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ABSTRACT
Bidders on eBay have no dominant bidding strategy when
faced with multiple auctions each offering an item of in-
terest. As seen through an analysis of 1,956 auctions on
eBay for a Dell E193FP LCD monitor, some bidders win
auctions at prices higher than those of other available auc-
tions, while others never win an auction despite placing bids
in losing efforts that are greater than the closing prices of
other available auctions. These misqueues in strategic be-
havior hamper the efficiency of the system, and in so doing
limit the revenue potential for sellers. This paper proposes a
novel options-based extension to eBay’s proxy-bidding sys-
tem that resolves this strategic issue for buyers in commodi-
tized markets. An empirical analysis of eBay provides a
basis for computer simulations that investigate the market
effects of the options-based scheme, and demonstrates that
the options-based scheme provides greater efficiency than
eBay, while also increasing seller revenue.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Design, Economics

Keywords
Online Auctions, Options, Proxy Bidding, Sequential Auc-
tion Problem, eBay

1. INTRODUCTION
Electronic markets represent an application of information

systems that has generated significant new trading opportu-
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nities while allowing for the dynamic pricing of goods. In ad-
dition to marketplaces such as eBay, electronic marketplaces
are increasingly used for business-to-consumer auctions (e.g.
to sell surplus inventory [19]).

Many authors have written about a future in which com-
merce is mediated by online, automated trading agents [10,
25, 1]. There is still little evidence of automated trading
in e-markets, though. We believe that one leading place of
resistance is in the lack of provably optimal bidding strate-
gies for any but the simplest of market designs. Without
this, we do not expect individual consumers, or firms, to
be confident in placing their business in the “hands” of an
automated agent.

One of the most common examples today of an electronic
marketplace is eBay, where the gross merchandise volume
(i.e., the sum of all successfully closed listings) during 2005
was $44B. Among items listed on eBay, many are essentially
identical. This is especially true in the Consumer Electron-
ics category [9], which accounted for roughly $3.5B of eBay’s
gross merchandise volume in 2005. This presence of essen-
tially identical items can expose bidders, and sellers, to risks
because of the sequential auction problem.

For example, Alice may want an LCD monitor, and could
potentially bid in either a 1 o’clock or 3 o’clock eBay auc-
tion. While Alice would prefer to participate in whichever
auction will have the lower winning price, she cannot de-
termine beforehand which auction that may be, and could
end up winning the “wrong” auction. This is a problem of
multiple copies.

Another problem bidders may face is the exposure prob-
lem. As investigated by Bykowsky et al. [6], exposure prob-
lems exist when buyers desire a bundle of goods but may
only participate in single-item auctions.1 For example, if
Alice values a video game console by itself for $200, a video
game by itself for $30, and both a console and game for $250,
Alice must determine how much of the $20 of synergy value
she might include in her bid for the console alone. Both
problems arise in eBay as a result of sequential auctions of
single items coupled with patient bidders with substitutes
or complementary valuations.

Why might the sequential auction problem be bad? Com-
plex games may lead to bidders employing costly strategies
and making mistakes. Potential bidders who do not wish
to bear such costs may choose not to participate in the

1The exposure problem has been primarily investigated by
Bykowsky et al. in the context of simultaneous single-item
auctions. The problem is also a familiar one of online deci-
sion making.



market, inhibiting seller revenue opportunities. Addition-
ally, among those bidders who do choose to participate, the
mistakes made may lead to inefficient allocations, further
limiting revenue opportunities.

We are interested in creating modifications to eBay-style
markets that simplify the bidder problem, leading to simple
equilibrium strategies, and preferably better efficiency and
revenue properties.

1.1 Options + Proxies: A Proposed Solution
Retail stores have developed policies to assist their cus-

tomers in addressing sequential purchasing problems. Re-
turn policies alleviate the exposure problem by allowing cus-
tomers to return goods at the purchase price. Price match-
ing alleviates the multiple copies problem by allowing buyers
to receive from sellers after purchase the difference between
the price paid for a good and a lower price found elsewhere
for the same good [7, 15, 18]. Furthermore, price matching
can reduce the impact of exactly when a seller brings an
item to market, as the price will in part be set by others
selling the same item. These two retail policies provide the
basis for the scheme proposed in this paper.2

We extend the proxy bidding technology currently em-
ployed by eBay. Our “super”-proxy extension will take ad-
vantage of a new, real options-based, market infrastructure
that enables simple, yet optimal, bidding strategies. The
extensions are computationally simple, handle temporal is-
sues, and retain seller autonomy in deciding when to enter
the market and conduct individual auctions.

A seller sells an option for a good, which will ultimately
lead to either a sale of the good or the return of the option.
Buyers interact through a proxy agent, defining a value on
all possible bundles of goods in which they have interest
together with the latest time period in which they are will-
ing to wait to receive the good(s). The proxy agents use
this information to determine how much to bid for options,
and follow a dominant bidding strategy across all relevant
auctions. A proxy agent exercises options held when the
buyer’s patience has expired, choosing options that maxi-
mize a buyer’s payoff given the reported valuation. All other
options are returned to the market and not exercised. The
options-based protocol makes truthful and immediate reve-
lation to a proxy a dominant strategy for buyers, whatever
the future auction dynamics.

We conduct an empirical analysis of eBay, collecting data
on over four months of bids for Dell LCD screens (model
E193FP) starting in the Summer of 2005. LCD screens are
a high-ticket item, for which we demonstrate evidence of
the sequential bidding problem. We first infer a conserva-
tive model for the arrival time, departure time and value of
bidders on eBay for LCD screens during this period. This
model is used to simulate the performance of the options-
based infrastructure, in order to make direct comparisons to
the actual performance of eBay in this market.

