Everything you ever wanted to
know about collision detection

(and as much about collision response
as I can figure out by Wednesday)

By Ryan Schmidt, ryansc@cpsc.ucalgary.ca



Where to find this on the
Interweb

* Lots of links to software, web articles, and a
bunch of papers in PDF format

* You can also email me,
- I’1l try to help
you 1f I can.



What you need to know

* Basic geometry

— vectors, points, homogenous coordinates, affine
transformations, dot product, cross product,
vector projections, normals, planes

* math helps...

— Linear algebra, calculus, differential equations



Calculating Plane Equations

A 3D Plane 1s defined by a normal and a
distance along that normal

Plane Equation: (Nx,Ny,Nz)*(x,y,z)+d =0
Find d: (Nx,Ny,Nz)e(Px,Py,Pz) = -d

(Nx, Ny, Nz)

For test point (x,y,z), if plane equation

> (: point on ‘front’ side (in direction of normal),

< 0: on ‘back’ side

= (: directly on plane
2D Line ‘Normal’: negate rise and run, find d
using the same method



So where do ya start....?

 First you have to detect collisions

— With discrete timesteps, every frame you check
to see 1f objects are intersecting (overlapping)

» Testing 1f your model’s actual volume
overlaps another’s 1s too slow

* Use bounding volumes (BV’s) to
approximate each object’s real volume



Bounding Volumes?

Convex-ness 1s important™
spheres, cylinders, boxes, polyhedra, etc.

Really you are only going to use spheres, boxes,
and pOthedra (...and probably not polyhedra)

Spheres are mostly used for fast culling

For boxes and polyhedra, most intersection tests
start with point inside-outside tests

— That’s why convexity matters. There 1s no general
inside-outside test for a 3D concave polyhedron.

* 40 Helens agree...



2D Point Inside-Outside Tests

e Convex Polygon Test

— Test point has to be on same side of all edges

e Concave Polygon Tests
— 360 degree angle summation

— Compute angles between test point and each vertex,
inside if they sum to 360

— Slow, dot product and acos for each angle!



More Concave Polygon Tests

Quadrant Method ( )

Translate poly so test point is origin
— Walk around polygon edges, find axis crossings
— +1 for CW crossing, -1 for CCW crossing,
— Diagonal crossings are +2/-2

— Keep running total, point inside if final total is +4/-4

° Edge Cross Test (see Graphics Gems IV)

— Take line from test point to a point outside polygon
— Count polygon edge crossings

— Even # of crossings, point is outside

— Odd # of crossings, point is inside

e These two are about the same speed



Closest point on a line

« Handy for all sorts of things...

A=P,-P
B=H-H P
C=F-F A/
f(4*B<0) P =P P P
elseif(A*C=<0) P =P

else P =P+ (B -B)*(B*A)

(BeA)+(Ce A)



Spheres as Bounding Volumes

* Simplest 3D Bounding Volume

— Center point and radius

* Point in/out test:
— Calculate distance between test point and center point
— If distance <= radius, point 1s inside

— You can save a square root by calculating the squared distance and
comparing with the squared radius !!!

— (this makes things a lot faster)

« Itis ALWAYS worth 1t to do a sphere test before any
more complicated test. ALWAYS. I said ALWAYS.



Axis-Aligned Bounding Boxes

* Specified as two points:

(xmin ” ymin 9 Zmin)9 (xmax > ymax > Zmax)

* Normals are easy to calculate

(Xmin, Ymin, Zmin)

* Simple point-inside test:

‘xmin S XS ‘xmax

ymin Sysymax

Zmin =Z= Zmax



Problems With AABB’s

* Not very efficient

* Rotation can be complicated
— Must rotate all 8 points of box

— Other option 1s to rotate model and rebuild

AABB, but this 1s not efficient

i

i
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Oriented Bounding Boxes

Center point, 3 normalized
axis, 3 edge half-lengths

Can store as 8 points,
sometimes more efficient

— Can become not-a-box after transformations

Axis Half-Lengths

Axis are the 3 face normals
Better at bounding than spheres and

AABB’s j



OBB Point Inside/Outside Tests

* Plane Equations Test

— Plug test point into plane equation for all 6 faces

— If all test results have the same sign, the point is inside (which sign
depends on normal orientation, but really doesn’t matter)

* Smart Plane Equations Test

— Each pair of opposing faces has same normal, only d changes
— Test point against d intervals — down to 3 plane tests

