
Everything you ever wanted to

know about collision detection

(and as much about collision response

as I can figure out by Wednesday)

By Ryan Schmidt, ryansc@cpsc.ucalgary.ca

Where to find this on the

Interweb

• http://www.cpsc.ucalgary.ca/~ryansc

• Lots of links to software, web articles, and a

bunch of papers in PDF format

• You can also email me,

ryansc@cpsc.ucalgary.ca - I’ll try to help

you if I can.

What you need to know

• Basic geometry

– vectors, points, homogenous coordinates, affine

transformations, dot product, cross product,

vector projections, normals, planes

• math helps…

– Linear algebra, calculus, differential equations

Calculating Plane Equations

• A 3D Plane is defined by a normal and a
distance along that normal

• Plane Equation:

• Find d:

• For test point (x,y,z), if plane equation

> 0: point on ‘front’ side (in direction of normal),

< 0: on ‘back’ side

= 0: directly on plane

• 2D Line ‘Normal’: negate rise and run, find d
using the same method

0),,(),,(=+• dzyxNzNyNx

dPzPyPxNzNyNx =•),,(),,(

So where do ya start….?

• First you have to detect collisions

– With discrete timesteps, every frame you check

to see if objects are intersecting (overlapping)

• Testing if your model’s actual volume

overlaps another’s is too slow

• Use bounding volumes (BV’s) to

approximate each object’s real volume

Bounding Volumes?

• Convex-ness is important*

• spheres, cylinders, boxes, polyhedra, etc.

• Really you are only going to use spheres, boxes,
and polyhedra (…and probably not polyhedra)

• Spheres are mostly used for fast culling

• For boxes and polyhedra, most intersection tests
start with point inside-outside tests

– That’s why convexity matters. There is no general
inside-outside test for a 3D concave polyhedron.

* 40 Helens agree…

2D Point Inside-Outside Tests

• Convex Polygon Test

– Test point has to be on same side of all edges

• Concave Polygon Tests

– 360 degree angle summation

– Compute angles between test point and each vertex,

inside if they sum to 360

– Slow, dot product and acos for each angle!

More Concave Polygon Tests

• Quadrant Method (see Gamasutra article)

– Translate poly so test point is origin

– Walk around polygon edges, find axis crossings

– +1 for CW crossing, -1 for CCW crossing,

– Diagonal crossings are +2/-2

– Keep running total, point inside if final total is +4/-4

• Edge Cross Test (see Graphics Gems IV)

– Take line from test point to a point outside polygon

– Count polygon edge crossings

– Even # of crossings, point is outside

– Odd # of crossings, point is inside

• These two are about the same speed

Closest point on a line

• Handy for all sorts of things…

)()(

)()(

)0(

)0(

11
1

2

1

2

1

12

ACAB

ABPP
PPelse

PPCAifelse

PPBAif

PPC

PPB

PPA

c

c

c

t

t

•+•

•
+=

=•

=•

=

=

=

Spheres as Bounding Volumes

• Simplest 3D Bounding Volume

– Center point and radius

• Point in/out test:
– Calculate distance between test point and center point

– If distance <= radius, point is inside

– You can save a square root by calculating the squared distance and

comparing with the squared radius !!!

– (this makes things a lot faster)

• It is ALWAYS worth it to do a sphere test before any

more complicated test. ALWAYS. I said ALWAYS.

Axis-Aligned Bounding Boxes

• Specified as two points:

• Normals are easy to calculate

• Simple point-inside test:

),,(),,,(maxmaxmaxminminmin zyxzyx

maxmin

maxmin

maxmin

zzz

yyy

xxx

Problems With AABB’s

• Not very efficient

• Rotation can be complicated

– Must rotate all 8 points of box

– Other option is to rotate model and rebuild

AABB, but this is not efficient

Oriented Bounding Boxes

• Center point, 3 normalized
axis, 3 edge half-lengths

• Can store as 8 points,
sometimes more efficient

– Can become not-a-box after transformations

• Axis are the 3 face normals

• Better at bounding than spheres and
AABB’s

OBB Point Inside/Outside Tests

• Plane Equations Test
– Plug test point into plane equation for all 6 faces

– If all test results have the same sign, the point is inside (which sign
depends on normal orientation, but really doesn’t matter)

• Smart Plane Equations Test
– Each pair of opposing faces has same normal, only d changes

– Test point against d intervals – down to 3 plane tests

• Possibly Clever Change-of-Basis Test*
– Transform point into OBB basis (use the OBB axis)

– Now do AABB test on point (!)