We also extend the work of Haile and Tamer [11] to esti-
mate an upper bound on the distribution of value of eBay
bidders, taking into account the sequential auction prob-
lem when making the adjustments. Using this estimate, one
can approximate how much greater a bidder’s true value is

2Prior work has shown price matching as a potential mech-
anism for colluding firms to set monopoly prices. However,
in our context, auction prices will be matched, which are
not explicitly set by sellers but rather by buyers’ bids.

from the maximum bid they were observed to have placed
on eBay. Based on this approximation, revenue generated
in a simulation of the options-based scheme exceeds rev-
enue on eBay for the comparable population and sequence of
auctions by 14.8%, while the options-based scheme demon-
strates itself as being 7.5% more efficient.

1.2 Related Work
A number of authors [27, 13, 28, 29] have analyzed the

multiple copies problem, often times in the context of cat-
egorizing or modeling sniping behavior for reasons other
than those first brought forward by Ockenfels and Roth
[20]. These papers perform equilibrium analysis in simpler
settings, assuming bidders can participate in at most two
auctions. Peters & Severinov [21] extend these models to al-
low buyers to consider an arbitrary number of auctions, and
characterize a perfect Bayesian equilibrium. However, their
model does not allow auctions to close at distinct times and
does not consider the arrival and departure of bidders.

Previous work have developed a data-driven approach to-
ward developing a taxonomy of strategies employed by bid-
ders in practice when facing multi-unit auctions, but have
not considered the sequential bidding problem [26, 2]. Pre-
vious work has also sought to provide agents with smarter
bidding strategies [4, 3, 5, 1]. Unfortunately, it seems hard
to design artificial agents with equilibrium bidding strate-
gies, even for a simple simultaneous ascending price auction.

Iwasaki et al. [14] have considered the role of options in
the context of a single, monolithic, auction design to help
bidders with marginal-increasing values avoid exposure in
a multi-unit, homogeneous item auction problem. In other
contexts, options have been discussed for selling coal mine
leases [23], or as leveled commitment contracts for use in a
decentralized market place [24]. Most similar to our work,
Gopal et al. [9] use options for reducing the risks of buyers
and sellers in the sequential auction problem. However, their
work uses costly options and does not remove the sequential
bidding problem completely.

Work on online mechanisms and online auctions [17, 12,
22] considers agents that can dynamically arrive and depart
across time. We leverage a recent price-based characteriza-
tion by Hajiaghayi et al. [12] to provide a dominant strategy
equilibrium for buyers within our options-based protocol.
The special case for single-unit buyers is equivalent to the
protocol of Hajiaghayi et al., albeit with an options-based
interpretation.

Jiang and Leyton-Brown [16] use machine learning tech-
niques for bid identification in online auctions.

2. EBAY AND THE DELL E193FP
The most common type of auction held on eBay is a single-

item proxy auction. Auctions open at a given time and re-
main open for a set period of time (usually one week). Bid-
ders bid for the item by giving a proxy a value ceiling. The
proxy will bid on behalf of the bidder only as much as is nec-
essary to maintain a winning position in the auction, up to
the ceiling received from the bidder. Bidders may communi-
cate with the proxy multiple times before an auction closes.
In the event that a bidder’s proxy has been outbid, a bidder
may give the proxy a higher ceiling to use in the auction.
eBay’s proxy auction implements an incremental version of
a Vickrey auction, with the item sold to the highest bidder
for the second-highest bid plus a small increment.
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Figure 1: Histogram of number of LCD auctions avail-

able to each bidder and number of LCD auctions in which

a bidder participates.

The market analyzed in this paper is that of a specific
model of an LCD monitor, a 19” Dell LCD model E193FP.
This market was selected for a variety of reasons including:

• The mean price of the monitor was $240 (with stan-
dard deviation $32), so we believe it reasonable to as-
sume that bidders on the whole are only interested in
acquiring one copy of the item on eBay.3

• The volume transacted is fairly high, at approximately
500 units sold per month.

• The item is not usually bundled with other items.

• The item is typically sold “as new,” and so suitable for
the price-matching of the options-based scheme.

Raw auction information was acquired via a PERL script.
The script accesses the eBay search engine,4 and returns all
auctions containing the terms ‘Dell’ and ‘LCD’ that have
closed within the past month.5 Data was stored in a text
file for post-processing. To isolate the auctions in the do-
main of interest, queries were made against the titles of eBay
auctions that closed between 27 May, 2005 through 1 Octo-
ber, 2005.6

Figure 1 provides a general sense of how many LCD auc-
tions occur while a bidder is interested in pursuing a moni-
tor.7 8,746 bidders (86%) had more than one auction avail-
able between when they first placed a bid on eBay and the

3For reference, Dell’s October 2005 mail order catalogue
quotes the price of the monitor as being $379 without a
desktop purchase, and $240 as part of a desktop purchase
upgrade.
4http://search.ebay.com
5The search is not case-sensitive.
6Specifically, the query found all auctions where the title
contained all of the following strings: ‘Dell,’ ‘LCD’ and
‘E193FP,’ while excluding all auctions that contained any
of the following strings: ‘Dimension,’ ‘GHZ,’ ‘desktop,’ ‘p4’
and ‘GB.’ The exclusion terms were incorporated so that the
only auctions analyzed would be those selling exclusively the
LCD of interest. For example, the few bundled auctions sell-
ing both a Dell Dimension desktop and the E193FP LCD
are excluded.
7As a reference, most auctions close on eBay between noon
and midnight EDT, with almost two auctions for the Dell
LCD monitor closing each hour on average during peak time
periods. Bidders have an average observed patience of 3.9
days (with a standard deviation of 11.4 days).

latest closing time of an auction in which they bid (with an
average of 78 auctions available). Figure 1 also illustrates
the number of auctions in which each bidder participates.
Only 32.3% of bidders who had more than one auction avail-
able are observed to bid in more than one auction (bidding
in 3.6 auctions on average). A simple regression analysis
shows that bidders tend to submit maximal bids to an auc-
tion that are $1.22 higher after spending twice as much time
in the system, as well as bids that are $0.27 higher in each
subsequent auction.