* Possibly Clever Change-of-Basis Test*
— Transform point into OBB basis (use the OBB axis)
— Now do AABB test on point (!)
— Change of basis: P'=R

e P

axis test

* This just occurred to me while I was writing,
So it might not actually work



k-DOP’s

k-Discrete Oriented Polytype

Set of k/2 infinite ‘slabs’
— A slab 1s a normal and a d-interval

Intersection of all slabs forms a convex polyhedra
OBB and AABB are 6-DOP’s

Same intersection tests as OBB

— There 1s an even faster test if all
your objects have the same k and
same slab normals

Better bounds than OBB




Plane Intersection Tests

 Planes are good for all sorts of things

— Boundaries between level areas, ‘finish lines’, track
walls, powerups, etc

* Basis of BSP (Binary Space Partition) Trees
— Used heavily 1in game engines like Quake(1, 2,...90)
— They PARTITION space 1n half
— In half...that’s why they’re binary...punk™

* Sorry, I had to fill up the rest of this slide somehow, and
just making the font bigger makes me feel like a fraud...



AABB/Plane Test

Bmin
An AABB has 4 diagonals .

Find the diagonal most -
closely aligned with -
the plane normal E
Check 1f the diagonal crosses the plane

You can be clever again...

— If Bmin is on the positive side, then Bmax 1s
guaranteed to be positive as well

AN

Bmin



OBB/Plane Test

 Method 1: transform the plane normal into the
basis of the OBB and do the AABB test on N

- N'=(b,,b,,b,)'N

 Method 2: project OBB axis onto plane normal
h.,h,,h, are OBB half -spaces
b.,b,,b. 18 OBB basis, Cis centroid —
r=|hNeb|+hNeb|+[h.N*b,
if |C* N +d

> 7, no Intersection

C.N+d _




Other Plane-1sh Tests

 Plane-Plane

— Planes are infinite. They intersect unless they
are parallel.

— You can build an arbitrary polyhedra using a
bunch of planes (just make sure it is closed....)

* Triangle-Triangle
— Many, many different ways to do this
— Use your napster machine to find code



Bounding Volume Intersection
Tests

* Mostly based on point in/out tests
* Simplest Test: Sphere/Sphere test

Sphere 1 : [c1 (x,v,2),7, ]
Sphere 2 : [02 (x,¥,2), rz]

if o, — ¢, < (1, +7,)

spheres are intersecting



A fundamental problem

If timestep is large and A is Frame X

moving quickly, it can pass i
through B 1n one frame

No collision 1s detected Frame X+1
Can solve by doing CD 1n
4 dimensions (4" is time) Hi

— This 1s complicated
Can contain box over time and test that



Separating Axis Theorem

For any two arbitrary, convex, disjoint polyhedra
A and B, there exists a separating axis where the
projections of the polyhedra for intervals on the
axis and the projections are disjoint

Lemma: if A and B are disjoint they can be
separated by an axis that 1s orthogonal to either:
1) afaceof A

2) afaceof B
3) an edge from each polyhedron



Sphere/AABB Intersection

* Algorithm: d=0
for(i = 0;i < 3;+ +1)
if (c[i] < min[i])
d = d + (c[i]- min[i])’
else if (c[i] > max[i])
d = d + (c[i]+ max[i])’
if (d <7?)

Intersection

* For OBB, transform sphere center into OBB basis
and apply AABB test



AABB/AABB Test

 Each AABB defines 3 intervals 1n x,y,z axis

 If any of these intervals overlap, the
AABB’s are itersecting



OBB/OBB — Separating Axis

Theorem Test

Test 15 axis with with SAT
— 3 faces of A, 3 faces of B
— 9 edge combinations between A and B

See OBBTree paper for derivation of tests and
possible optimizations (on web)

Most efficient OBB/OBB test

— 1t has no degenerate conditions. This matters.

Not so good for doing dynamics

— the test doesn’t tell us which points/edges are
Intersecting



OBB/OBB — Geometric Test

* To check if A 1s intersecting B:
— Check 1f any vertex of A 1s inside B
— Check 1f any edge of A intersects a face of B

e Repeat tests with B against A
 Face/Face tests

— It 1s possible for two boxes to intersect but fail the
vertex/box and edge/face tests.