– Change of basis:
testaxis
PBP •='

* This just occurred to me while I was writing,

 So it might not actually work

k-DOP’s

• k-Discrete Oriented Polytype

• Set of k/2 infinite ‘slabs’

– A slab is a normal and a d-interval

• Intersection of all slabs forms a convex polyhedra

• OBB and AABB are 6-DOP’s

• Same intersection tests as OBB

– There is an even faster test if all
your objects have the same k and
same slab normals

• Better bounds than OBB

Plane Intersection Tests

• Planes are good for all sorts of things

– Boundaries between level areas, ‘finish lines’, track

walls, powerups, etc

• Basis of BSP (Binary Space Partition) Trees

– Used heavily in game engines like Quake(1, 2,…)

– They PARTITION space in half

– In half…that’s why they’re binary…punk*

* Sorry, I had to fill up the rest of this slide somehow, and

 just making the font bigger makes me feel like a fraud…

AABB/Plane Test

• An AABB has 4 diagonals

• Find the diagonal most
closely aligned with
the plane normal

• Check if the diagonal crosses the plane

• You can be clever again…

– If Bmin is on the positive side, then Bmax is
guaranteed to be positive as well

OBB/Plane Test

• Method 1: transform the plane normal into the

basis of the OBB and do the AABB test on N`

–

• Method 2: project OBB axis onto plane normal

onintersecti no , if

centroid is C basis, OBB is ,,

spaces-half OBB are ,,

rdNC

bNhbNhbNhr

bbb

hhh

zzyyxx

zyx

zyx

>+•

•+•+•=

NbbbN zyx=),,('

Other Plane-ish Tests

• Plane-Plane

– Planes are infinite. They intersect unless they

are parallel.

– You can build an arbitrary polyhedra using a

bunch of planes (just make sure it is closed….)

• Triangle-Triangle

– Many, many different ways to do this

– Use your napster machine to find code

Bounding Volume Intersection

Tests

• Mostly based on point in/out tests

• Simplest Test: Sphere/Sphere test

[]
[]

ngintersecti are spheres

)(if

),,,(:2 Sphere

),,,(:1 Sphere

2

21

2

21

22

11

rrcc

rzyxc

rzyxc

+<

A fundamental problem

• If timestep is large and A is
moving quickly, it can pass
through B in one frame

• No collision is detected

• Can solve by doing CD in
4 dimensions (4th is time)

– This is complicated

• Can contain box over time and test that

Separating Axis Theorem

• For any two arbitrary, convex, disjoint polyhedra

A and B, there exists a separating axis where the

projections of the polyhedra for intervals on the

axis and the projections are disjoint

• Lemma: if A and B are disjoint they can be

separated by an axis that is orthogonal to either:

1) a face of A

2) a face of B

3) an edge from each polyhedron

Sphere/AABB Intersection

• Algorithm:

• For OBB, transform sphere center into OBB basis
and apply AABB test

onintersecti

)(if

])max[][(

])max[][(if else

])min[][(

])min[][(if

);3;0for(

0

2

2

2

rd

iicdd

iic

iicdd

iic

iii

d

++=

>

+=

<

++<=

=

AABB/AABB Test

• Each AABB defines 3 intervals in x,y,z axis

• If any of these intervals overlap, the

AABB’s are intersecting

OBB/OBB – Separating Axis

Theorem Test
• Test 15 axis with with SAT

– 3 faces of A, 3 faces of B

– 9 edge combinations between A and B

• See OBBTree paper for derivation of tests and
possible optimizations (on web)

• Most efficient OBB/OBB test

– it has no degenerate conditions. This matters.

• Not so good for doing dynamics

– the test doesn’t tell us which points/edges are
intersecting

OBB/OBB – Geometric Test

• To check if A is intersecting B:

– Check if any vertex of A is inside B

– Check if any edge of A intersects a face of B

• Repeat tests with B against A

• Face/Face tests

– It is possible for two boxes to intersect but fail the

vertex/box and edge/face tests.