Among the 508 bidders that won exactly one monitor and
participated in multiple auctions, 201 (40%) paid more than
$10 more than the closing price of another auction in which
they bid, paying on average $35 more (standard deviation
$21) than the closing price of the cheapest auction in which
they bid but did not win. Furthermore, among the 2,216
bidders that never won an item despite participating in mul-
tiple auctions, 421 (19%) placed a losing bid in one auction
that was more than $10 higher than the closing price of an-
other auction in which they bid, submitting a losing bid on
average $34 more (standard deviation $23) than the clos-
ing price of the cheapest auction in which they bid but did
not win. Although these measures do not say a bidder that
lost could have definitively won (because we only consider
the final winning price and not the bid of the winner to her
proxy), or a bidder that won could have secured a better
price, this is at least indicative of some bidder mistakes.

3. MODELING THE SEQUENTIAL
AUCTION PROBLEM

While the eBay analysis was for simple bidders who de-
sire only a single item, let us now consider a more general
scenario where people may desire multiple goods of different
types, possessing general valuations over those goods.

Consider a world with buyers (sometimes called bidders)
B and K different types of goods G1...GK . Let T = {0, 1, ...}
denote time periods. Let L denote a bundle of goods, rep-
resented as a vector of size K, where Lk ∈ {0, 1} denotes
the quantity of good type Gk in the bundle.8 The type of a
buyer i ∈ B is (ai, di, vi), with arrival time ai ∈ T , departure
time di ∈ T , and private valuation vi(L) ≥ 0 for each bundle
of goods L received between ai and di, and zero value oth-
erwise. The arrival time models the period in which a buyer
first realizes her demand and enters the market, while the
departure time models the period in which a buyer loses in-
terest in acquiring the good(s). In settings with general val-
uations, we need an additional assumption: an upper bound
on the difference between a buyer’s arrival and departure,
denoted ∆Max. Buyers have quasi-linear utilities, so that
the utility of buyer i receiving bundle L and paying p, in
some period no later than di, is ui(L, p) = vi(L) − p. Each
seller j ∈ S brings a single item kj to the market, has no
intrinsic value and wants to maximize revenue. Seller j has
an arrival time, aj , which models the period in which she
is first interested in listing the item, while the departure
time, dj , models the latest period in which she is willing to
consider having an auction for the item close. A seller will
receive payment by the end of the reported departure of the
winning buyer.

8We extend notation whereby a single item k of type Gk

refers to a vector L : Lk = 1.



We say an individual auction in a sequence is locally strat-
egyproof (LSP) if truthful bidding is a dominant strategy
for a buyer that can only bid in that auction. Consider the
following example to see that LSP is insufficient for the ex-
istence of a dominant bidding strategy for buyers facing a
sequence of auctions.

Example 1. Alice values one ton of Sand with one ton
of Stone at $2, 000. Bob holds a Vickrey auction for one ton
of Sand on Monday and a Vickrey auction for one ton of
Stone on Tuesday. Alice has no dominant bidding strategy
because she needs to know the price for Stone on Tuesday to
know her maximum willingness to pay for Sand on Monday.

Definition 1. The sequential auction problem. Given
a sequence of auctions, despite each auction being locally
strategyproof, a bidder has no dominant bidding strategy.

Consider a sequence of auctions. Generally, auctions sell-
ing the same item will be uncertainly-ordered, because a
buyer will not know the ordering of closing prices among
the auctions. Define the interesting bundles for a buyer as
all bundles that could maximize the buyer’s profit for some
combination of auctions and bids of other buyers.9 Within
the interesting bundles, say that an item has uncertain mar-
ginal value if the marginal value of an item depends on the
other goods held by the buyer.10 Say that an item is over-
supplied if there is more than one auction offering an item
of that type. Say two bundles are substitutes if one of those
bundles has the same value as the union of both bundles.11

Proposition 1. Given locally strategyproof single-item
auctions, the sequential auction problem exists for a bidder if
and only if either of the following two conditions is true: (1)
within the set of interesting bundles (a) there are two bun-
dles that are substitutes, (b) there is an item with uncertain
marginal value, or (c) there is an item that is over-supplied;
(2) a bidder faces competitors’ bids that are conditioned on
the bidder’s past bids.

Proof. (Sketch.)(⇐) A bidder does not have a dominant
strategy when (a) she does not know which bundle among
substitutes to pursue, (b) she faces the exposure problem,
or (c) she faces the multiple copies problem. Additionally,
a bidder does not have a dominant strategy when she does
not how to optimally influence the bids of competitors.(⇒)
By contradiction. A bidder has a dominant strategy to bid
its constant marginal value for a given item in each auction
available when conditions (1) and (2) are both false.

For example, the following buyers all face the sequential
auction problem as a result of condition (a), (b) and (c)
respectively: a buyer who values one ton of Sand for $1,000,
or one ton of Stone for $2,000, but not both Sand and Stone;
a buyer who values one ton of Sand for $1,000, one ton of
Stone for $300, and one ton of Sand and one ton of Stone for
$1,500, and can participate in an auction for Sand before an
auction for Stone; a buyer who values one ton of Sand for
$1,000 and can participate in many auctions selling Sand.
9Assume that the empty set is an interesting bundle.

10Formally, an item k has uncertain marginal value if |{m :
m = vi(Q) − vi(Q − k),∀Q ⊆ L ∈ InterestingBundle, Q ⊇
k}| > 1.

11Formally, two bundles A and B are substitutes if vi(A ∪
B) = max(vi(A), vi(B)), where A ∪ B = L where Lk =
max(Ak, Bk).

4. “SUPER” PROXIES AND OPTIONS
The novel solution proposed in this work to resolve the

sequential auction problem consists of two primary compo-
nents: richer proxy agents, and options with price matching.

In finance, a real option is a right to acquire a real good at
a certain price, called the exercise price. For instance, Alice
may obtain from Bob the right to buy Sand from him at
an exercise price of $1, 000. An option provides the right to
purchase a good at an exercise price but not the obligation.
This flexibility allows buyers to put together a collection of
options on goods and then decide which to exercise.

