
Lecture notes 5: Duality in applications

Vincent Conitzer

We have already seen how to take the dual of a linear program in general form. However, when
we are solving a problem using linear programming, it can be very enlightening to take the dual
of the linear program for that particular problem. Typically, in the context of the problem under
study, it is possible to give a natural interpretation to the dual variables, and this also often leads
to natural interpretations of weak/strong duality and complementary slackness. We will illustrate
this by considering the duals of some applications that we studied previously.

1 Combinatorial auctions

Let us again consider the combinatorial auction winner determination problem. Because we want to
consider linear programs rather than (mixed) integer programs, we assume that bids are partially
acceptable. We have the following linear program formulation from before:

maximize
∑

b vbxb

subject to
(∀i ∈ I)

∑
b aibxb ≤ 1

(∀b) xb ∈ [0, 1]

We recall that aib is an indicator parameter that is set to 1 if item i occurs in bid b, and to 0
otherwise. When taking duals of linear programs, it helps to simplify the formulation as much as
possible. In this case, assuming that each bid bids on at least one item, the item constraints already
ensure that xb ≤ 1 for each bid. So, we can simplify the program to:

maximize
∑

b vbxb

subject to
(∀i ∈ I)

∑
b aibxb ≤ 1

(∀b) xb ≥ 0

To get started, let us first consider the example instance from before. There are 4 items,
A,B, C, D, and we receive the following bids: ({A,B}, 4), ({B,C}, 5), ({A,C}, 4), ({A,B, D}, 7), ({D}, 1).
The abstract linear program above instantiates to:

maximize 4x1 + 5x2 + 4x3 + 7x4 + x5

subject to
x1 + x3 + x4 ≤ 1
x1 + x2 + x4 ≤ 1
x2 + x3 ≤ 1
x4 + x5 ≤ 1
x1, x2, x3, x4, x5 ≥ 0

We recall that the optimal solution to this linear program is to set x1 = 0, x2 = 0.5, x3 = 0.5, x4 =
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0.5, x5 = 0.5, for a total value of 8.5. The dual of this linear program is:

minimize yA + yB + yC + yD

subject to
yA + yB ≥ 4
yB + yC ≥ 5
yA + yC ≥ 4
yA + yB + yD ≥ 7
yD ≥ 1
yA, yB , yC , yD ≥ 0

We can use complementary slackness to help us find the optimal solution to this dual. Because
the variables x2, x3, x4, x5 are set to positive values in the optimal solution to the primal, the last
four constraints of the dual (not considering the nonnegativity constraints) must be binding. The
unique solution to the system of equalities
yB + yC = 5
yA + yC = 4
yA + yB + yD = 7
yD = 1

is to set yA = 2.5, yB = 3.5, yC = 1.5, yD = 1. Indeed, this solution gives us yA +yB +yC +yD = 8.5,
as expected.

But what do these dual variables mean? To figure this out, let us first take the dual of the
abstract linear program, which results in:

minimize
∑

i∈I yi

subject to
(∀b)

∑
i∈I aibyi ≥ vb

(∀i ∈ I) yi ≥ 0

Let us think of the yi as prices of the items i. The main constraint in the dual then says that for
each bid, the value of that bid is at most the sum of the prices of the items in that bid. That is, the
bids are (weakly) underbidding the prices of the items. The objective is simply the sum of all prices.
Then, weak duality means that if the prices are set in such a way that the constraints hold, then
the auctioneer will never be able to get a revenue greater than the sum of the prices. This makes
perfect sense intuitively: every bidder is bidding at most these prices on her desired bundle of items,
so the auctioneer cannot expect to get more than the sum of these prices! Strong duality means
that there is in fact a feasible way to set the prices such that the auctioneer can obtain the sum
of these prices. Complementary slackness states that if a bid is (partially) accepted in the optimal
solution (xb > 0), then it must bid exactly the sum of the optimal prices of the items in that bid
(
∑

i∈I aibyi = vb). It also states that if a price is set to a positive value in the optimal solution
(yi > 0), then this item must be sold completely in the optimal solution (

∑
b aibxb = 1). Conversely,

complementary slackness states that if both of these hold (for feasible solutions), then the solutions
are in fact optimal.

