in which the algorithm is
assumed to know k, the maximum ratio between the value
densities (value divided by processing time) of any two jobs.
For k = 1, [4] presents a 4-competitive algorithm, and proves
that this is a lower bound on the competitive ratio for de-
terministic algorithms. The same paper also generalizes the
lower bound to (1 +

√
k)2 for any k ≥ 1, and [15] then

presents a matching (1 +
√

k)2-competitive algorithm.
The setting addressed by these papers is completely non-

strategic, and the algorithm is assumed to always know the
true characteristics of each job upon its release. However,
in domains such as grid computing (see, for example, [7,
8]) this assumption is invalid, because “buyers” of processor
time choose when and how to submit their jobs. Further-
more, “sellers” not only schedule jobs but also determine
the amount that they charge buyers, an issue not addressed
in the non-strategic setting.

Thus, we consider an extension of the setting in which
each job is owned by a separate, self-interested agent. In-
stead of being released to the algorithm, each job is now
released only to its owning agent. Each agent now has four
different ways in which it can manipulate the algorithm: it
decides when to submit the job to the algorithm after the
true release time, it can artificially inflate the length of the
job, and it can declare an arbitrary value and deadline for
the job. Because the agents are self-interested, they will
choose to manipulate the algorithm if doing so will cause
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their job to be completed; and, indeed, one can find ex-
amples in which agents have incentive to manipulate the
algorithms presented in [4] and [15].

The addition of self-interested agents moves the problem
from the area of algorithm design to that of mechanism de-
sign [17], the science of crafting protocols for self-interested
agents. Recent years have seen much activity at the inter-
face of computer science and mechanism design (see, e.g.,
[9, 18, 19]). In general, a mechanism defines a protocol for
interaction between the agents and the center that culmi-
nates with the selection of an outcome. In our setting, a
mechanism will take as input a job from each agent, and re-
turn a schedule for the jobs, and a payment to be made by
each agent to the center. A basic solution concept of mecha-
nism design is incentive compatibility, which, in our setting,
requires that it is always in each agent’s best interests to
immediately submit its job upon release, and to truthfully
declare its value, length, and deadline.

In order to evaluate a mechanism using competitive anal-
ysis, the adversary model must be updated. In the new
model, the adversary still determines the sequence of jobs,
but it is the self-interested agents who determine the ob-
served input of the mechanism. Thus, in order to achieve a
competitive ratio of c, an online mechanism must both be
incentive compatible, and always achieve at least 1

c
of the

value that the optimal offline mechanism achieves on the
same sequence of jobs.

The rest of the paper is structured as follows. In Sec-
tion 2, we formally define and review results from the orig-
inal, non-strategic setting. After introducing the incentive
issues through an example, we formalize the mechanism de-
sign setting in Section 3. In Section 4 we present our first
main result, a ((1 +

√
k)2 + 1)-competitive mechanism, and

formally prove incentive compatibility and the competitive
ratio. We also show how we can simplify this mechanism for
the special case in which k = 1 and each agent cannot alter
the length of its job. Returning the general setting, we show
in Section 5 that this competitive ratio is a lower bound for
deterministic mechanisms that do not pay agents. Finally,
in Section 6, we discuss related work other than the directly
relevant [4] and [15], before concluding with Section 7.

2. NON-STRATEGIC SETTING
In this section, we formally define the original, non-strategic

setting, and recap previous results.

2.1 Formulation
There exists a single processor on which jobs can execute,

and N jobs, although this number is not known beforehand.
Each job i is characterized by a tuple θi = (ri, di, li, vi),
which denotes the release time, deadline, length of process-
ing time required, and value, respectively. The space Θi of
possible tuples is the same for each job and consists of all
θi such that ri, di, li, vi ∈ �+ (thus, the model of time is
continuous). Each job is released at time ri, at which point
its three other characteristics are known. Nothing is known
about the job before its arrival. Each deadline is firm (or,
hard), which means that no value is obtained for a job that
is completed after its deadline. Preemption of jobs is al-
lowed, and it takes no time to switch between jobs. Thus,
job i is completed if and only if the total time it executes
on the processor before di is at least li.

Let θ = (θ1, . . . , θN ) denote the vector of tuples for all

jobs, and let θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN ) denote the
same vector without the tuple for job i. Thus, (θi, θ−i)
denotes a complete vector of tuples.

Define the value density ρi = vi
li

of job i to be the ratio of

its value to its length. For an input θ, denote the maximum
and minimum value densities as ρmin = mini ρi and ρmax =
maxi ρi. The importance ratio is then defined to be ρmax

ρmin
,

the maximal ratio of value densities between two jobs. The
algorithm is assumed to always know an upper bound k on
the importance ratio. For simplicity, we normalize the range
of possible value densities so that ρmin = 1.

An online algorithm is a function f : Θ1 × . . . × ΘN →
O that maps the vector of tuples (for any number N) to
an outcome o. An outcome o ∈ O is simply a schedule of
jobs on the processor, recorded by the function S : �+ →
{0, 1, . . . , N}, which maps each point in time to the active
job, or to 0 if the processor is idle.

To denote the total elapsed time that a job has spent on
the processor at time t, we will use the function ei(t) =∫ t

0
µ(S(x) = i)dx, where µ(·) is an indicator function that

returns 1 if the argument is true, and zero otherwise. A
job’s laxity at time t is defined to be

(
di − t − li + ei(t)

)
,

the amount of time that it can remain inactive and still be
completed by its deadline. A job is abandoned if it cannot
be completed by its deadline (formally, if di − t+ei(t) < li).
Also, overload S(·) and ei(·) so that they can also take a
vector θ as an argument. For example, S(θ, t) is shorthand
for the S(t) of the outcome f(θ), and it denotes the active
job at time t when the input is θ.

Since a job cannot be executed before its release time, the
space of possible outcomes is restricted in that S(θ, t) = i
implies ri ≤ t. Also, because the online algorithm must
produce the schedule over time, without knowledge of future
inputs, it must make the same decision at time t for inputs
that are indistinguishable at this time. Formally, let θ(t)
denote the subset of the tuples in θ that satisfy ri ≤ t. The
constraint is then that θ(t) = θ′(t) implies S(θ, t) = S(θ′, t).

The objective function is the sum of the values of the jobs
that are completed by their respective deadlines: W (o, θ) =∑

i

(
vi · µ(ei(θ, di) ≥ li)

)
. Let W ∗(θ) = maxo∈O W (o, θ)

denote the maximum possible total value for the profile θ.
In competitive analysis, an online algorithm is evaluated

by comparing it against an optimal offline algorithm. Be-
cause the offline algorithm knows the entire input θ at time
0 (but still cannot start each job i until time ri), it al-
ways achieves W ∗(θ). An online algorithm f(·) is (strictly)
c-competitive if there does not exist an input θ such that
c · W (f(θ), θ) < W ∗(θ). An algorithm that is c-competitive
is also said to achieve a competitive ratio of c.