Options are typically sold at a price called the option
price. However, options obtained at a non-zero option price
cannot generally support a simple, dominant bidding strat-
egy, as a buyer must compute the expected value of an op-
tion to justify the cost [8]. This computation requires a
model of the future, which in our setting requires a model
of the bidding strategies and the values of other bidders.
This is the very kind of game-theoretic reasoning that we
want to avoid.

Instead, we consider costless options with an option price
of zero. This will require some care as buyers are weakly
better off with a costless option than without one, whatever
its exercise price. However, multiple bidders pursuing op-
tions with no intention of exercising them would cause the
efficiency of an auction for options to unravel. This is the
role of the mandatory proxy agents, which intermediate
between buyers and the market. A proxy agent forces a link
between the valuation function used to acquire options and
the valuation used to exercise options. If a buyer tells her
proxy an inflated value for an item, she runs the risk of hav-
ing the proxy exercise options at a price greater than her
value.

4.1 Buyer Proxies

4.1.1 Acquiring Options
After her arrival, a buyer submits her valuation v̂i (per-

haps untruthfully) to her proxy in some period âi ≥ ai,

along with a claim about her departure time d̂i ≥ âi. All
transactions are intermediated via proxy agents. Each auc-
tion is modified to sell an option on that good to the high-
est bidding proxy, with an initial exercise price set to the
second-highest bid received.12

When an option in which a buyer is interested becomes
available for the first time, the proxy determines its bid
by computing the buyer’s maximum marginal value for the
item, and then submits a bid in this amount. A proxy does
not bid for an item when it already holds an option. The
bid price is:

bidt
i(k) = max

L
[v̂i(L + k) − v̂i(L)] (1)

By having a proxy compute a buyer’s maximum marginal
value for an item and then bidding only that amount, a
buyer’s proxy will win any auction that could possibly be of
benefit to the buyer and only lose those auctions that could
never be of value to the buyer.

12The system can set a reserve price for each good, provided
that the reserve is universal for all auctions selling the same
item. Without a universal reserve price, price matching is
not possible because of the additional restrictions on prices
that individual sellers will accept.



Buyer Type Monday Tuesday
Molly (Mon, Tues, $8) 6Nancy 6Nancy → 4Polly

Nancy (Mon, Tues, $6) - 4Polly

Polly (Mon, Tues, $4) - -

Table 1: Three-buyer example with each wanting a sin-

gle item and one auction occurring on Monday and Tues-

day. “XY ” implies an option with exercise price X and

bookkeeping that a proxy has prevented Y from cur-

rently possessing an option. “→” is the updating of ex-

ercise price and bookkeeping.

When a proxy wins an auction for an option, the proxy
will store in its local memory the identity (which may be
a pseudonym) of the proxy not holding an option because
of the proxy’s win (i.e., the proxy that it ‘bumped’ from
winning, if any). This information will be used for price
matching.

4.1.2 Pricing Options
Sellers agree by joining the market to allow the proxy

representing a buyer to adjust the exercise price of an option
that it holds downwards if the proxy discovers that it could
have achieved a better price by waiting to bid in a later
auction for an option on the same good. To assist in the
implementation of the price matching scheme each proxy
tracks future auctions for an option that it has already won
and will determine who would be bidding in that auction
had the proxy delayed its entry into the market until this
later auction. The proxy will request price matching from
the seller that granted it an option if the proxy discovers that
it could have secured a lower price by waiting. To reiterate,
the proxy does not acquire more than one option for any
good. Rather, it reduces the exercise price on its already
issued option if a better deal is found.

The proxy is able to discover these deals by asking each
future auction to report the identities of the bidders in that
auction together with their bids. This needs to be enforced
by eBay, as the central authority. The highest bidder in this
later auction, across those whose identity is not stored in
the proxy’s memory for the given item, is exactly the bidder
against whom the proxy would be competing had it delayed
its entry until this auction. If this high bid is lower than the
current option price held, the proxy “price matches” down
to this high bid price.

After price matching, one of two adjustments will be made
by the proxy for bookkeeping purposes. If the winner of
the auction is the bidder whose identity has been in the
proxy’s local memory, the proxy will replace that local in-
formation with the identity of the bidder whose bid it just
price matched, as that is now the bidder the proxy has pre-
vented from obtaining an option. If the auction winner’s
identity is not stored in the proxy’s local memory the mem-
ory may be cleared. In this case, the proxy will simply price
match against the bids of future auction winners on this
item until the proxy departs.

Example 2 (Table 1). Molly’s proxy wins the Mon-
day auction, submitting a bid of $8 and receiving an option
for $6. Molly’s proxy adds Nancy to its local memory as
Nancy’s proxy would have won had Molly’s proxy not bid.
On Tuesday, only Nancy’s and Polly’s proxy bid (as Molly’s
proxy holds an option), with Nancy’s proxy winning an op-

Buyer Type Monday Tuesday
Truth:
Molly (Mon, Mon, $8) 6Nancy -
Nancy (Mon, Tues, $6) - 4Polly

Polly (Mon, Tues, $4) - -
Misreport:
Molly (Mon, Mon, $8) - -

Nancy (Mon, Tues, $�10) 8Molly 8Molly → 4φ

Polly (Mon, Tues, $4) - 0φ

Misreport &
match low:
Molly (Mon, Mon, $8) - -

Nancy (Mon, Tues, $�10) 8 8 → 0
Polly (Mon, Tues, $4) - 0

Table 2: Examples demonstrating why bookkeeping will

lead to a truthful system whereas simply matching to the

lowest winning price will not.

tion for $4 and noting that it bumped Polly’s proxy. At this
time, Molly’s proxy will price match its option down to $4
and replace Nancy with Polly in its local memory as per the
price match algorithm, as Polly would be holding an option
had Molly never bid.