— Catch this by testing face centroids against boxes

— Very unlikely to happen, usually 1gnored



Heirarchical Bounding Volumes

Sphere Trees, AABB Trees, OBB Trees
— Gran Turismo used Sphere Trees

Trees are built automagically

— Usually precomputed, fitting 1s expensive

Accurate bounding of concave objects
— Down to polygon level 1f necessary
— Still very fast

See papers on-line

, Philip M. Hubbard




Dynamic Simulation Architecture

* Collision Detection
1s generally the

Simulation
bottleneck 1n any nlslon

. . . Detection
dynamic simulation

Collision

System Response

* Lots of ways to speed up collision-detection



Reducing Collision Tests

Testing each object with all others is O(N?)
At minimum, do bounding sphere tests first

Reduce to O(N+k) with sweep-and-prune
— See SIGGRAPH 97 Physically Based Modelling Course Notes

Spatial Subdivision 1s fast too

— Updating after movement can be complicated
— AABB 1s easiest to sort and maintain

— Not necessary to subdivide all 3 dimensions



Other neat tricks

* Raycasting
— Fast heuristic for ‘pass-through’ problem
— Sometimes useful in Al

 Like for avoiding other cars
* Caching

— Exploit frame coherency, cache the last
vertex/edge/face that failed and test 1t first

— ‘hits’ most of the time, large gains can be seen



Dynamic Particle Simulation

« Simplest type of dynamics system
 Based on basic linear ODE:

Acceleration due to forceis f = ma:

L d’x | f d'x
> m dr
velocity is derivative of position wrt time :
dx dv
V= = /

_?t dt m



Particle Movement

 Particle Definition:
— Position x(x,y,z)
— Velocity v(x,y,z)
— Mass m

* For timestep Az and force f =(f,, f,,f.)

Prins =P T Atvt
J

=V + At —
m

vt+At



Example Forces

* gravity: f =mg

drag: f =-k,v (k,1s drag coefficient)

spring between P, (x,,v,,m,)and P,(x,,v,,m,):

Ax

Ax = x, — x,, Av =v, —v,
- Av-Ax
= —| k_\|Ax| - k
o =-{fst=r) %
fP2=_fP1

|

x|

(k, 1s spring constant, k, 1s damping constant)



Using Particle Dynamics

* Each timestep:
— Update position (add velocity)
— Calculate forces on particle
— Update velocity (add force over mass)

* Model has no rotational velocity

— You can hack this 1n by rotating the velocity
vector each frame

— Causes problems with collision response



Particle Collision System

Assumption: using OBBs
Do geometric test for colliding boxes

— Test all vertices and edges

— Save intersections

Calculate intersection point and time-of-
intersection for each intersection

Move object back largest timestep
Apply collision response to intersection point



Closed-form expression for
point/plane collision time
Point: position p, velocity v

Plane: normal n, velocity v,, point on plane x

Point on plane if (x-p)n=0
With linear velocity normal 1s constant:

((x+tvp)—(p+tv))n=0

now solve for t: np-n-x
f =

n-vp—rrv



Problems with point/plane time

« Have to test point with 3 faces (why?)

e Time can be infinity / very large
— Ignore times that are too big
— Heuristic: throw away 1f larger than last timestep

 If the rotation hack was applied, can return a time
larger than last timestep

— This 1s why the rotation hack 1s bad

— Can always use subdivision in this case

« Have to use subdivision for edges as well, unless you can come
up with a closed-form edge collision time (which shouldn’t be
too hard, just sub (p,+tv.) into line-intersection test)



Binary Search for collision time

Move OBB back to before current timestep
Run simulator for half the last timestep

Test point / edge to see if they are still
colliding

Rinse and repeat to desired accuracy

— 3 or 4 1terations 1s probably enough



Particle Collision Response

Basic method: vector reflection v
Need a vector to reflect around T N
— Face normal for point/face — 5

— Cross product for edge/edge
— Negate vector to reflect other object Plane

Vector Reflection: V'=V - 2(N -1 )N
Can make collision elastic by multiplying reflected vector by elasticity

constant

You can hack in momentum-transfer by swapping the magnitude of
each object’s pre-collision velocity vector

This and the elastic collision constant make a reasonable collision
response system



Multiple Collisions

This 1s a significant problem

For racing games, resolve dynamic/static
object collisions first (walls, buildings, etc)

Then lock resolved objects and resolve any

collisions with them, etc, etc Car2

This will screw with your collision-time

finding algorithms ~Yeart
— Car2 may have to move back past where it Wall

started last frame

The correct way to handle this 1s with articulated
figures, which require linear systems of equations
and are rather complicated (see )




Rigid Body Dynamics

Now working with volumes instead of points

— Typically OBB’s, easy to integrate over volume
Rotational/Angular velocity 1s part of the system
A lot more complicated than the linear system

SIGGRAPH 97 Physically Based Modelling

walk through the math and code for a
Rigid Body Dynamics system. Far more useful
than what I will skim over 1n these slides.