We assume that there does not exist an overload period
of infinite duration. A period of time [ts, tf ] is overloaded
if the sum of the lengths of the jobs whose release time and
deadline both fall within the time period exceeds the dura-
tion of the interval (formally, if tf − ts ≤ ∑

i|(ts≤ri,di≤tf ) li).

Without such an assumption, it is not possible to achieve a
finite competitive ratio [15].

2.2 Previous Results
In the non-strategic setting, [4] presents a 4-competitive

algorithm called TD1 (version 2) for the case of k = 1, while

[15] presents a (1+
√

k)2-competitive algorithm called Dover

for the general case of k ≥ 1. Matching lower bounds for
deterministic algorithms for both of these cases were shown
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in [4]. In this section we provide a high-level description of
TD1 (version 2) using an example.

TD1 (version 2) divides the schedule into intervals, each
of which begins when the processor transitions from idle to
busy (call this time tb), and ends with the completion of
a job. The first active job of an interval may have laxity;
however, for the remainder of the interval, preemption of the
active job is only considered when some other job has zero
laxity. For example, when the input is the set of jobs listed
in Table 1, the first interval is the complete execution of
job 1 over the range [0.0, 0.9]. No preemption is considered
during this interval, because job 2 has laxity until time 1.5.
Then, a new interval starts at tb = 0.9 when job 2 becomes
active. Before job 2 can finish, preemption is considered at
time 4.8, when job 3 is released with zero laxity.

In order to decide whether to preempt the active job, TD1

(version 2) uses two more variables: te and p loss. The
former records the latest deadline of a job that would be
abandoned if the active job executes to completion (or, if
no such job exists, the time that the active job will finish
if it is not preempted). In this case, te = 17.0. The value
te − tb represents the an upper bound on the amount of pos-
sible execution time “lost” to the optimal offline algorithm
due to the completion of the active job. The other variable,
p loss, is equal to the length of the first active job of the
current interval. Because in general this job could have lax-
ity, the offline algorithm may be able to complete it outside
of the range [tb, te].1 If the algorithm completes the active

job and this job’s length is at least te−tb+p loss
4

, then the
algorithm is guaranteed to be 4-competitive for this inter-
val (note that k = 1 implies that all jobs have the same
value density and thus that lengths can used to compute
the competitive ratio). Because this is not case at time 4.8

(since te−tb+p loss
4

= 17.0−0.9+4.0
4

> 4.0 = l2), the algorithm
preempts job 2 for job 3, which then executes to completion.

Job ri di li vi

1 0.0 0.9 0.9 0.9

2 0.5 5.5 4.0 4.0

3 4.8 17.0 12.2 12.2

01 5 17

�
�
�

�
�

�

Table 1: Input used to recap TD1 (version 2) [4].
The up and down arrows represent ri and di, re-
spectively, while the length of the box equals li.

3. MECHANISM DESIGN SETTING
However, false information about job 2 would cause TD1

(version 2) to complete this job. For example, if job 2’s dead-

line were declared as d̂2 = 4.7, then it would have zero laxity
at time 0.7. At this time, the algorithm would preempt job

1 for job 2, because te−tb+p loss
4

= 4.7−0.0+1.0
4

> 0.9 = l1.

Job 2 would then complete before the arrival of job 3.2

1While it would be easy to alter the algorithm to recognize
that this is not possible for the jobs in Table 1, our example
does not depend on the use of p loss.
2While we will not describe the significantly more complex

In order to address incentive issues such as this one, we
need to formalize the setting as a mechanism design prob-
lem. In this section we first present the mechanism design
formulation, and then define our goals for the mechanism.

3.1 Formulation
There exists a center, who controls the processor, and

N agents, where the value of N is unknown by the center
beforehand. Each job i is owned by a separate agent i. The
characteristics of the job define the agent’s type θi ∈ Θi.
At time ri, agent i privately observes its type θi, and has
no information about job i before ri. Thus, jobs are still
released over time, but now each job is revealed only to the
owning agent.

Agents interact with the center through a direct mecha-
nism Γ = (Θ1, . . . , ΘN , g(·)), in which each agent declares a

job, denoted by θ̂i = (r̂i, d̂i, l̂i, v̂i), and g : Θ1×. . .×ΘN → O
maps the declared types to an outcome o ∈ O. An outcome
o = (S(·), p1, . . . , pN ) consists of a schedule and a payment
from each agent to the mechanism.

In a standard mechanism design setting, the outcome is
enforced at the end of the mechanism. However, since the
end is not well-defined in this online setting, we choose to
model returning the job if it is completed and collecting a
payment from each agent i as occurring at d̂i, which, accord-
ing to the agent’s declaration, is the latest relevant point of
time for that agent. That is, even if job i is completed before
d̂i, the center does not return the job to agent i until that
time. This modelling decision could instead be viewed as a
decision by the mechanism designer from a larger space of
possible mechanisms. Indeed, as we will discuss later, this
decision of when to return a completed job is crucial to our
mechanism.

Each agent’s utility, ui(g(θ̂), θi) = vi · µ(ei(θ̂, di) ≥ li) ·
µ(d̂i ≤ di) − pi(θ̂), is a quasi-linear function of its value for
its job (if completed and returned by its true deadline) and
the payment it makes to the center. We assume that each
agent is a rational, expected utility maximizer.

Agent declarations are restricted in that an agent cannot
declare a length shorter than the true length, since the center
would be able to detect such a lie if the job were completed.
On the other hand, in the general formulation we will allow
agents to declare longer lengths, since in some settings it
may be possible add unnecessary work to a job. However,
we will also consider a restricted formulation in which this
type of lie is not possible. The declared release time r̂i

is the time that the agent chooses to submit job i to the
center, and it cannot precede the time ri at which the job
is revealed to the agent. The agent can declare an arbitrary
deadline or value. To summarize, agent i can declare any
type θ̂i = (r̂i, d̂i, l̂i, v̂i) such that l̂i ≥ li and r̂i ≥ ri.

While in the non-strategic setting it was sufficient for the
algorithm to know the upper bound k on the ratio ρmax

ρmin
,

in the mechanism design setting we will strengthen this as-
sumption so that the mechanism also knows ρmin (or, equiv-
alently, the range [ρmin, ρmax] of possible value densities).3

Dover, we note that it is similar in its use of intervals and
its preference for the active job. Also, we note that the
lower bound we will show in Section 5 implies that false
information can also benefit a job in Dover.
3Note that we could then force agent declarations to satisfy
ρmin ≤ v̂i

l̂i
≤ ρmax. However, this restriction would not
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While we feel that it is unlikely that a center would know k
without knowing this range, we later present a mechanism
that does not depend on this extra knowledge in a restricted
setting.

The restriction on the schedule is now that S(θ̂, t) = i im-
plies r̂i ≤ t, to capture the fact that a job cannot be sched-
uled on the processor before it is declared to the mechanism.
As before, preemption of jobs is allowed, and job switching
takes no time.

The constraints due to the online mechanism’s lack of
knowledge of the future are that θ̂(t) = θ̂′(t) implies S(θ̂, t) =

S(θ̂′, t), and θ̂(d̂i) = θ̂′(d̂i) implies pi(θ̂) = pi(θ̂
′) for each

agent i. The setting can then be summarized as follows.

