Everything you ever wanted to know about collision detection

(and as much about collision response as I can figure out by Wednesday)

By Ryan Schmidt, ryansc@cpsc.ucalgary.ca

Where to find this on the Interweb

- http://www.cpsc.ucalgary.ca/~ryansc
- Lots of links to software, web articles, and a bunch of papers in PDF format
- You can also email me, <u>ryansc@cpsc.ucalgary.ca</u> - I'll try to help you if I can.

What you need to know

- Basic geometry
 - vectors, points, homogenous coordinates, affine transformations, dot product, cross product, vector projections, normals, planes
- math helps...
 - Linear algebra, calculus, differential equations

Calculating Plane Equations

- A 3D Plane is defined by a normal and a distance along that normal
- Plane Equation: $(Nx, Ny, Nz) \cdot (x, y, z) + d = 0$
- Find d: $(Nx, Ny, Nz) \bullet (Px, Py, Pz) = -d$
- For test point (x,y,z), if plane equation
 > 0: point on 'front' side (in direction of normal),
 < 0: on 'back' side
 = 0: directly on plane
- 2D Line 'Normal': negate rise and run, find d using the same method

So where do ya start...?

- First you have to detect collisions
 - With discrete timesteps, every frame you check to see if objects are intersecting (overlapping)
- Testing if your model's actual volume overlaps another's is too slow
- Use bounding volumes (BV's) to approximate each object's real volume

Bounding Volumes?

- Convex-ness is important*
- spheres, cylinders, boxes, polyhedra, etc.
- Really you are only going to use spheres, boxes, and polyhedra (...and probably not polyhedra)
- Spheres are mostly used for fast culling
- For boxes and polyhedra, most intersection tests start with point inside-outside tests
 - That's why convexity matters. There is no general inside-outside test for a 3D concave polyhedron.

2D Point Inside-Outside Tests

- Convex Polygon Test
 - Test point has to be on same side of all edges
- Concave Polygon Tests
 - 360 degree angle summation
 - Compute angles between test point and each vertex, inside if they sum to 360
 - Slow, dot product and acos for each angle!

More Concave Polygon Tests

- Quadrant Method (see Gamasutra article)
 - Translate poly so test point is origin
 - Walk around polygon edges, find axis crossings
 - +1 for CW crossing, -1 for CCW crossing,
 - Diagonal crossings are +2/-2
 - Keep running total, point inside if final total is +4/-4
- Edge Cross Test (see Graphics Gems IV)
 - Take line from test point to a point outside polygon
 - Count polygon edge crossings
 - Even # of crossings, point is outside
 - Odd # of crossings, point is inside
- These two are about the same speed

Closest point on a line

• Handy for all sorts of things...

$$A = P_2 - P_1$$

$$B = P_1 - P_t$$

$$C = P_2 - P_t$$

$$if (A \bullet B \le 0) \quad P_c = P_1$$

$$else \ if (A \bullet C \le 0) \quad P_c = P_2$$

$$else \quad P_c = P_1 + \frac{(P_1 - P_1) * (B \bullet A)}{(B \bullet A) + (C \bullet A)}$$

Spheres as Bounding Volumes

- Simplest 3D Bounding Volume
 - Center point and radius
- Point in/out test:

- T
- Calculate distance between test point and center point
- If distance <= radius, point is inside</p>
- You can save a square root by calculating the squared distance and comparing with the squared radius !!!
- (this makes things a lot faster)
- It is ALWAYS worth it to do a sphere test before any more complicated test. ALWAYS. I said ALWAYS.

Axis-Aligned Bounding Boxes

- Specified as two points: $(x_{\min}, y_{\min}, z_{\min}), (x_{\max}, y_{\max}, z_{\max})$
- Normals are easy to calculate
- Simple point-inside test:

$$x_{\min} \le x \le x_{\max}$$
$$y_{\min} \le y \le y_{\max}$$
$$z_{\min} \le z \le z_{\max}$$

¥

Problems With AABB's

- Not very efficient
- Rotation can be complicated

- Must rotate all 8 points of box
- Other option is to rotate model and rebuild AABB, but this is not efficient

Oriented Bounding Boxes

- Center point, 3 normalized axis, 3 edge half-lengths
- Can store as 8 points, sometimes more efficient