– Catch this by testing face centroids against boxes

– Very unlikely to happen, usually ignored

Heirarchical Bounding Volumes

• Sphere Trees, AABB Trees, OBB Trees

– Gran Turismo used Sphere Trees

• Trees are built automagically

– Usually precomputed, fitting is expensive

• Accurate bounding of concave objects

– Down to polygon level if necessary

– Still very fast

• See papers on-line
Approximating Polyhedra with

Spheres for Time-Critical Collision

Detection, Philip M. Hubbard

Dynamic Simulation Architecture

• Collision Detection

is generally the

bottleneck in any

dynamic simulation

system

• Lots of ways to speed up collision-detection

Reducing Collision Tests

• Testing each object with all others is O(N2)

• At minimum, do bounding sphere tests first

• Reduce to O(N+k) with sweep-and-prune
– See SIGGRAPH 97 Physically Based Modelling Course Notes

• Spatial Subdivision is fast too

– Updating after movement can be complicated

– AABB is easiest to sort and maintain

– Not necessary to subdivide all 3 dimensions

Other neat tricks

• Raycasting

– Fast heuristic for ‘pass-through’ problem

– Sometimes useful in AI

• Like for avoiding other cars

• Caching

– Exploit frame coherency, cache the last

vertex/edge/face that failed and test it first

– ‘hits’ most of the time, large gains can be seen

Dynamic Particle Simulation

• Simplest type of dynamics system

• Based on basic linear ODE:

m

f

dt

dv

dt

dx
v

dt

xd

m

f

dt

xd
a

maf

==

==

=

:rt timeposition w of derivative isvelocity

: is force todueon Accelerati

2

2

2

2

Particle Movement

• Particle Definition:

– Position x(x,y,z)

– Velocity v(x,y,z)

– Mass m

•

m

f
tvv

tvpp

fffft

ttt

tttt

zyx

+=

+=

=

+

+

),,(force and epFor timest

Example Forces

•

()

constant) damping is constant, spring is (

,

:)m,v,(xP and)m,v,(xPbetween spring

t)coefficien drag is (:drag

 :gravity

1PP

P

2121

22221111

2

1

ds

ds

dd

kk

ff

x

x

v

xv
krxkf

vvvxxx

kvkf

mgf

=

+=

==

=

=

Using Particle Dynamics

• Each timestep:

– Update position (add velocity)

– Calculate forces on particle

– Update velocity (add force over mass)

• Model has no rotational velocity

– You can hack this in by rotating the velocity
vector each frame

– Causes problems with collision response

Particle Collision System

• Assumption: using OBBs

• Do geometric test for colliding boxes

– Test all vertices and edges

– Save intersections

• Calculate intersection point and time-of-

intersection for each intersection

• Move object back largest timestep

• Apply collision response to intersection point

Closed-form expression for

point/plane collision time

• Point:

• Plane:

• Point on plane if

• With linear velocity normal is constant:

• now solve for t:

vp velocity ,position

xvn
p

 planeon point , velocity , normal

() 0=npx

() ()() 0=++ ntvptvx
p

vnvn

xnpn
t

p

=

Problems with point/plane time

• Have to test point with 3 faces (why?)

• Time can be infinity / very large

– Ignore times that are too big

– Heuristic: throw away if larger than last timestep

• If the rotation hack was applied, can return a time
larger than last timestep

– This is why the rotation hack is bad

– Can always use subdivision in this case

• Have to use subdivision for edges as well, unless you can come
up with a closed-form edge collision time (which shouldn’t be
too hard, just sub (pi+tvi) into line-intersection test)

Binary Search for collision time

• Move OBB back to before current timestep

• Run simulator for half the last timestep

• Test point / edge to see if they are still

colliding

• Rinse and repeat to desired accuracy

– 3 or 4 iterations is probably enough

Particle Collision Response

• Basic method: vector reflection

• Need a vector to reflect around

– Face normal for point/face

– Cross product for edge/edge

– Negate vector to reflect other object

• Vector Reflection:
• Can make collision elastic by multiplying reflected vector by elasticity

constant

• You can hack in momentum-transfer by swapping the magnitude of
each object’s pre-collision velocity vector

• This and the elastic collision constant make a reasonable collision
response system

()NINVV = 2'

Multiple Collisions

• This is a significant problem

• For racing games, resolve dynamic/static
object collisions first (walls, buildings, etc)

• Then lock resolved objects and resolve any
collisions with them, etc, etc

• This will screw with your collision-time
finding algorithms

– Car2 may have to move back past where it
started last frame

• The correct way to handle this is with articulated
figures, which require linear systems of equations
and are rather complicated (see Moore88)

Rigid Body Dynamics

• Now working with volumes instead of points

– Typically OBB’s, easy to integrate over volume

• Rotational/Angular velocity is part of the system

• A lot more complicated than the linear system

• SIGGRAPH 97 Physically Based Modelling

course notes walk through the math and code for a

Rigid Body Dynamics system. Far more useful

than what I will skim over in these slides.