1Overview of the Setting:

for all t do
The center instantiates S(θ̂, t) ← i, for some i s.t. r̂i ≤ t
if ∃i, (ri = t) then

θi is revealed to agent i
if ∃i, (t ≥ ri) and agent i has not declared a job then

Agent i can declare any job θ̂i, s.t. r̂i = t and l̂i ≥ li
if ∃i, (d̂i = t) ∧ (ei(θ̂, t) ≥ li) then

Completed job i is returned to agent i
if ∃i, (d̂i = t) then

Center sets and collects payment pi(θ̂) from agent i

3.2 Mechanism Goals
Our aim as mechanism designer is to maximize the value

of completed jobs, subject to the constraints of incentive
compatibility and individual rationality.

The condition for (dominant strategy) incentive compat-
ibility is that for each agent i, regardless of its true type
and of the declared types of all other agents, agent i cannot
increase its utility by unilaterally changing its declaration.

Definition 1. A direct mechanism Γ satisfies incentive
compatibility (IC) if ∀i, θi, θ

′
i, θ̂−i :

ui(g(θi, θ̂−i), θi) ≥ ui(g(θ′
i, θ̂−i), θi)

From an agent perspective, dominant strategies are desir-
able because the agent does not have to reason about either
the strategies of the other agents or the distribution from
the which other agent’s types are drawn. From a mecha-
nism designer perspective, dominant strategies are impor-
tant because we can reasonably assume that an agent who
has a dominant strategy will play according to it. For these
reasons, in this paper we require dominant strategies, as op-
posed to a weaker equilibrium concept such as Bayes-Nash,
under which we could improve upon our positive results.4

decrease the lower bound on the competitive ratio.
4A possible argument against the need for incentive compat-
ibility is that an agent’s lie may actually improve the sched-
ule. In fact, this was the case in the example we showed

for the false declaration d̂2 = 4.7. However, if an agent lies
due to incorrect beliefs over the future input, then the lie
could instead make the schedule the worse (for example, if
job 3 were never released, then job 1 would have been un-
necessarily abandoned). Furthermore, if we do not know the
beliefs of the agents, and thus cannot predict how they will
lie, then we can no longer provide a competitive guarantee
for our mechanism.

While restricting ourselves to incentive compatible direct
mechanisms may seem limiting at first, the Revelation Prin-
ciple for Dominant Strategies (see, e.g., [17]) tells us that if
our goal is dominant strategy implementation, then we can
make this restriction without loss of generality.

The second goal for our mechanism, individual rationality,
requires that agents who truthfully reveal their type never
have negative utility. The rationale behind this goal is that
participation in the mechanism is assumed to be voluntary.

Definition 2. A direct mechanism Γ satisfies individual
rationality (IR) if ∀i, θi, θ̂−i, ui(g(θi, θ̂−i), θi) ≥ 0.

Finally, the social welfare function that we aim to maxi-
mize is the same as the objective function of the non-strategic
setting: W (o, θ) =

∑
i

(
vi · µ(ei(θ, di) ≥ li)

)
. As in the non-

strategic setting, we will evaluate an online mechanism using
competitive analysis to compare it against an optimal offline
mechanism (which we will denote by Γoffline). An offline
mechanism knows all of the types at time 0, and thus can
always achieve W ∗(θ).5

Definition 3. An online mechanism Γ is (strictly) c-
competitive if it satisfies IC and IR, and if there does not ex-
ist a profile of agent types θ such that c·W (g(θ), θ) < W ∗(θ).

4. RESULTS
In this section, we first present our main positive result: a(

(1+
√

k)2+1
)
-competitive mechanism (Γ1). After providing

some intuition as to why Γ1 satisfies individual rationality
and incentive compatibility, we formally prove first these two
properties and then the competitive ratio. We then consider
a special case in which k = 1 and agents cannot lie about the
length of their job, which allows us to alter this mechanism
so that it no longer requires either knowledge of ρmin or the
collection of payments from agents.

Unlike TD1 (version 2) and Dover, Γ1 gives no prefer-
ence to the active job. Instead, it always executes the avail-
able job with the highest priority : (v̂i +

√
k · ei(θ̂, t) · ρmin).

Each agent whose job is completed is then charged the low-
est value that it could have declared such that its job still
would have been completed, holding constant the rest of its
declaration.

By the use of a payment rule similar to that of a second-
price auction, Γ1 satisfies both IC with respect to values
and IR. We now argue why it satisfies IC with respect to
the other three characteristics. Declaring an “improved” job
(i.e., declaring an earlier release time, a shorter length, or
a later deadline) could possibly decrease the payment of an
agent. However, the first two lies are not possible in our set-
ting, while the third would cause the job, if it is completed,
to be returned to the agent after the true deadline. This is
the reason why it is important to always return a completed
job at its declared deadline, instead of at the point at which
it is completed.

5Another possibility is to allow only the agents to know
their types at time 0, and to force Γoffline to be incentive
compatible so that agents will truthfully declare their types
at time 0. However, this would not affect our results, since
executing a VCG mechanism (see, e.g., [17]) at time 0 both
satisfies incentive compatibility and always maximizes social
welfare.
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Mechanism 1 Γ1

Execute S(θ̂, ·) according to Algorithm 1
for all i do

if ei(θ̂, d̂i) ≥ l̂i {Agent i’s job is completed} then

pi(θ̂) ← arg minv′
i≥0(ei(((r̂i, d̂i, l̂i, v

′
i), θ̂−i), d̂i) ≥ l̂i)

else
pi(θ̂) ← 0

Algorithm 1

for all t do
Avail ← {i|(t ≥ r̂i)∧(ei(θ̂, t) < l̂i)∧(ei(θ̂, t)+d̂i−t ≥ l̂i)}

{Set of all released, non-completed, non-abandoned jobs}
if Avail �= ∅ then

S(θ̂, t) ← arg maxi∈Avail(v̂i +
√

k · ei(θ̂, t) · ρmin)
{Break ties in favor of lower r̂i}

else
S(θ̂, t) ← 0

It remains to argue why an agent does not have incentive
to “worsen” its job. The only possible effects of an inflated
length are delaying the completion of the job and causing it
to be abandoned, and the only possible effects of an earlier
declared deadline are causing to be abandoned and causing
it to be returned earlier (which has no effect on the agent’s
utility in our setting). On the other hand, it is less obvious
why agents do not have incentive to declare a later release
time. Consider a mechanism Γ′

1 that differs from Γ1 in that
it does not preempt the active job i unless there exists an-
other job j such that (v̂i +

√
k ·li(θ̂, t) ·ρmin) < v̂j . Note that

as an active job approaches completion in Γ1, its condition
for preemption approaches that of Γ′

1.
However, the types in Table 2 for the case of k = 1 show

why an agent may have incentive to delay the arrival of its
job under Γ′

1. Job 1 becomes active at time 0, and job 2
is abandoned upon its release at time 6, because 10 + 10 =
v1+l1 > v2 = 13. Then, at time 8, job 1 is preempted by job
3, because 10 + 10 = v1 + l1 < v3 = 22. Job 3 then executes
to completion, forcing job 1 to be abandoned. However, job
2 had more “weight” than job 1, and would have prevented
job 3 from being executed if it had been the active job at
time 8, since 13 + 13 = v2 + l2 > v3 = 22. Thus, if agent
1 had falsely declared r̂1 = 20, then job 3 would have been
abandoned at time 8, and job 1 would have completed over
the range [20, 30].