Can become not-a-box after transformations

- Axis are the 3 face normals
- Better at bounding than spheres and AABB's

OBB Point Inside/Outside Tests

- Plane Equations Test
 - Plug test point into plane equation for all 6 faces
 - If all test results have the same sign, the point is inside (which sign depends on normal orientation, but really doesn't matter)
- Smart Plane Equations Test
 - Each pair of opposing faces has same normal, only d changes
 - Test point against d intervals down to 3 plane tests
- Possibly Clever Change-of-Basis Test*
 - Transform point into OBB basis (use the OBB axis)
 - Now do AABB test on point (!)
 - Change of basis: $P' = B_{axis} \bullet P_{test}$
 - * This just occurred to me while I was writing, So it might not actually work

k-DOP's

- k-Discrete Oriented Polytype
- Set of k/2 infinite 'slabs'
 - A slab is a normal and a d-interval
- Intersection of all slabs forms a convex polyhedra
- OBB and AABB are 6-DOP's
- Same intersection tests as OBB
 - There is an even faster test if all your objects have the same k and same slab normals
- Better bounds than OBB

Plane Intersection Tests

- Planes are good for all sorts of things
 - Boundaries between level areas, 'finish lines', track walls, powerups, etc
- Basis of BSP (Binary Space Partition) Trees
 - Used heavily in game engines like Quake $(1, 2, ..., \infty)$
 - They PARTITION space in half
 - In half...that's why they're binary...punk*

^{*} Sorry, I had to fill up the rest of this slide somehow, and just making the font bigger makes me feel like a fraud...

AABB/Plane Test

- An AABB has 4 diagonals
- Find the diagonal most closely aligned with the plane normal

- Check if the diagonal crosses the plane
- You can be clever again...
 - If Bmin is on the positive side, then Bmax is guaranteed to be positive as well

OBB/Plane Test

• Method 1: transform the plane normal into the basis of the OBB and do the AABB test on N`

 $- N' = (b_x, b_y, b_z) \cdot N$

• Method 2: project OBB axis onto plane normal

 h_x, h_y, h_z are OBB half - spaces b_x, b_y, b_z is OBB basis, C is centroid $r = |h_x N \cdot b_x| + |h_y N \cdot b_y| + |h_z N \cdot b_z|$ if $|C \cdot N + d| > r$, no intersection

Other Plane-ish Tests

- Plane-Plane
 - Planes are infinite. They intersect unless they are parallel.
 - You can build an arbitrary polyhedra using a bunch of planes (just make sure it is closed....)
- Triangle-Triangle
 - Many, many different ways to do this
 - Use your napster machine to find code

Bounding Volume Intersection Tests

- Mostly based on point in/out tests
- Simplest Test: Sphere/Sphere test

Sphere 1:
$$[c_1(x, y, z), r_1]$$

Sphere 2: $[c_2(x, y, z), r_2]$
if $||c_1 - c_2||^2 < (r_1 + r_2)^2$
spheres are intersecting

A fundamental problem

- If timestep is large and A is moving quickly, it can pass through B in one frame
- No collision is detected
- Can solve by doing CD in 4 dimensions (4th is time)

This is complicated

• Can contain box over time and test that

Separating Axis Theorem

- For any two arbitrary, convex, disjoint polyhedra A and B, there exists a separating axis where the projections of the polyhedra for intervals on the axis and the projections are disjoint
- Lemma: if A and B are disjoint they can be separated by an axis that is orthogonal to either:
 - 1) a face of A
 - 2) a face of B
 - 3) an edge from each polyhedron

Sphere/AABB Intersection

- Algorithm: d = 0for(i = 0; i < 3; + +i)if $(c[i] < \min[i])$ $d = d + (c[i] - \min[i])^2$ else if $(c[i] > \max[i])$ $d = d + (c[i] + \max[i])^2$ if $(d \le r^2)$ intersection
- For OBB, transform sphere center into OBB basis and apply AABB test

AABB/AABB Test

- Each AABB defines 3 intervals in x,y,z axis
- If any of these intervals overlap, the AABB's are intersecting

OBB/OBB – Separating Axis Theorem Test

- Test 15 axis with with SAT
 - 3 faces of A, 3 faces of B
 - 9 edge combinations between A and B
- See OBBTree paper for derivation of tests and possible optimizations (on web)
- Most efficient OBB/OBB test
 - it has no degenerate conditions. This matters.
- Not so good for doing dynamics
 - the test doesn't tell us which points/edges are intersecting

OBB/OBB – Geometric Test

- To check if A is intersecting B:
 - Check if any vertex of A is inside B
 - Check if any edge of A intersects a face of B
- Repeat tests with B against A
- Face/Face tests
 - It is possible for two boxes to intersect but fail the vertex/box and edge/face tests.
 - Catch this by testing face centroids against boxes
 - Very unlikely to happen, usually ignored

Heirarchical Bounding Volumes

- Sphere Trees, AABB Trees, OBB Trees
 Gran Turismo used Sphere Trees
- Trees are built automagically
 - Usually precomputed, fitting is expensive
- Accurate bounding of concave objects
 - Down to polygon level if necessary
 - Still very fast
- See papers on-line

