
Lecture notes ?: Solving (mixed) integer programs using

branch and bound

Vincent Conitzer

We now turn to solving (mixed) integer programs. There are several different approaches to this;
most of them are based on solving various LP relaxations of the integer program, since solving linear
programs is easier than solving integer programs. In fact, solving integer programs is NP-hard (we
have already seen how to model numerous NP-hard problems as integer programs), whereas linear
programs can be solved in polynomial time.

Arguably the simplest approach to solving (mixed) integer programs is to use branch-and-bound.
This approach works as follows. We solve the LP relaxation of the (mixed) integer program. If we
obtain an optimal solution in which all the variables (or, in the case of a mixed integer program, all
the variables that are required to take integer values) are set to integer values, then we are done.
Otherwise, take some variable xi that is required to take an integer value, but is set to a noninteger
value r in the solution to the LP relaxation. We know that either x ≤ brc, or x ≥ dre. We then
create two new problems in which one of these constraints is added, and continue.

It helps to see an example. Let us consider again the modified painting example:

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 0, integer; x2 ≥ 0, integer

Figure 1 illustrates this integer program.

1



2

0

4

6

8

2 4 6 8
x1 + x2 = 5

x1 + 2x2 = 8

4x1 + 2x2 = 15

optimal LP 
solution: 

x1=2.5, x2=2.5 
obj = 12.5

optimal IP 
solution: 

x1=2, x2=3 
obj = 12

x2

x1

Figure 1: Graphical representation of the modified painting problem instance with integrality con-
straints.

The optimal solution to this integer program is to set x1 = 2, x2 = 3 (with an objective value
of 12). However, the optimal solution to the LP relaxation is to set x1 = 2.5, x2 = 2.5 (with an
objective value of 12.5). Because both variables are required to take integer values but currently
have fractional values, branch-and-bound can branch on either. Let us say that we branch on x1

first. We create two new integer programs:

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 3
x1 ≥ 0, integer; x2 ≥ 0, integer

as well as

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≤ 2
x1 ≥ 0, integer; x2 ≥ 0, integer

2



We now have a choice as to which of these two we solve first. Let us say that we continue on the
first one first. Again, we solve the LP relaxation. The solution is x1 = 3, x2 = 1.5, with an objective
value of 12. This is still not a feasible solution to the integer program, because x2 takes a fractional
value. So we can branch on x2 next, obtaining the following two integer programs:

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 3
x2 ≥ 2
x1 ≥ 0, integer; x2 ≥ 0, integer

and

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 3
x2 ≤ 1
x1 ≥ 0, integer; x2 ≥ 0, integer

Also, we should not forget about the integer program

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≤ 2
x1 ≥ 0, integer; x2 ≥ 0, integer

that we have yet to explore. Indeed, we could continue on any one of these three integer programs.
Continuing on the one with x1 ≤ 2 would correspond to doing breadth-first search, whereas contin-
uing on either of the other two would correspond to doing depth-first search. Let us go with depth
first, continuing on the integer program with x2 ≥ 2. This program is infeasible (it is not possible
to satisfy the first constraint as well as the added constraints). So we can forget about this branch.
Let us consider the integer program with x2 ≤ 1 next. Solving the LP relaxation of this, we obtain
x1 = 3.25, x2 = 1, with an objective value of 11.75. x1 has become fractional again! Branching on
x1 leads to the programs:

3



maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 3
x2 ≤ 1
x1 ≥ 4
x1 ≥ 0, integer; x2 ≥ 0, integer

and

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 3
x2 ≤ 1
x1 ≤ 3
x1 ≥ 0, integer; x2 ≥ 0, integer

We continue our depth-first search on these two integer programs. The LP relaxation of the first
one is infeasible. The LP relaxation of the second one leads to the solution x1 = 3, x2 = 1, with an
objective value of 11. Because the variables are set to integer values, we are done here. All that is
left to explore is the integer program

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≤ 2
x1 ≥ 0, integer; x2 ≥ 0, integer

The optimal solution to the LP relaxation is x1 = 2, x2 = 3, with an objective value of 12.
Because the variables are set to integers, we do not need to branch further. Also, this integer
feasible solution is better than the one that we found before (which gave us 11). There is nothing
left to explore, so we know that x1 = 2, x2 = 3 is the optimal solution to the integer program.

Let us consider what would have happened if we had explored the possibilities in a different or-
der. Consider again the situation that we were in after the first branch: we had the integer programs

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 3
x1 ≥ 0, integer; x2 ≥ 0, integer

and

4



maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≤ 2
x1 ≥ 0, integer; x2 ≥ 0, integer

As it turns out, we chose an unfortunate order of exploring the options here. If we had chosen to
explore the second program first, we would have found the integer feasible solution x1 = 2, x2 = 3,
with an objective value of 12, right away. Then, when we solve the LP relaxation of the first program
next, we find that the optimal solution x1 = 3, x2 = 1.5 has an objective value of only 12. Because
this time, we have already found an integer feasible solution with objective value 12, we realize
immediately that there is no point in branching further: as we add more constraints, certainly the
objective cannot rise above 12, so we will not find anything better. So we can immediately conclude
that we are done. This is the “bound” in branch-and-bound: we keep track of the best integer
feasible solution that we have found so far, and we do not need to explore any programs whose
LP-relaxation value is less than (or equal to) the value of our current best solution—because the LP
relaxation is an upper bound on any solution value that we will find by branching further on such
a program.

5