Job ri di li vi

1 0 30 10 10

2 6 19 13 13

3 8 30 22 22

0 6 10 20 30

�
�

�
�

�
�

Table 2: Jobs used to show why a slightly altered
version of Γ1 would not be incentive compatible with
respect to release times.

Intuitively, Γ1 avoids this problem because of two proper-

ties. First, when a job becomes active, it must have a greater
priority than all other available jobs. Second, because a job’s
priority can only increase through the increase of its elapsed
time, ei(θ̂, t), the rate of increase of a job’s priority is inde-
pendent of its characteristics. These two properties together
imply that, while a job is active, there cannot exist a time
at which its priority is less than the priority that one of
these other jobs would have achieved by executing on the
processor instead.

4.1 Proof of Individual Rationality and
Incentive Compatibility

After presenting the (trivial) proof of IR, we break the
proof of IC into lemmas.

Theorem 1. Mechanism Γ1 satisfies individual rational-
ity.

Proof. For arbitrary i, θi, θ̂−i, if job i is not completed,
then agent i pays nothing and thus has a utility of zero;
that is, pi(θi, θ̂−i) = 0 and ui(g(θi, θ̂−i), θi) = 0. On the
other hand, if job i is completed, then its value must ex-
ceed agent i’s payment. Formally, ui(g(θi, θ̂−i), θi) = vi −
arg minv′

i≥0(ei(((ri, di, li, v
′
i), θ̂−i), di) ≥ li) ≥ 0 must hold,

since v′
i = vi satisfies the condition.

To prove IC, we need to show that for an arbitrary agent
i, and an arbitrary profile θ̂−i of declarations of the other
agents, agent i can never gain by making a false declaration
θ̂i �= θi, subject to the constraints that r̂i ≥ ri and l̂i ≥ li.

We start by showing that, regardless of v̂i, if truthful dec-
larations of ri, di, and li do not cause job i to be completed,
then “worse” declarations of these variables (that is, decla-

rations that satisfy r̂i ≥ ri, l̂i ≥ li and d̂i ≤ di) can never
cause the job to be completed. We break this part of the
proof into two lemmas, first showing that it holds for the
release time, regardless of the declarations of the other vari-
ables, and then for length and deadline.

Lemma 2. In mechanism Γ1, the following condition holds
for all i, θi, θ̂−i: ∀ v̂i, l̂i ≥ li, d̂i ≤ di, r̂i ≥ ri,

[
ei

(
((r̂i, d̂i, l̂i, v̂i), θ̂−i), d̂i

) ≥ l̂i
]

=⇒
[
ei

(
((ri, d̂i, l̂i, v̂i), θ̂−i), d̂i

) ≥ l̂i
]

Proof. Assume by contradiction that this condition does
not hold– that is, job i is not completed when ri is truthfully
declared, but is completed for some false declaration r̂i ≥
ri. We first analyze the case in which the release time is
truthfully declared, and then we show that job i cannot be
completed when agent i delays submitting it to the center.

Case I: Agent i declares θ̂′
i = (ri, d̂i, l̂i, v̂i).

First, define the following three points in the execution of
job i.

• Let ts = arg mint

(S((θ̂′
i, θ̂−i), t) = i

)
be the time that

job i first starts execution.

• Let tp = arg mint>ts

(S((θ̂′
i, θ̂−i), t) �= i

)
be the time

that job i is first preempted.

• Let ta = arg mint

(
ei((θ̂

′
i, θ̂−i), t) + d̂i − t < l̂i

)
be the

time that job i is abandoned.
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If ts and tp are undefined because job i never becomes
active, then let ts = tp = ta.

Also, partition the jobs declared by other agents before ta

into the following three sets.

• X = {j|(r̂j < tp) ∧ (j �= i)} consists of the jobs (other
than i) that arrive before job i is first preempted.

• Y = {j|(tp ≤ r̂j ≤ ta)∧(v̂j > v̂i +
√

k ·ei((θ̂
′
i, θ̂−i), r̂j)}

consists of the jobs that arrive in the range [tp, ta] and
that when they arrive have higher priority than job i
(note that we are make use of the normalization).

• Z = {j|(tp ≤ r̂j ≤ ta)∧ (v̂j ≤ v̂i +
√

k ·ei((θ̂
′
i, θ̂−i), r̂j)}

consists of the jobs that arrive in the range [tp, ta] and
that when they arrive have lower priority than job i.

We now show that all active jobs during the range (tp, ta]
must be either i or in the set Y . Unless tp = ta (in which case
this property trivially holds), it must be the case that job i
has a higher priority than an arbitrary job x ∈ X at time tp,
since at the time just preceding tp job x was available and job
i was active. Formally, v̂x +

√
k · ex((θ̂′

i, θ̂−i), t
p) < v̂i +

√
k ·

ei((θ̂
′
i, θ̂−i), t

p) must hold.6 We can then show that, over the
range [tp, ta], no job x ∈ X runs on the processor. Assume
by contradiction that this is not true. Let tf ∈ [tp, ta] be
the earliest time in this range that some job x ∈ X is active,
which implies that ex((θ̂′

i, θ̂−i), t
f ) = ex((θ̂′

i, θ̂−i), t
p). We

can then show that job i has a higher priority at time tf as
follows: v̂x+

√
k·ex((θ̂′

i, θ̂−i), t
f ) = v̂x+

√
k·ex((θ̂′

i, θ̂−i), t
p) <

v̂i +
√

k · ei((θ̂
′
i, θ̂−i), t

p) ≤ v̂i +
√

k · ei((θ̂
′
i, θ̂−i), t

f ), contra-
dicting the fact that job x is active at time tf .

A similar argument applies to an arbitrary job z ∈ Z,
starting at it release time r̂z > tp, since by definition job i
has a higher priority at that time. The only remaining jobs
that can be active over the range (tp, ta] are i and those in
the set Y .

Case II: Agent i declares θ̂i = (r̂i, d̂i, l̂i, v̂i), where r̂i > ri.
We now show that job i cannot be completed in this case,

given that it was not completed in case I. First, we can
restrict the range of r̂i that we need to consider as follows.
Declaring r̂i ∈ (ri, t

s] would not affect the schedule, since
ts would still be the first time that job i executes. Also,
declaring r̂i > ta could not cause the job to be completed,
since di − ta < l̂i holds, which implies that job i would be
abandoned at its release. Thus, we can restrict consideration
to r̂i ∈ (ts, ta].