2 Combinatorial reverse auctions

Now let us consider combinatorial reverse auctions, for which we have the following linear program
(as long as bids are partially acceptable).
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minimize
∑

b vbxb

subject to
(∀i ∈ I)

∑
b aibxb ≥ 1

(∀b) xb ≥ 0

Again, we have removed the constraint that xb ≤ 1: in fact, it cannot help the auctioneer to set
xb > 1, because setting it to 1 will already cover all of the items in b. The dual becomes:

maximize
∑

i∈I yi

subject to
(∀b)

∑
i∈I aibyi ≤ vb

(∀i ∈ I) yi ≥ 0

Again, we interpret the yi as prices. Now, the constraint says that the value of each bid is at
least the sum of the prices of the items in that bid—that is, the bidders are (weakly) overbidding
the prices. Weak duality means that the auctioneer will have to spend at least the sum of all the
prices, which makes intuitive sense because every bid is overbidding the prices. Strong duality means
that there is a feasible way of setting the prices so that the auctioneer only has to pay the sum of
these prices. Complementary slackness states that if a bid is (partially) accepted in the optimal
solution (xb > 0), then it must bid exactly the sum of the optimal prices of the items in that bid
(
∑

i∈I aibyi = vb). It also states that if a price is set to a positive value in the optimal solution
(yi > 0), then this item must not be overbought in the optimal solution, that is, exactly one of this
item is bought (

∑
b aibxb = 1).

3 Game theory

Let us consider zero-sum games again. We recall that a minimax strategy for the column player is a
probability distribution over the columns that minimizes the maximum expected utility for the row
player, where the maximum is taken over all rows. We have the following linear program for finding
a minimax strategy for the column player.

minimize u
subject to
(∀i) u−

∑
j pju1(i, j) ≥ 0∑

j pj = 1
(∀j) pj ≥ 0

We can assume that u1(i, j) > 0 for all i, j. This is without loss of generality because if we add a
constant to all utilities in the game, this does not affect the game strategically. Given this, it never
helps to set

∑
j pj > 1, because this will only increase u. Hence, we can equivalently reformulate

the linear program as:

minimize u
subject to
(∀i) u−

∑
j pju1(i, j) ≥ 0∑

j pj ≥ 1
(∀j) pj ≥ 0

Let us now take the dual of this linear program. We use dual variables qi for the row constraints
in the primal, and v for the probability constraint in the primal.
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maximize v
subject to
(∀j) v −

∑
i qiu1(i, j) ≤ 0∑

i qi ≤ 1
(∀i) qi ≥ 0

As you can see, this dual program looks somewhat similar to the primal. In fact, it corresponds
to the problem of finding a maximin strategy for the row player—that is, a probability distribution
over the rows that maximizes the minimum expected utility for the row player, where the minimum
is taken over all columns. The qi are the probabilities on the rows, and v is the expected utility
that the row player can guarantee herself. For each column j, there is a constraint that v can be at
most the expected utility that the row player would get if the column player plays j; and the last
constraint says that the total probability can be at most 1 (and in fact, an optimal solution will
never use a total probability less than 1, because all the row player utilities are positive).

In this context, weak duality means that if the row player can guarantee herself an expected util-
ity of at least v, and the column player can guarantee that the row player has an expected utility of
at most u, then v ≤ u, which makes perfect sense. Strong duality means that the maximum expected
utility that the row player can guarantee herself is in fact equal to the minimum expected utility that
the column player can force the row player to have. That is, min(p1,...,pn) maxi

∑n
j=1 pju1(i, j) =

max(q1,...,qm) minj

∑m
i=1 qiu1(i, j)—a result known as the Minimax Theorem. So, the Minimax The-

orem follows as a corollary of strong duality. Complementary slackness means that if in a minimax
strategy, the column player puts positive probability on a column (pj > 0), then, if the row player
plays a maximin strategy and the column player plays j, the row player will receive a utility of
exactly v, the utility that she is guaranteeing herself (v =

∑
i qiu1(i, j)). In other words, column j

is a best response to the row player’s maximin strategy. Complementary slackness also implies that
the same is true if we swap the roles of the row and column players (qi > 0 ⇒ u =

∑
j pju1(i, j)).

This means that if the row player plays a maximin strategy and the column player plays a minimax
strategy, then the strategies are in Nash equilibrium, that is, each player is (always) playing a best
response against the other player. Conversely, it also means that if the players are playing a Nash
equilibrium (in a two-player zero-sum game), they must be playing a maximin strategy and a mini-
max strategy, respectively. These are all fundamental results in the theory of zero-sum games that
follow naturally from the theory of duality.