4.1.3 Exercising Options
At the reported departure time the proxy chooses which

options to exercise. Therefore, a seller of an option must
wait until period d̂w for the option to be exercised and re-
ceive payment, where w was the winner of the option.13 For
bidder i, in period d̂i, the proxy chooses the option(s) that
maximize the (reported) utility of the buyer:

θ∗
t = argmax

θ⊆Θ
(v̂i(γ(θ)) − π(θ)) (2)

where Θ is the set of all options held, γ(θ) are the goods
corresponding to a set of options, and π(θ) is the sum of
exercise prices for a set of options. All other options are
returned.14 No options are exercised when no combination
of options have positive utility.

4.1.4 Why bookkeep and not match winning price?
One may believe that an alternative method for imple-

menting a price matching scheme could be to simply have
proxies match the lowest winning price they observe after
winning an option. However, as demonstrated in Table 2,
such a simple price matching scheme will not lead to a truth-
ful system.

The first scenario in Table 2 demonstrates the outcome
if all agents were to truthfully report their types. Molly

13While this appears restrictive on the seller, we believe it not
significantly different than what sellers on eBay currently
endure in practice. An auction on eBay closes at a specific
time, but a seller must wait until a buyer relinquishes pay-
ment before being able to realize the revenue, an amount of
time that could easily be days (if payment is via a money
order sent through courier) to much longer (if a buyer is
slow but not overtly delinquent in remitting her payment).

14Presumably, an option returned will result in the seller
holding a new auction for an option on the item it still
possesses. However, the system will not allow a seller to
re-auction an option until ∆Max after the option had first
been issued in order to maintain a truthful mechanism.



would win the Monday auction and receive an option with
an exercise price of $6 (subsequently exercising that option
at the end of Monday), and Nancy would win the Tuesday
auction and receive an option with an exercise price of $4
(subsequently exercising that option at the end of Tuesday).

The second scenario in Table 2 demonstrates the outcome
if Nancy were to misreport her value for the good by report-
ing an inflated value of $10, using the proposed bookkeeping
method. Nancy would win the Monday auction and receive
an option with an exercise price of $8. On Tuesday, Polly
would win the auction and receive an option with an exercise
price of $0. Nancy’s proxy would observe that the highest
bid submitted on Tuesday among those proxies not stored
in local memory is Polly’s bid of $4, and so Nancy’s proxy
would price match the exercise price of its option down to
$4. Note that the exercise price Nancy’s proxy has obtained
at the end of Tuesday is the same as when she truthfully
revealed her type to her proxy.

The third scenario in Table 2 demonstrates the outcome if
Nancy were to misreport her value for the good by reporting
an inflated value of $10, if the price matching scheme were
for proxies to simply match their option price to the low-
est winning price at any time while they are in the system.
Nancy would win the Monday auction and receive an option
with an exercise price of $8. On Tuesday, Polly would win
the auction and receive an option with an exercise price of
$0. Nancy’s proxy would observe that the lowest price on
Tuesday was $0, and so Nancy’s proxy would price match
the exercise price of its option down to $0. Note that the
exercise price Nancy’s proxy has obtained at the end of Tues-
day is lower than when she truthfully revealed her type to
the proxy.

Therefore, a price matching policy of simply matching the
lowest price paid may not elicit truthful information from
buyers.

4.2 Complexity of Algorithm
An XOR-valuation of size M for buyer i is a set of M

terms, < L1, v1
i > ...< LM , vM

i >, that maps distinct bun-
dles to values, where i is interested in acquiring at most one
such bundle. For any bundle S, vi(S) = maxLm⊆S(vm

i ).

Theorem 1. Given an XOR-valuation which possesses
M terms, there is an O(KM2) algorithm for computing all
maximum marginal values, where K is the number of differ-
ent item types in which a buyer may be interested.

Proof. For each item type, recall Equation 1 which de-
fines the maximum marginal value of an item. For each
bundle L in the M -term valuation, vi(L + k) may be found
by iterating over the M terms. Therefore, the number of
terms explored to determine the maximum marginal value
for any item is O(M2), and so the total number of bun-
dle comparisons to be performed to calculate all maximum
marginal values is O(KM2).

Theorem 2. The total memory required by a proxy for
implementing price matching is O(K), where K is the num-
ber of distinct item types. The total work performed by a
proxy to conduct price matching in each auction is O(1).

Proof. By construction of the algorithm, the proxy stores
one maximum marginal value for each item for bidding, of
which there are O(K); at most one buyer’s identity for each

item, of which there are O(K); and one current option ex-
ercise price for each item, of which there are O(K). For
each auction, the proxy either submits a precomputed bid
or price matches, both of which take O(1) work.

4.3 Truthful Bidding to the Proxy Agent
Proxies transform the market into a direct revelation mech-

anism, where each buyer i interacts with the proxy only
once,15 and does so by declaring a bid, bi, which is de-
fined as an announcement of her type, (âi, d̂i, v̂i), where
the announcement may or may not be truthful. We de-
note all received bids other than i’s as b−i. Given bids,
b = (bi, b−i), the market determines allocations, xi(b), and
payments, pi(b) ≥ 0, to each buyer (using an online algo-
rithm).

A dominant strategy equilibrium for buyers requires that
vi(xi(bi, b−i))−pi(bi, b−i) ≥ vi(xi(b

′
i, b−i))−pi(b

′
i, b−i),∀b′i �=

bi,∀b−i.
We now establish that it is a dominant strategy for a buyer

to reveal her true valuation and true departure time to her
proxy agent immediately upon arrival to the system. The
proof builds on the price-based characterization of strate-
gyproof single-item online auctions in Hajiaghayi et al. [12].

Define a monotonic and value-independent price function
psi(ai, di, L, v−i) which can depend on the values of other
agents v−i. Price psi(ai, di, L, v−i) will represent the price
available to agent i for bundle L in the mechanism if it
announces arrival time ai and departure time di. The price
is independent of the value vi of agent i, but can depend on
ai, di and L as long as it satisfies a monotonicity condition.