In order for declaring θ̂i to cause job i to be completed, a
necessary condition is that the execution of some job yc ∈ Y
must change during the range (tp, ta], since the only jobs
other than i that are active during that range are in Y .
Let tc = arg mint∈(tp,ta][∃yc ∈ Y, (S((θ̂′

i, θ̂−i), t) = yc) ∧
(S((θ̂i, θ̂−i), t) �= yc)] be the first time that such a change
occurs. We will now show that for any r̂i ∈ (ts, ta], there
cannot exist a job with higher priority than yc at time tc,
contradicting (S((θ̂i, θ̂−i), t) �= yc).

First note that job i cannot have a higher priority, since
there would have to exist a t ∈ (tp, tc) such that ∃y ∈
6For simplicity, when we give the formal condition for a job x
to have a higher priority than another job y, we will assume
that job x’s priority is strictly greater than job y’s, because,
in the case of a tie that favors x, future ties would also be
broken in favor of job x.

Y, (S((θ̂′
i, θ̂−i), t) = y) ∧ (S((θ̂i, θ̂−i), t) = i), contradicting

the definition of tc.
Now consider an arbitrary y ∈ Y such that y �= yc. In case

I, we know that job y has lower priority than yc at time tc;
that is, v̂y +

√
k ·ey((θ̂′

i, θ̂−i), t
c) < v̂yc +

√
k ·eyc((θ̂′

i, θ̂−i), t
c).

Thus, moving to case II, job y must replace some other job
before tc. Since r̂y ≥ tp, the condition is that there must ex-

ist some t ∈ (tp, tc) such that ∃w ∈ Y ∪{i}, (S((θ̂′
i, θ̂−i), t) =

w)∧ (S((θ̂i, θ̂−i), t) = y). Since w ∈ Y would contradict the
definition of tc, we know that w = i. That is, the job that y
replaces must be i. By definition of the set Y , we know that
v̂y > v̂i +

√
k · ei((θ̂

′
i, θ̂−i), r̂y). Thus, if r̂y ≤ t, then job i

could not have executed instead of y in case I. On the other
hand, if r̂y > t, then job y obviously could not execute at
time t, contradicting the existence of such a time t.

Now consider an arbitrary job x ∈ X. We know that
in case I job i has a higher priority than job x at time
ts, or, formally, that v̂x +

√
k · ex((θ̂′

i, θ̂−i), t
s) < v̂i +

√
k ·

ei((θ̂
′
i, θ̂−i), t

s). We also know that v̂i+
√

k·ei((θ̂
′
i, θ̂−i), t

c) <

v̂yc +
√

k · eyc((θ̂′
i, θ̂−i), t

c). Since delaying i’s arrival will
not affect the execution up to time ts, and since job x
cannot execute instead of a job y ∈ Y at any time t ∈
(tp, tc] by definition of tc, the only way for job x’s pri-
ority to increase before tc as we move from case I to II
is to replace job i over the range (ts, tc]. Thus, an up-

per bound on job x’s priority when agent i declares θ̂i is:
v̂x+

√
k·[ex((θ̂′

i, θ̂−i), t
s)+ei((θ̂

′
i, θ̂−i), t

c)−ei((θ̂
′
i, θ̂−i), t

s)
]

<

v̂i+
√

k·[ei((θ̂
′
i, θ̂−i), t

s)+ei((θ̂
′
i, θ̂−i), t

c)−ei((θ̂
′
i, θ̂−i), t

s)
]

=

v̂i +
√

k · ei((θ̂
′
i, θ̂−i), t

c) < v̂yc +
√

k · eyc((θ̂′
i, θ̂−i), t

c).
Thus, even at this upper bound, job yc would execute

instead of job x at time tc. A similar argument applies to
an arbitrary job z ∈ Z, starting at it release time r̂z. Since
the sets {i}, X, Y, Z partition the set of jobs released before
ta, we have shown that no job could execute instead of job
yc, contradicting the existence of tc, and completing the
proof.

Lemma 3. In mechanism Γ1, the following condition holds
for all i, θi, θ̂−i: ∀ v̂i, l̂i ≥ li, d̂i ≤ di,

[
ei

(
((ri, d̂i, l̂i, v̂i), θ̂−i), d̂i

) ≥ l̂i
]

=⇒
[
ei

(
((ri, di, li, v̂i), θ̂−i), d̂i

) ≥ li
]

Proof. Assume by contradiction there exists some in-
stantiation of the above variables such that job i is not
completed when li and di are truthfully declared, but is
completed for some pair of false declarations l̂i ≥ li and
d̂i ≤ di.

Note that the only effect that d̂i and l̂i have on the ex-
ecution of the algorithm is on whether or not i ∈ Avail.
Specifically, they affect the two conditions: (ei(θ̂, t) < l̂i)

and (ei(θ̂, t) + d̂i − t ≥ l̂i). Because job i is completed when

l̂i and d̂i are declared, the former condition (for comple-
tion) must become false before the latter. Since truthfully

declaring li ≤ l̂i and di ≥ d̂i will only make the former con-
dition become false earlier and the latter condition become
false later, the execution of the algorithm will not be af-
fected when moving to truthful declarations, and job i will
be completed, a contradiction.

We now use these two lemmas to show that the payment
for a completed job can only increase by falsely declaring
“worse” l̂i, d̂i, and r̂i.
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Lemma 4. In mechanism Γ1, the following condition holds
for all i, θi, θ̂−i: ∀ l̂i ≥ li, d̂i ≤ di, r̂i ≥ ri,

arg min
v′

i≥0

[
ei

(
((r̂i, d̂i, l̂i, v

′
i), θ̂−i), d̂i

) ≥ l̂i
] ≥

arg min
v′

i≥0

[
ei

(
((ri, di, li, v

′
i), θ̂−i), di

) ≥ li
]

Proof. Assume by contradiction that this condition does
not hold. This implies that there exists some value v′

i such
that the condition (ei(((r̂i, d̂i, l̂i, v

′
i), θ̂−i), d̂i) ≥ l̂i) holds,

but (ei(((ri, di, li, v
′
i), θ̂−i), di) ≥ li) does not. Applying

Lemmas 2 and 3: (ei(((r̂i, d̂i, l̂i, v
′
i), θ̂−i), d̂i) ≥ l̂i) =⇒

(ei(((ri, d̂i, l̂i, v
′
i), θ̂−i), d̂i) ≥ l̂i) =⇒

(ei(((ri, di, li, v
′
i), θ̂−i), di) ≥ li), a contradiction.

Finally, the following lemma tells us that the completion
of a job is monotonic in its declared value.