Approximating Polyhedra with Spheres for Time-Critical Collision Detection, Philip M. Hubbard

Dynamic Simulation Architecture

 Collision Detection is generally the bottleneck in any dynamic simulation system

• Lots of ways to speed up collision-detection

Reducing Collision Tests

- Testing each object with all others is $O(N^2)$
- At minimum, do bounding sphere tests first
- Reduce to O(N+k) with sweep-and-prune
 - See SIGGRAPH 97 Physically Based Modelling Course Notes
- Spatial Subdivision is fast too
 - Updating after movement can be complicated
 - AABB is easiest to sort and maintain
 - Not necessary to subdivide all 3 dimensions

Other neat tricks

- Raycasting
 - Fast heuristic for 'pass-through' problem
 - Sometimes useful in AI
 - Like for avoiding other cars
- Caching
 - Exploit frame coherency, cache the last vertex/edge/face that failed and test it first
 - 'hits' most of the time, large gains can be seen

Dynamic Particle Simulation

- Simplest type of dynamics system
- Based on basic linear ODE:

Acceleration due to force is f = ma:

$$a = \frac{d^2 x}{dt^2} \quad \therefore \quad \frac{f}{m} = \frac{d^2 x}{dt^2}$$

velocity is derivative of position wrt time :

$$v = \frac{dx}{dt} \qquad \frac{dv}{dt} = \frac{f}{m}$$

Particle Movement

- Particle Definition:
 - Position x(x,y,z)
 - Velocity v(x,y,z)
 - Mass m
- For timestep Δt and force $f = (f_x, f_y, f_z)$

$$p_{t+\Delta t} = p_t + \Delta t v_t$$
$$v_{t+\Delta t} = v_t + \Delta t \frac{f}{m}$$

Example Forces

• gravity: f = mgdrag: $f = -k_d v$ (k_d is drag coefficient) spring between $P_1(x_1, v_1, m_1)$ and $P_2(x_2, v_2, m_2)$: $\Delta x = x_1 - x_2, \qquad \Delta v = v_1 - v_2$ $f_{\mathbf{P}_{1}} = -\left|k_{s}\left(\left\|\Delta x\right\| - r\right) + k_{d}\left(\frac{\Delta v \cdot \Delta x}{\left\|\Delta v\right\|}\right)\right| \frac{\Delta x}{\left\|\Delta x\right\|}$ $f_{\rm P_2} = -f_{\rm P1}$ (k_s is spring constant, k_d is damping constant)

Using Particle Dynamics

- Each timestep:
 - Update position (add velocity)
 - Calculate forces on particle
 - Update velocity (add force over mass)
- Model has no rotational velocity
 - You can hack this in by rotating the velocity vector each frame
 - Causes problems with collision response

Particle Collision System

- Assumption: using OBBs
- Do geometric test for colliding boxes
 - Test **all** vertices and edges
 - Save intersections
- Calculate intersection point and time-ofintersection for each intersection
- Move object back largest timestep
- Apply collision response to intersection point

Closed-form expression for point/plane collision time

- Point: position *p*, velocity *v*
- Plane: normal *n*, velocity v_p , point on plane *x*
- Point on plane if $(x-p) \cdot n = 0$
- With linear velocity normal is constant: $((x + tv_p) - (p + tv))n = 0$
- now solve for t: $t = \frac{n \cdot p - n \cdot x}{n \cdot v_p - n \cdot v}$

Problems with point/plane time

- Have to test point with 3 faces (why?)
- Time can be infinity / very large
 - Ignore times that are too big
 - Heuristic: throw away if larger than last timestep
- If the rotation hack was applied, can return a time larger than last timestep
 - This is why the rotation hack is bad
 - Can always use subdivision in this case
 - Have to use subdivision for edges as well, unless you can come up with a closed-form edge collision time (which shouldn't be too hard, just sub (p_i+tv_i) into line-intersection test)

Binary Search for collision time

- Move OBB back to before current timestep
- Run simulator for half the last timestep
- Test point / edge to see if they are still colliding
- Rinse and repeat to desired accuracy
 - -3 or 4 iterations is probably enough

Particle Collision Response

- Basic method: vector reflection
- Need a vector to reflect around
 - Face normal for point/face
 - Cross product for edge/edge
 - Negate vector to reflect other object
- Vector Reflection: $V' = V 2(N \cdot I)N$
- Can make collision elastic by multiplying reflected vector by elasticity constant
- You can hack in momentum-transfer by swapping the magnitude of each object's pre-collision velocity vector
- This and the elastic collision constant make a reasonable collision response system