Definition 2. Price function psi(ai, di, L, v−i) is mono-
tonic if psi(a

′
i, d

′
i, L

′, v−i) ≤ psi(ai, di, L, v−i) for all a′
i ≤

ai, all d′
i ≥ di, all bundles L′ ⊆ L and all v−i.

Lemma 1. An online combinatorial auction will be strat-
egyproof (with truthful reports of arrival, departure and value
a dominant strategy) when there exists a monotonic and
value-independent price function, psi(ai, di, L, v−i), such that
for all i and all ai, di ∈ T and all vi, agent i is allocated bun-
dle L∗ = argmaxL [vi(L) − psi(ai, di, L, v−i)] in period di

and makes payment psi(ai, di, L
∗, v−i).

Proof. Agent i cannot benefit from reporting a later de-
parture d̂i because the allocation is made in period d̂i and
the agent would have no value for this allocation. Agent
i cannot benefit from reporting a later arrival âi ≥ ai or
earlier departure d̂i ≤ di because of price monotonicity. Fi-
nally, the agent cannot benefit from reporting some v̂i �= vi

because its reported valuation does not change the prices
it faces and the mechanism maximizes its utility given its
reported valuation and given the prices.

Lemma 2. At any given time, there is at most one buyer
in the system whose proxy does not hold an option for a
given item type because of buyer i’s presence in the system,
and the identity of that buyer will be stored in i’s proxy’s
local memory at that time if such a buyer exists.

Proof. By induction. Consider the first proxy that a
buyer prevents from winning an option. Either (a) the

15For analysis purposes, we view the mechanism as an opaque
market so that the buyer cannot condition her bid on bids
placed by others.



bumped proxy will leave the system having never won an
option, or (b) the bumped proxy will win an auction in the
future. If (a), the buyer’s presence prevented exactly that
one buyer from winning an option, but will have not pre-
vented any other proxies from winning an option (as the
buyer’s proxy will not bid on additional options upon secur-
ing one), and will have had that bumped proxy’s identity
in its local memory by definition of the algorithm. If (b),
the buyer has not prevented the bumped proxy from win-
ning an option after all, but rather has prevented only the
proxy that lost to the bumped proxy from winning (if any),
whose identity will now be stored in the proxy’s local mem-
ory by definition of the algorithm. For this new identity in
the buyer’s proxy’s local memory, either scenario (a) or (b)
will be true, ad infinitum.

Given this, we show that the options-based infrastruc-
ture implements a price-based auction with a monotonic and
value-independent price schedule to every agent.

Theorem 3. Truthful revelation of valuation, arrival and
departure is a dominant strategy for a buyer in the options-
based market.

Proof. First, define a simple agent-independent price
function pk

i (t, v−i) as the highest bid by the proxies not
holding an option on an item of type Gk at time t, not
including the proxy representing i herself and not includ-
ing any proxies that would have already won an option had
i never entered the system (i.e., whose identity is stored
in i’s proxy’s local memory)(∞ if no supply at t). This
set of proxies is independent of any declaration i makes to
its proxy (as the set explicitly excludes the at most one
proxy (see Lemma 2) that i has prevented from holding
an option), and each bid submitted by a proxy within this
set is only a function of their own buyer’s declared valu-
ation (see Equation 1). Furthermore, i cannot influence
the supply she faces as any options returned by bidders
due to a price set by i’s proxy’s bid will be re-auctioned
after i has departed the system. Therefore, pk

i (t, v−i) is
independent of i’s declaration to its proxy. Next, define
psk

i (âi, d̂i, v−i) = minâi≤τ≤d̂i
[pk

i (τ, v−i)] (possibly ∞) as the

minimum price over pk
i (t, v−i), which is clearly monotonic.

By construction of price matching, this is exactly the price
obtained by a proxy on any option that it holds at depar-
ture. Define psi(âi, d̂i, L, v−i) =

�k=K
k=1 psk

i (âi, d̂i, v−i)Lk,

which is monotonic in âi, d̂i and L since psk
i (âi, d̂i, v−i) is

monotonic in âi and d̂i and (weakly) greater than zero for

each k. Given the set of options held at d̂i, which may be
a subset of those items with non-infinite prices, the proxy
exercises options to maximize the reported utility. Left to
show is that all bundles that could not be obtained with
options held are priced sufficiently high as to not be pre-
ferred. For each such bundle, either there is an item priced
at ∞ (in which case the bundle would not be desired) or
there must be an item in that bundle for which the proxy
does not hold an option that was available. In all auctions
for such an item there must have been a distinct bidder
with a bid greater than bidt

i(k), which subsequently results

in psk
i (âi, d̂i, v−i) > bidt

i(k), and so the bundle without k
would be preferred to the bundle.

Theorem 4. The super proxy, options-based scheme is
individually-rational for both buyers and sellers.

Price σ(Price) Value Surplus
eBay $240.24 $32 $244 $4
Options $239.66 $12 $263 $23

Table 3: Average price paid, standard deviation of

prices paid, average bidder value among winners, and

average winning bidder surplus on eBay for Dell E193FP

LCD screens as well as the simulated options-based mar-

ket using worst-case estimates of bidders’ true value.

Proof. By construction, the proxy exercises the profit
maximizing set of options obtained, or no options if no set
of options derives non-negative surplus. Therefore, buyers
are guaranteed non-negative surplus by participating in the
scheme. For sellers, the price of each option is based on a
non-negative bid or zero.

5. EVALUATING THE OPTIONS / PROXY
INFRASTRUCTURE

A goal of the empirical benchmarking and a reason to
collect data from eBay is to try and build a realistic model
of buyers from which to estimate seller revenue and other
market effects under the options-based scheme.

We simulate a sequence of auctions that match the timing
of the Dell LCD auctions on eBay.16 When an auction suc-
cessfully closes on eBay, we simulate a Vickrey auction for
an option on the item sold in that period. Auctions that do
not successfully close on eBay are not simulated. We esti-
mate the arrival, departure and value of each bidder on eBay
from their observed behavior.17 Arrival is estimated as the
first time that a bidder interacts with the eBay proxy, while
departure is estimated as the latest closing time among eBay
auctions in which a bidder participates.