Lemma 5. In mechanism Γ1, the following condition holds
for all i, θ̂i, θ̂−i: ∀ v̂′

i ≥ v̂i,

[
ei

(
((r̂i, d̂i, l̂i, v̂i), θ̂−i), d̂i

) ≥ l̂i
]

=⇒
[
ei

(
((r̂i, d̂i, l̂i, v̂

′
i), θ̂−i), d̂i

) ≥ l̂i
]

The proof, by contradiction, of this lemma is omitted be-
cause it is essentially identical to that of Lemma 2 for r̂i. In
case I, agent i declares (r̂i, d̂i, l̂i, v̂

′
i) and the job is not com-

pleted, while in case II he declares (r̂i, d̂i, l̂i, v̂i) and the job
is completed. The analysis of the two cases then proceeds as
before– the execution will not change up to time ts because
the initial priority of job i decreases as we move from case
I to II; and, as a result, there cannot be a change in the
execution of a job other than i over the range (tp, ta].

We can now combine the lemmas to show that no prof-
itable deviation is possible.

Theorem 6. Mechanism Γ1 satisfies incentive compati-
bility.

Proof. For an arbitrary agent i, we know that r̂i ≥ ri

and l̂i ≥ li hold by assumption. We also know that agent
i has no incentive to declare d̂i > di, because job i would
never be returned before its true deadline. Then, because
the payment function is non-negative, agent i’s utility could
not exceed zero. By IR, this is the minimum utility it would
achieve if it truthfully declared θi. Thus, we can restrict
consideration to θ̂i that satisfy r̂i ≥ ri, l̂i ≥ li, and d̂i ≤ di.
Again using IR, we can further restrict consideration to θ̂i

that cause job i to be completed, since any other θ̂i yields a
utility of zero.

If truthful declaration of θi causes job i to be completed,
then by Lemma 4 any such false declaration θ̂i could not
decrease the payment of agent i. On the other hand, if
truthful declaration does not cause job i to be completed,
then declaring such a θ̂i will cause agent i to have negative
utility, since vi < arg minv′

i≥0

[
ei(((ri, di, li, v

′
i), θ̂−i), d̂i) ≥

li
] ≤ arg minv′

i≥0

[
ei(((r̂i, d̂i, l̂i, v

′
i), θ̂−i), d̂i) ≥ l̂i

]
holds by

Lemmas 5 and 4, respectively.

4.2 Proof of Competitive Ratio
The proof of the competitive ratio, which makes use of

techniques adapted from those used in [15], is also broken
into lemmas. Having shown IC, we can assume truthful
declaration (θ̂ = θ). Since we have also shown IR, in order
to prove the competitive ratio it remains to bound the loss
of social welfare against Γoffline.

Denote by (1, 2, . . . , F ) the sequence of jobs completed by
Γ1. Divide time into intervals If = (topen

f , tclose
f ], one for

each job f in this sequence. Set tclose
f to be the time at

which job f is completed, and set topen
f = tclose

f−1 for f ≥ 2,

and topen
1 = 0 for f = 1. Also, let tbegin

f be the first time
that the processor is not idle in interval If .

Lemma 7. For any interval If , the following inequality

holds: tclose
f − tbegin

f ≤ (1 + 1√
k
) · vf

Proof. Interval If begins with a (possibly zero length)
period of time in which the processor is idle because there is
no available job. Then, it continuously executes a sequence
of jobs (1, 2, . . . , c), where each job i in this sequence is pre-
empted by job i + 1, except for job c, which is completed
(thus, job c in this sequence is the same as job f is the global
sequence of completed jobs). Let ts

i be the time that job i

begins execution. Note that ts
1 = tbegin

f .

Over the range [tbegin
f , tclose

f ], the priority (vi+
√

k·ei(θ, t))
of the active job is monotonically increasing with time, be-
cause this function linearly increases while a job is active,
and can only increase at a point in time when preemption
occurs. Thus, each job i > 1 in this sequence begins execu-
tion at its release time (that is, ts

i = ri), because its priority
does not increase while it is not active.

We now show that the value of the completed job c ex-
ceeds the product of

√
k and the time spent in the interval

on jobs 1 through c−1, or, more formally, that the following
condition holds: vc ≥ √

k
∑c−1

h=1(eh(θ, ts
h+1) − eh(θ, ts

h)). To
show this, we will prove by induction that the stronger con-
dition vi ≥ √

k
∑i−1

h=1 eh(θ, ts
h+1) holds for all jobs i in the

sequence.
Base Case: For i = 1, v1 ≥ √

k
∑0

h=1 eh(θ, ts
h+1) = 0,

since the sum is over zero elements.
Inductive Step: For an arbitrary 1 ≤ i < c, we assume

that vi ≥ √
k

∑i−1
h=1 eh(θ, ts

h+1) holds. At time ts
i+1, we

know that vi+1 ≥ vi +
√

k · ei(θ, ts
i+1) holds, because ts

i+1 =
ri+1. These two inequalities together imply that vi+1 ≥√

k
∑i

h=1 eh(θ, ts
h+1), completing the inductive step.

We also know that tclose
f − ts

c ≤ lc ≤ vc must hold, by the
simplifying normalization of ρmin = 1 and the fact that job
c’s execution time cannot exceed its length. We can thus
bound the total execution time of If by: tclose

f − tbegin
f =

(tclose
f −ts

c)+
∑c−1

h=1(eh(θ, ts
h+1)−eh(θ, ts

h)) ≤ (1+ 1√
k
)vf .

We now consider the possible execution of uncompleted
jobs by Γoffline. Associate each job i that is not completed
by Γ1 with the interval during which it was abandoned. All
jobs are now associated with an interval, since there are no
gaps between the intervals, and since no job i can be aban-
doned after the close of the last interval at tclose

F . Because
the processor is idle after tclose

F , any such job i would be-
come active at some time t ≥ tclose

F , which would lead to the
completion of some job, creating a new interval and contra-
dicting the fact that IF is the last one.
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The following lemma is equivalent to Lemma 5.6 of [15],
but the proof is different for our mechanism.

Lemma 8. For any interval If and any job i abandoned

in If , the following inequality holds: vi ≤ (1 +
√

k)vf .

Proof. Assume by contradiction that there exists a job
i abandoned in If such that vi > (1 +

√
k)vf . At tclose

f ,

the priority of job f is vf +
√

k · lf < (1 +
√

k)vf . Because
the priority of the active job monotonically increases over
the range [tbegin

f , tclose
f ], job i would have a higher priority

than the active job (and thus begin execution) at some time

t ∈ [tbegin
f , tclose

f ]. Again applying monotonicity, this would

imply that the priority of the active job at tclose
f exceeds

(1 +
√

k)vf , contradicting the fact that it is (1 +
√

k)vf .

As in [15], for each interval If , we give Γoffline the fol-
lowing “gift”: k times the amount of time in the range
[tbegin

f , tclose
f ] that it does not schedule a job. Additionally,

we “give” the adversary vf , since the adversary may be able
to complete this job at some future time, due to the fact
that Γ1 ignores deadlines. The following lemma is Lemma
5.10 in [15], and its proof now applies directly.

Lemma 9. [15] With the above gifts the total net gain ob-
tained by the clairvoyant algorithm from scheduling the jobs
abandoned during If is not greater than (1 +

√
k) · vf .