Center of Mass

• Also called the Centroid

• System is easiest to build if we place
objects in local coordinate system

– Want centroid at origin (0,0,0)

• x(t) is translation of origin in world coords

• R(t) rotates local reference frame (axis) into
world axis

– 3x3 rotation matrix

Linear Velocity and Momentum

• Linear velocity v(t) is just like particle

velocity

• Linear momentum P(t) is velocity of mass

of rigid body

• P(t) = Mv(t)

• More useful for solving motion equations

Force and Torque

• Force F(t) acts on the centroid, just like

force for a particle

• Torque T(t) acts on a particle in the rigid

body volume

• Force affects linear velocity, Torque affects

angular velocity

Angular Velocity and Momentum

• Angular Velocity w(t) defines an axis object

rotates around, magnitude is rotation speed

• Angular momentum L(t) is related to w(t)

by inertia tensor I(t)

• L(t) = I(t)w(t)

• Angular Momentum is again more useful

for solving dynamics equations

Inertia Tensor

• Relates angular velocity and angular momentum

• 3x3 matrix I(t), entries are derived by integrating

over object’s volume

– OBB is easy to integrate over

• Can be computed as I(t) = R(t)IbodyR(t)T, where

Ibody can be pre-computed

• Note: I(t)-1 = R(t)Ibody
-1 R(t)T

• This is the most complicated part…

So how do we simulate motion?

• Rigid body is represented by:

– Position x(t)

– Rotation R(t)

– Linear Momentum P(t)

– Angular Momentum L(t)

• New Position:

– x`(t) = x(t) + v(t), where v(t) = P(t)/Mass

– R`(t) = w(t)*R(t), where w(t) = I(t)-1L(t)

– P`(t) = P(t) + F(t)

– L`(t) = L(t) + T(t)
• Calculating F(t), T(t), and Ibody are complicated, see the online

SIGGRAPH 97 course notes

Rigid Body Collision Resolution

• Similar to particle collision resolution

• Finding collision point / time is difficult

– No closed forms, have to use binary search

• Online SIGGRAPH 97 Course Notes have full
explanation and code for how to calculate
collision impulses

– Rigid Body Simulation II – Nonpenetration Constraints

• Also describe resting contact collision, which is
much more difficult

Helpful Books

• Real Time Rendering, chapters 10-11

– Lots of these notes derived from this book

• Graphics Gems series

– Lots of errors, find errata on internet

• Numerical Recipes in C

– The mathematical computing bible

• Game Programming Gems

– Not much on CD, but lots of neat tricks

• Lex & Yacc (published by O’reilly)

– Not about CD, but useful for reading data files

What your mom never told you

about PC hardware
• Cache Memory

– Linear memory access at all costs!

– Wasting cycles and space to get linear access is often
faster. It is worth it to do some profiling.

– DO NOT USE LINKED LISTS. They are bad.

– STL vector<T> class is great, so is STL string
• vector<T> is basically a dynamically-sized array

• vector.begin() returns a pointer to front of array

• Conditionals are Evil

– Branch prediction makes conditionals dangerous

– They can trash the pipeline, minimize them if possible

What your mom never told you

about C/C++ compilers

• Compilers only inline code in headers

– The inline keyword is only a hint

– If the code isn’t in a header, inlining is impossible

• Inlining can be an insane speedup

• Avoid the temptation to be too OO

– Simple objects should have simple classes

• Eg: writing your own templated, dynamically resizable vector

class with a bunch of overloaded operators is probably not

going to be worth it in the end.

What your mom never told you

about Numerical Computing

• Lots of algorithms have degenerate
conditions

– Learn to use isinf(), isnan(), finite()

• Testing for X = 0 is dangerous

– If X != 0, but is really small, many algorithms
will still degenerate

– Often better to test fabs(X) < (small number)

• Avoid sqrt(), pow() – they are slow