We initially adopt a particularly conservative estimate for
bidder value, estimating it as the highest bid a bidder was
observed to make on eBay. Table 3 compares the distribu-
tion of closing prices on eBay and in the simulated options
scheme. While the average revenue in both schemes is vir-
tually the same ($239.66 in the options scheme vs. $240.24
on eBay), the winners in the options scheme tend to value
the item won 7% more than the winners on eBay ($263 in
the options scheme vs. $244 on eBay).

5.1 Bid Identification
We extend the work of Haile and Tamer [11] to sequential

auctions to get a better view of underlying bidder values.
Rather than assume for bidders an equilibrium behavior as
in standard econometric techniques, Haile and Tamer do not
attempt to model how bidders’ true values get mapped into a
bid in any given auction. Rather, in the context of repeated

16When running the simulations, the results of the first and
final ten days of auctions are not recorded to reduce edge
effects that come from viewing a discrete time window of a
continuous process.

17For the 100 bidders that won multiple times on eBay, we
have each one bid a constant marginal value for each ad-
ditional item in each auction until the number of options
held equals the total number of LCDs won on eBay, with
each option available for price matching independently. This
bidding strategy is not a dominant strategy (falling outside
the type space possible for buyers on which the proof of
truthfulness has been built), but is believed to be the most
appropriate first order action for simulation.
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Figure 2: CDF of maximum bids observed and upper

bound estimate of the bidding population’s distribution

for maximum willingness to pay. The true population

distribution lies below the estimated upper bound.

single-item auctions with distinct bidder populations, Haile
and Tamer make only the following two assumptions when
estimating the distribution of true bidder values:

1. Bidders do not bid more than they are willing to pay.

2. Bidders do not allow an opponent to win at a price
they are willing to beat.

From the first of their two assumptions, given the bids placed
by each bidder in each auction, Haile and Tamer derive a
method for estimating an upper bound of the bidding pop-
ulation’s true value distribution (i.e., the bound that lies
above the true value distribution). From the second of their
two assumptions, given the winning price of each auction,
Haile and Tamer derive a method for estimating a lower
bound of the bidding population’s true value distribution.
It is only the upper-bound of the distribution that we uti-
lize in our work.

Haile and Tamer assume that bidders only participate in
a single auction, and require independence of the bidding
population from auction to auction. Neither assumption is
valid here: the former because bidders are known to bid
in more than one auction, and the latter because the set
of bidders in an auction is in all likelihood not a true i.i.d.
sampling of the overall bidding population. In particular,
those who win auctions are less likely to bid in successive
auctions, while those who lose auctions are more likely to
remain bidders in future auctions.

In applying their methods we make the following adjust-
ments:

• Within a given auction, each individual bidder’s true
willingness to pay is assumed weakly greater than the
maximum bid that bidder submits across all auctions
for that item (either past or future).

• When estimating the upper bound of the value dis-
tribution, if a bidder bids in more than one auction,
randomly select one of the auctions in which the bid-
der bid, and only utilize that one observation during
the estimation.18

18In current work, we assume that removing duplicate bid-
ders is sufficient to make the buying populations indepen-
dent i.i.d. draws from auction to auction. If one believes
that certain portions of the population are drawn to cer-

Price σ(Price) Value Surplus
eBay $240.24 $32 $281 $40
Options $275.80 $14 $302 $26

Table 4: Average price paid, standard deviation of

prices paid, average bidder value among winners, and av-

erage winning bidder surplus on eBay for Dell E193FP

LCD screens as well as in the simulated options-based

market using an adjusted Haile and Tamer estimate of

bidders’ true values being 15% higher than their maxi-

mum observed bid.

Figure 2 provides the distribution of maximum bids placed
by bidders on eBay as well as the estimated upper bound of
the true value distribution of bidders based on the extended
Haile and Tamer method.19 As can be seen, the smallest rel-
ative gap between the two curves meaningfully occurs near
the 80th percentile, where the upper bound is 1.17 times
the maximum bid. Therefore, adopted as a less conserva-
tive model of bidder values is a uniform scaling factor of
1.15.

We now present results from this less conservative analy-
sis. Table 4 shows the distribution of closing prices in auc-
tions on eBay and in the simulated options scheme. The
mean price in the options scheme is now significantly higher,
15% greater, than the prices on eBay ($276 in the options
scheme vs. $240 on eBay), while the standard deviation
of closing prices is lower among the options scheme auctions
($14 in the options scheme vs. $32 on eBay). Therefore, not
only is the expected revenue stream higher, but the lower
variance provides sellers a greater likelihood of realizing that
higher revenue.

The efficiency of the options scheme remains higher than
on eBay. The winners in the options scheme now have an
average estimated value 7.5% higher at $302.

In an effort to better understand this efficiency, we for-
mulated a mixed integer program (MIP) to determine a
simple estimate of the allocative efficiency of eBay. The
MIP computes the efficient value of the offline problem with
full hindsight on all bids and all supply.20 Using a scaling
of 1.15, the total value allocated to eBay winners is esti-
mated at $551,242, while the optimal value (from the MIP)
is $593,301. This suggests an allocative efficiency of 92.9%:
while the typical value of a winner on eBay is $281, an av-
erage value of $303 was possible.21 Note the options-based

tain auctions, then further adjustments would be required
in order to utilize these techniques.

19The estimation of the points in the curve is a minimiza-
tion over many variables, many of which can have small-
numbers bias. Consequently, Haile and Tamer suggest using

a weighted average over all terms yi of
�

i yi
exp(yiρ)�
j exp(yjρ)

to

approximate the minimum while reducing the small num-
ber effects. We used ρ = −1000 and removed observations
of auctions with 17 bidders or more as they occurred very
infrequently. However, some small numbers bias still demon-
strated itself with the plateau in our upper bound estimate
around a value of $300.

20Buyers who won more than one item on eBay are cloned
so that they appear to be multiple bidders of identical type.