Center of Mass

Also called the Centroid

System 1s easiest to build 1f we place
objects 1n local coordinate system

— Want centroid at origin (0,0,0)
X(t) 1s translation of origin in world coords

R(t) rotates local reference frame (axis) into
world axis

— 3x3 rotation matrix



Linear Velocity and Momentum

Linear velocity v(t) 1s just like particle
velocity

Linear momentum P(t) is velocity of mass
of rigid body

P(t) = Mv(t)

More useful for solving motion equations



Force and Torque

* Force F(t) acts on the centroid, just like
force for a particle

* Torque T(t) acts on a particle in the rigid
body volume

* Force affects linear velocity, Torque affects
angular velocity



Angular Velocity and Momentum

* Angular Velocity w(t) defines an axis object
rotates around, magnitude 1s rotation speed

* Angular momentum L(t) 1s related to w(t)
by 1nertia tensor I(t)

. L(t) = I(w(t)

* Angular Momentum is again more useful
for solving dynamics equations



Inertia Tensor

Relates angular velocity and angular momentum

3x3 matrix I(t), entries are derived by integrating
over object’s volume

— OBB i1s easy to integrate over

Can be computed as I(t) = R(t)I,,q,R(t)", where
Ipoqy can be pre-computed

Note: I(t)! = R(Dl,,q,7" R(E)'
This 1s the most complicated part. ..



So how do we simulate motion?

* Rigid body 1s represented by:
— Position x(t)
— Rotation R(t)
— Linear Momentum P(t)
— Angular Momentum L(t)
 New Position:
— X (t) = x(t) + v(t), where v(t) = P(t)/Mass
— R'(t) = w(t)*R(t), where w(t) = I(t)"'L(t)
— P'(t) = P(t) + F(t)
— L'(t)=L(t) + T(t)

Calculating F(t), T(t), and 1,4, are complicated, see the online
SIGGRAPH 97 course notes



Rigid Body Collision Resolution

Similar to particle collision resolution

Finding collision point / time 1s difficult

— No closed forms, have to use binary search

Online SIGGRAPH 97 Course Notes have full
explanation and code for how to calculate
collision impulses

— Rigid Body Simulation II — Nonpenetration Constraints

Also describe resting contact collision, which 1s
much more difficult



Helpful Books

Real Time Rendering, chapters 10-11

— Lots of these notes derived from this book

Graphics Gems series
— Lots of errors, find errata on internet

Numerical Recipes in C
— The mathematical computing bible

Game Programming Gems
— Not much on CD, but lots of neat tricks

Lex & Yacc (published by O’reilly)
— Not about CD, but useful for reading data files



What your mom never told you

about PC hardware
e Cache Memory

— Linear memory access at all costs!

— Wasting cycles and space to get linear access 1s often
faster. It 1s worth 1t to do some profiling.

— DO NOT USE LINKED LISTS. They are bad.

— STL vector<T> class 1s great, so 1s STL string
 vector<T> is basically a dynamically-sized array
 vector.begin() returns a pointer to front of array

e (Conditionals are Evil

— Branch prediction makes conditionals dangerous
— They can trash the pipeline, minimize them if possible



What your mom never told you
about C/C++ compilers

* Compilers only inline code in headers
— The 1nline keyword 1s only a hint
— If the code 1sn’t 1n a header, inlining 1s 1impossible

* Inlining can be an insane speedup
* Avoid the temptation to be too OO

— Simple objects should have simple classes

« Eg: writing your own templated, dynamically resizable vector
class with a bunch of overloaded operators is probably not
going to be worth it in the end.



What your mom never told you
about Numerical Computing

* Lots of algorithms have degenerate
conditions

— Learn to use 1sinf(), 1snan(), finite()
* Testing for X = 0 1s dangerous

— If X =0, but is really small, many algorithms
will still degenerate

— Often better to test fabs(X) < (small number)
* Avoid sqrt(), pow() — they are slow