The intuition behind this lemma is that the best that
the adversary can do is to take almost all of the “gift” of
k · (tclose

f − tbegin
f ) (intuitively, this is equivalent to executing

jobs with the maximum possible value density over the time
that Γ1 is active), and then begin execution of a job aban-
doned by Γ1 right before tclose

f . By Lemma 8, the value of

this job is bounded by (1 +
√

k) · vf . We can now combine
the results of these lemmas to prove the competitive ratio.

Theorem 10. Mechanism Γ1 is
(
(1+

√
k)2+1

)
-competitive.

Proof. Using the fact that the way in which jobs are as-
sociated with the intervals partitions the entire set of jobs,
we can show the competitive ratio by showing that Γ1 is(
(1+

√
k)2 +1

)
-competitive for each interval in the sequence

(1, . . . , F ). Over an arbitrary interval If , the offline algo-

rithm can achieve at most (tclose
f −tbegin

f )·k+vf +(1+
√

k)vf ,
from the two gifts and the net gain bounded by Lemma
9. Applying Lemma 7, this quantity is then bounded from
above by (1+ 1√

k
)·vf ·k+vf +(1+

√
k)vf = ((1+

√
k)2+1)·vf .

Since Γ1 achieves vf , the competitive ratio holds.

4.3 Special Case: Unalterable length and k=1
While so far we have allowed each agent to lie about all

four characteristics of its job, lying about the length of the
job is not possible in some settings. For example, a user
may not know how to alter a computational problem in a
way that both lengthens the job and allows the solution of
the original problem to be extracted from the solution to
the altered problem. Another restriction that is natural in
some settings is uniform value densities (k = 1), which was
the case considered by [4]. If the setting satisfies these two
conditions, then, by using Mechanism Γ2, we can achieve a

competitive ratio of 5 (which is the same competitive ratio
as Γ1 for the case of k = 1) without knowledge of ρmin and
without the use of payments. The latter property may be
necessary in settings that are more local than grid comput-
ing (e.g., within a department) but in which the users are
still self-interested.7

Mechanism 2 Γ2

Execute S(θ̂, ·) according to Algorithm 2
for all i do

pi(θ̂) ← 0

Algorithm 2

for all t do
Avail ← {i|(t ≥ r̂i)∧(ei(θ̂, t) < li)∧(ei(θ̂, t)+d̂i−t ≥ li)}
if Avail �= ∅ then

S(θ̂, t) ← arg maxi∈Avail(li + ei(θ̂, t))
{Break ties in favor of lower r̂i}

else
S(θ̂, t) ← 0

Theorem 11. When k = 1, and each agent i cannot
falsely declare li, Mechanism Γ2 satisfies individual ratio-
nality and incentive compatibility.

Theorem 12. When k = 1, and each agent i cannot
falsely declare li, Mechanism Γ2 is 5-competitive.

Since this mechanism is essentially a simplification of Γ1,
we omit proofs of these theorems. Basically, the fact that
k = 1 and l̂i = li both hold allows Γ2 to substitute the
priority (li+ei(θ̂, t)) for the priority used in Γ1; and, since v̂i

is ignored, payments are no longer needed to ensure incentive
compatibility.

5. COMPETITIVE LOWER BOUND
We now show that the competitive ratio of (1 +

√
k)2 +

1 achieved by Γ1 is a lower bound for deterministic on-
line mechanisms. To do so, we will appeal to third re-
quirement on a mechanism, non-negative payments (NNP),
which requires that the center never pays an agent (formally,

∀i, θ̂, pi(θ̂i) ≥ 0). Unlike IC and IR, this requirement is not
standard in mechanism design. We note, however, that both
Γ1 and Γ2 satisfy it trivially, and that, in the following proof,
zero only serves as a baseline utility for an agent, and could
be replaced by any non-positive function of θ̂−i.

The proof of the lower bound uses an adversary argument
similar to that used in [4] to show a lower bound of (1 +√

k)2 in the non-strategic setting, with the main novelty
lying in the perturbation of the job sequence and the related
incentive compatibility arguments. We first present a lemma
relating to the recurrence used for this argument, with the
proof omitted due to space constraints.

Lemma 13. For any k ≥ 1, for the recurrence defined by
li+1 = λ · li − k ·∑i

h=1 lh and l1 = 1, where (1 +
√

k)2 − 1 <

λ < (1 +
√

k)2, there exists an integer m ≥ 1 such that
lm+k·∑m−1

h=1 lh
lm

> λ.
7While payments are not required in this setting, Γ2 can be
changed to collect a payments without affecting incentive
compatibility by charging some fixed fraction of li for each
job i that is completed.
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Theorem 14. There does not exist a deterministic online
mechanism that satisfies NNP and that achieves a competi-
tive ratio less than (1 +

√
k)2 + 1.

Proof. Assume by contradiction that there exists a de-
terministic online mechanism Γ that satisfies NNP and that
achieves a competitive ratio of c = (1 +

√
k)2 + 1 − ε for

some ε > 0 (and, by implication, satisfies IC and IR as
well). Since a competitive ratio of c implies a competitive
ratio of c + x, for any x > 0, we assume without loss of
generality that ε < 1. First, we will construct a profile of
agent types θ using an adversary argument. After possibly
slightly perturbing θ to assure that a strictness property is
satisfied, we will then use a more significant perturbation of
θ to reach a contradiction.

We now construct the original profile θ. Pick an α such
that 0 < α < ε, and define δ = α

ck+3k
. The adversary uses

two sequences of jobs: minor and major. Minor jobs i are
characterized by li = δ, vi = k · δ, and zero laxity. The first
minor job is released at time 0, and ri = di−1 for all i > 1.
The sequence stops whenever Γ completes any job.

Major jobs also have zero laxity, but they have the small-
est possible value ratio (that is, vi = li). The lengths of the
major jobs that may be released, starting with i = 1, are
determined by the following recurrence relation.

li+1 = (c − 1 + α) · li − k ·
i∑

h=1

lh

l1 = 1

The bounds on α imply that (1 +
√

k)2 − 1 < c − 1 + α <

(1+
√

k)2, which allows us to apply Lemma 13. Let m be the

smallest positive number such that
lm+k·∑m−1

h=1 lh
lm

> c−1+α.
The first major job has a release time of 0, and each major

job i > 1 has a release time of ri = di−1 − δ, just before
the deadline of the previous job. The adversary releases
major job i ≤ m if and only if each major job j < i was
executed continuously over the range [ri, ri+1]. No major
job is released after job m.

In order to achieve the desired competitive ratio, Γ must
complete some major job f , because Γoffline can always at
least complete major job 1 (for a value of 1), and Γ can
complete at most one minor job (for a value of α

c+3
< 1

c
).

Also, in order for this job f to be released, the processor
time preceding rf can only be spent executing major jobs
that are later abandoned. If f < m, then major job f + 1
will be released and it will be the final major job. Γ cannot
complete job f +1, because rf + lf = df > rf+1. Therefore,
θ consists of major jobs 1 through f + 1 (or, f , if f = m),
plus minor jobs from time 0 through time df .