21As long as one believes that every bidder’s true value is a
constant factor α away from their observed maximum bid,
the 92.9% efficiency calculation holds for any value of α. In
practice, this belief may not be reasonable. For example, if
losing bidders tend to have true values close to their observed



scheme comes very close to achieving this level of efficiency
[at 99.7% efficient in this estimate] even though it operates
without the benefit of hindsight.

Finally, although the typical winning bidder surplus de-
creases between eBay and the options-based scheme, some
surplus redistribution would be possible because the total
market efficiency is improved.22

6. DISCUSSION
The biggest concern with our scheme is that proxy agents

who may be interested in many different items may acquire
many more options than they finally exercise. This can lead
to efficiency loss. Notice that this is not an issue when bid-
ders are only interested in a single item (as in our empirical
study), or have linear-additive values on items.

To fix this, we would prefer to have proxy agents use more
caution in acquiring options and use a more adaptive bidding
strategy than that in Equation 1. For instance, if a proxy
is already holding an option with an exercise price of $3 on
some item for which it has value of $10, and it values some
substitute item at $5, the proxy could reason that in no
circumstance will it be useful to acquire an option on the
second item.

We formulate a more sophisticated bidding strategy along
these lines. Let Θt be the set of all options a proxy for bidder
i already possesses at time t. Let θt ⊆ Θt, be a subset of
those options, the sum of whose exercise prices are π(θt),
and the goods corresponding to those options being γ(θt).
Let Π(θt) = v̂i(γ(θt)) − π(θt) be the (reported) available
surplus associated with a set of options. Let θ∗

t be the set
of options currently held that would maximize the buyer’s
surplus; i.e., θ∗

t = argmaxθt⊆Θt
Π(θt).

Let the maximal willingness to pay for an item k represent
a price above which the agent knows it would never exercise
an option on the item given the current options held. This
can be computed as follows:

bidt
i(k) = max

L
[0, min[v̂i(L + k) − Π(θ∗

t ), v̂i(L + k) − v̂i(L)]]

(3)
where v̂i(L+k)−Π(θ∗

t ) considers surplus already held, v̂i(L+
k)−v̂i(L) considers the marginal value of a good, and taking
the max[0, .] considers the overall use of pursuing the good.

However, and somewhat counter intuitively, we are not
able to implement this bidding scheme without forfeiting
truthfulness. The Π(θ∗

t ) term in Equation 3 (i.e., the amount
of guaranteed surplus bidder i has already obtained) can be
influenced by proxy j’s bid. Therefore, bidder j may have
the incentive to misrepresent her valuation to her proxy if
she believes doing so will cause i to bid differently in the
future in a manner beneficial to j. Consider the following
example where the proxy scheme is refined to bid the max-
imum willingness to pay.

Example 3. Alice values either one ton of Sand or one
ton of Stone for $2,000. Bob values either one ton of Sand
or one ton of Stone for $1,500. All bidders have a patience

maximum bids while eBay winners have true values much
greater than their observed maximum bids then downward
bias is introduced in the efficiency calculation at present.

22The increase in eBay winner surplus between Tables 3 and
4 is to be expected as the α scaling strictly increases the
estimated value of the eBay winners while holding the prices
at which they won constant.

of 2 days. On day one, a Sand auction is held, where Alice’s
proxy bids $2,000 and Bob’s bids $1,500. Alice’s proxy wins
an option to purchase Sand for $1,500. On day two, a Stone
auction is held, where Alice’s proxy bids $1,500 [as she has
already obtained a guaranteed $500 of surplus from winning
a Sand option, and so reduces her Stone bid by this amount],
and Bob’s bids $1,500. Either Alice’s proxy or Bob’s proxy
will win the Stone option. At the end of the second day,
Alice’s proxy holds an option with an exercise price of $1,500
to obtain a good valued for $2,000, and so obtains $500 in
surplus.

Now, consider what would have happened had Alice de-
clared that she valued only Stone.

Example 4. Alice declares valuing only Stone for $2,000.
Bob values either one ton of Sand or one ton of Stone for
$1,500. All bidders have a patience of 2 days. On day one, a
Sand auction is held, where Bob’s proxy bids $1,500. Bob’s
proxy wins an option to purchase Sand for $0. On day two,
a Stone auction is held, where Alice’s proxy bids $2,000, and
Bob’s bids $0 [as he has already obtained a guaranteed $1,500
of surplus from winning a Sand option, and so reduces his
Stone bid by this amount]. Alice’s proxy wins the Stone
option for $0. At the end of the second day, Alice’s proxy
holds an option with an exercise price of $0 to obtain a good
valued for $2,000, and so obtains $2,000 in surplus.

By misrepresenting her valuation (i.e., excluding her value
of Sand), Alice was able to secure higher surplus by guiding
Bob’s bid for Stone to $0. An area of immediate further
work by the authors is to develop a more sophisticated proxy
agent that can allow for bidding of maximum willingness to
pay (Equation 3) while maintaining truthfulness.

An additional, practical, concern with our proxy scheme
is that we assume an available, trusted, and well understood
method to characterize goods (and presumably the quality
of goods). We envision this happening in practice by sell-
ers defining a classification for their item upon entering the
market, for instance via a UPC code. Just as in eBay, this
would allow an opportunity for sellers to improve revenue by
overstating the quality of their item (“new” vs. “like new”),
and raises the issue of how well a reputation scheme could
address this.

7. CONCLUSIONS
We introduced a new sales channel, consisting of an options-

based and proxied auction protocol, to address the sequen-
tial auction problem that exists when bidders face multi-
ple auctions for substitutes and complements goods. Our
scheme provides bidders with a simple, dominant and truth-
ful bidding strategy even though the market remains open
and dynamic.

In addition to exploring more sophisticated proxies that
bid in terms of maximum willingness to pay, future work
should aim to better model seller incentives and resolve the
strategic problems facing sellers. For instance, does the op-
tions scheme change seller incentives from what they cur-
rently are on eBay?
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