Multiple Collisions

- This is a significant problem
- For racing games, resolve dynamic/static object collisions first (walls, buildings, etc)
- Then lock resolved objects and resolve any collisions with them, etc, etc
- This will screw with your collision-time finding algorithms
 - Car2 may have to move back past where it started last frame
- The correct way to handle this is with articulated figures, which require linear systems of equations and are rather complicated (see <u>Moore88</u>)

Rigid Body Dynamics

- Now working with volumes instead of points
 Typically OBB's, easy to integrate over volume
- Rotational/Angular velocity is part of the system
- A lot more complicated than the linear system
- SIGGRAPH 97 Physically Based Modelling <u>course notes</u> walk through the math and code for a Rigid Body Dynamics system. Far more useful than what I will skim over in these slides.

Center of Mass

- Also called the Centroid
- System is easiest to build if we place objects in local coordinate system
 Want centroid at origin (0,0,0)
- x(t) is translation of origin in world coords
- R(t) rotates local reference frame (axis) into world axis
 - 3x3 rotation matrix

Linear Velocity and Momentum

- Linear velocity v(t) is just like particle velocity
- Linear momentum P(t) is velocity of mass of rigid body
- P(t) = Mv(t)
- More useful for solving motion equations

Force and Torque

- Force F(t) acts on the centroid, just like force for a particle
- Torque T(t) acts on a particle in the rigid body volume
- Force affects linear velocity, Torque affects angular velocity

Angular Velocity and Momentum

- Angular Velocity w(t) defines an axis object rotates around, magnitude is rotation speed
- Angular momentum L(t) is related to w(t) by inertia tensor I(t)
- L(t) = I(t)w(t)
- Angular Momentum is again more useful for solving dynamics equations

Inertia Tensor

- Relates angular velocity and angular momentum
- 3x3 matrix I(t), entries are derived by integrating over object's volume

- OBB is easy to integrate over

- Can be computed as $I(t) = R(t)I_{body}R(t)^T$, where I_{body} can be pre-computed
- Note: $I(t)^{-1} = R(t)I_{body}^{-1} R(t)^{T}$
- This is the most complicated part...

So how do we simulate motion?

- Rigid body is represented by:
 - Position x(t)
 - Rotation R(t)
 - Linear Momentum P(t)
 - Angular Momentum L(t)
- New Position:
 - -x'(t) = x(t) + v(t), where v(t) = P(t)/Mass
 - R'(t) = w(t)*R(t), where $w(t) = I(t)^{-1}L(t)$
 - P'(t) = P(t) + F(t)
 - L'(t) = L(t) + T(t)
- Calculating F(t), T(t), and I_{body} are complicated, see the online SIGGRAPH 97 course notes

Rigid Body Collision Resolution

- Similar to particle collision resolution
- Finding collision point / time is difficult
 - No closed forms, have to use binary search
- Online SIGGRAPH 97 Course Notes have full explanation and code for how to calculate collision impulses

Rigid Body Simulation II – Nonpenetration Constraints

• Also describe resting contact collision, which is much more difficult

Helpful Books

- Real Time Rendering, chapters 10-11
 - Lots of these notes derived from this book
- Graphics Gems series
 - Lots of errors, find errata on internet
- Numerical Recipes in C
 - The mathematical computing bible
- Game Programming Gems
 - Not much on CD, but lots of neat tricks
- Lex & Yacc (published by O'reilly)
 - Not about CD, but useful for reading data files

What your mom never told you about PC hardware

- Cache Memory
 - Linear memory access at all costs!
 - Wasting cycles and space to get linear access is often faster. It is worth it to do some profiling.
 - DO NOT USE LINKED LISTS. They are bad.
 - STL vector<T> class is great, so is STL string
 - vector<T> is basically a dynamically-sized array
 - vector.begin() returns a pointer to front of array
- Conditionals are Evil
 - Branch prediction makes conditionals dangerous
 - They can trash the pipeline, minimize them if possible

What your mom never told you about C/C++ compilers

- Compilers only inline code in headers
 - The inline keyword is only a hint
 - If the code isn't in a header, inlining is impossible
- Inlining can be an insane speedup
- Avoid the temptation to be too OO
 - Simple objects should have simple classes
 - Eg: writing your own templated, dynamically resizable vector class with a bunch of overloaded operators is probably not going to be worth it in the end.

What your mom never told you about Numerical Computing

- Lots of algorithms have degenerate conditions
 - Learn to use isinf(), isnan(), finite()
- Testing for X = 0 is dangerous
 - If X != 0, but is really small, many algorithms will still degenerate
 - Often better to test fabs(X) < (small number)</p>
- Avoid sqrt(), pow() they are slow