We now possibly perturb θ slightly. By IR, we know
that vf ≥ pf (θ). Since we will later need this inequality
to be strict, if vf = pf (θ), then change θf to θ′

f , where
r′f = rf , but v′

f , l′f , and d′
f are all incremented by δ over

their respective values in θf . By IC, job f must still be
completed by Γ for the profile (θ′

f , θ−f ). If not, then by
IR and NNP we know that pf (θ′

f , θ−f ) = 0, and thus that
uf (g(θ′

f , θ−f ), θ′
f ) = 0. However, agent f could then increase

its utility by falsely declaring the original type of θf , receiv-
ing a utility of: uf (g(θ′

f , θ−f ), θ′
f ) = v′

f − pf (θ) = δ > 0, vi-
olating IC. Furthermore, agent f must be charged the same
amount (that is, pf (θ′

f , θ−f ) = pf (θ)), due to a similar in-

centive compatibility argument. Thus, for the remainder of
the proof, assume that vf > pf (θ).

We now use a more substantial perturbation of θ to com-
plete the proof. If f < m, then define θ′′

f to be identical
to θf , except that d′′

f = df+1 + lf , allowing job f to be
completely executed after job f + 1 is completed. If f = m,
then instead set d′′

f = df +lf . IC requires that for the profile
(θ′′

f , θ−f ), Γ still executes job f continuously over the range
[rf , rf + lf ], thus preventing job f +1 from being completed.

Assume by contradiction that this were not true. Then, at
the original deadline of df , job f is not completed. Consider
the possible profile (θ′′

f , θ−f , θx), which differs from the new
profile only in the addition of a job x which has zero laxity,
rx = df , and vx = lx = max(d′′

f − df , (c + 1) · (lf + lf+1)).
Because this new profile is indistinguishable from (θ′′

f , θ−f )
to Γ before time df , it must schedule jobs in the same way
until df . Then, in order to achieve the desired competitive
ratio, it must execute job x continuously until its deadline,
which is by construction at least as late as the new deadline
d′′

f of job f . Thus, job f will not be completed, and, by
IR and NNP, it must be the case that pf (θ′′

f , θ−f , θx) =
0 and uf (g(θ′′

f , θ−f , θx), θ′′
f ) = 0. Using the fact that θ is

indistinguishable from (θf , θ−f , θx) up to time df , if agent
f falsely declared his type to be the original θf , then its job
would be completed by df and it would be charged pf (θ).
Its utility would then increase to uf (g(θf , θ−f , θx), θ′′

f ) =
vf − pf (θ) > 0, contradicting IC.

While Γ’s execution must be identical for both (θf , θ−f )
and (θ′′

f , θ−f ), Γoffline can take advantage of the change. If
f < m, then Γ achieves a value of at most lf +δ (the value of
job f if it were perturbed), while Γoffline achieves a value of

at least k ·(∑f
h=1 lh−2δ)+ lf+1 + lf by executing minor jobs

until rf+1, followed by job f +1 and then job f (we subtract
two δ’s instead of one because the last minor job before rf+1

may have to be abandoned). Substituting in for lf+1, the

competitive ratio is then at least:
k·(∑f

h=1 lh−2δ)+lf+1+lf
lf +δ

=

k·(∑f
h=1 lh)−2k·δ+(c−1+α)·lf−k·(∑f

h=1 lh)+lf
lf +δ

=
c·lf +(α·lf−2k·δ)

lf +δ

≥ c·lf +((ck+3k)δ−2k·δ)
lf +δ

> c.

If instead f = m, then Γ achieves a value of at most lm+δ,
while Γoffline achieves a value of at least k · (

∑m
h=1 lh −

2δ) + lm by completing minor jobs until dm = rm + lm,
and then completing job m. The competitive ratio is then

at least:
k·(∑m

h=1 lh−2δ)+lm
lm+δ

=
k·(∑m−1

h=1 lh)−2k·δ+klm+lm
lm+δ

>
(c−1+α)·lm−2k·δ+klm

lm+δ
= (c+k−1)·lm+(αlm−2k·δ)

lm+δ
> c.

6. RELATED WORK
In this section we describe related work other than the

two papers ([4] and [15]) on which this paper is based. Re-
cent work related to this scheduling domain has focused on
competitive analysis in which the online algorithm uses a
faster processor than the offline algorithm (see, e.g., [13,
14]). Mechanism design was also applied to a scheduling
problem in [18]. In their model, the center owns the jobs
in an offline setting, and it is the agents who can execute
them. The private information of an agent is the time it will
require to execute each job. Several incentive compatible
mechanisms are presented that are based on approximation
algorithms for the computationally infeasible optimization
problem. This paper also launched the area of algorith-
mic mechanism design, in which the mechanism must sat-
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isfy computational requirements in addition to the standard
incentive requirements. A growing sub-field in this area is
multicast cost-sharing mechanism design (see, e.g., [1]), in
which the mechanism must efficiently determine, for each
agent in a multicast tree, whether the agent receives the
transmission and the price it must pay. For a survey of
this and other topics in distributed algorithmic mechanism
design, see [9].

Online execution presents a different type of algorithmic
challenge, and several other papers study online algorithms
or mechanisms in economic settings. For example, [5] con-
siders an online market clearing setting, in which the auc-
tioneer matches buy and sells bids (which are assumed to be
exogenous) that arrive and expire over time. In [2], a gen-
eral method is presented for converting an online algorithm
into an online mechanism that is incentive compatible with
respect to values. Truthful declaration of values is also con-
sidered in [3] and [16], which both consider multi-unit online
auctions. The main difference between the two is that the
former considers the case of a digital good, which thus has
unlimited supply. It is pointed out in [16] that their results
continue to hold when the setting is extended so that bidders
can delay their arrival.

The only other paper we are aware of that addresses the
issue of incentive compatibility in a real-time system is [11],
which considers several variants of a model in which the
center allocates bandwidth to agents who declare both their
value and their arrival time. A dominant strategy IC mecha-
nism is presented for the variant in which every point in time
is essentially independent, while a Bayes-Nash IC mecha-
nism is presented for the variant in which the center’s cur-
rent decision affects the cost of future actions.

7. CONCLUSION
In this paper, we considered an online scheduling domain

for which algorithms with the best possible competitive ra-
tio had been found, but for which new solutions were re-
quired when the setting is extended to include self-interested
agents. We presented a mechanism that is incentive compat-
ible with respect to release time, deadline, length and value,
and that only increases the competitive ratio by one. We
also showed how this mechanism could be simplified when
k = 1 and each agent cannot lie about the length of its job.
We then showed a matching lower bound on the competi-
tive ratio that can be achieved by a deterministic mechanism
that never pays the agents.

Several open problems remain in this setting. One is to
determine whether the lower bound can be strengthened by
removing the restriction of non-negative payments. Also,
while we feel that it is reasonable to strengthen the assump-
tion of knowing the maximum possible ratio of value densi-
ties (k) to knowing the actual range of possible value den-
sities, it would be interesting to determine whether there
exists a ((1 +

√
k)2 + 1)-competitive mechanism under the

original assumption. Finally, randomized mechanisms pro-
vide an unexplored area for future work.
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