4 Markov decision processes

Let us consider the problem of finding an optimal policy for a Markov decision process (MDP) again.
We previously used the following linear program for this:

minimize
∑

s v∗s
subject to
(∀s, a) v∗s − γ

∑
s′ P (s, a, s′)v∗s′ ≥ R(s, a)

Taking the dual, we get

maximize
∑

s,a ys,aR(s, a)
subject to
(∀s)

∑
a ys,a − γ

∑
s′

∑
a P (s′, a, s)ys′,a = 1

(∀s, a) ys,a ≥ 0

Because the v∗s variables are free, the corresponding constraints in the dual are equality con-
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straints. How can we interpret this dual? In fact, the dual will be easier to interpret if we divide
the primal objective by the number of states |S|. Hence, the primal objective becomes minimize∑

s v∗s/|S|—the average value of the states, or the expected value if the initial state is chosen uni-
formly at random. The dual can then be written as follows:

maximize
∑

s,a ys,aR(s, a)
subject to
(∀s)

∑
a ys,a = 1/|S|+ γ

∑
s′

∑
a P (s′, a, s)ys′,a

(∀s, a) ys,a ≥ 0

One of our interpretations of discounting is that in each round, the probability that the Markov
decision process continues another round is γ. With this interpretation of discounting, we can give
the following interpretation to the dual variables: ys,a is the expected total number of times that
we are in state s and take action a. Under this interpretation, the expected number of times that
we arrive in a given state s is 1/|S|+ γ

∑
s′

∑
a P (s′, a, s)ys′,a, because we have a 1/|S| probability

of the first state being s, and, every time that we are in a state s′ and take action a, we have a
probability of γP (s′, a, s) that the MDP will continue another round and that we end up in s in
this next round. The constraint states that this number must be equal to

∑
a ys,a, which is the

expected number of times that we leave from state s. Under this constraint, we seek to maximize∑
s,a ys,aR(s, a), our total expected reward. (We do not have to discount in the objective because

the discounting is already taken care of by the constraint, which enforces that there is only a γ
probability of continuing another round.)

One could consider this dual linear program more natural than the primal; indeed, unlike the
primal problem, feasible solutions to this dual problem correspond to objective values that can be
obtained. So, perhaps it is more natural to think of this program as the primal, and the original
one as the dual. This is a matter of taste.

5 Maximum flow

Let us again consider the linear program for the maximum flow problem:

maximize
∑

w∈V :(s,w)∈E fsw

subject to
(∀(v, w) ∈ E) fvw ≤ cvw

(∀v ∈ V − {s, t})
∑

u∈V :(u,v)∈E fuv −
∑

w∈V :(v,w)∈E fvw = 0
(∀(v, w) ∈ E) fvw ≥ 0

(Actually, we have changed the program slightly, maximizing the flow out of the source vertex s
rather than maximizing the flow into the sink vertex t, but these two quantities must be the same.)
The dual of this program is given as follows, where the yvw correspond to the capacity constraints on
the edges, and the gv correspond to the flow constraints on the vertices (the latter are free variables
because they correspond to equality constraints):

minimize
∑

(v,w)∈E cvwyvw

subject to
(∀(v, w) ∈ E, v 6= s, w 6= t) yvw + gw − gv ≥ 0
(∀w : (s, w) ∈ E) ysw + gw ≥ 1
(∀v : (v, t) ∈ E) yvt − gv ≥ 0
(∀(v, w) ∈ E) yvw ≥ 0
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This dual is perhaps a little more difficult to interpret. It helps to know that it always has an
optimal solution in which every variable is set to either 0 or 1 (we will show this later on). Given
this, we can think of the gv variables as specifying a subset of the vertices, where gv = 1 indicates
that v is inside the subset, and gv = 0 indicates that v is outside of the subset. Because there are
no variables gs and gt, let us, by convention, say that s is inside the subset and t is outside of the
subset. Then, the constraints can be interpreted as follows: for an edge (v, w), if v is inside the
subset and w is outside the subset, then we must set yvw to 1 (which comes at a penalty of cvw).
Of course, we would like to minimize this penalty, but we will have to set some of the yvw to 1:
this is because s is inside the set and t is outside the set, so on any path from s to t, there will be
some edge (v, w) such that v is inside the set and w is outside the set, so that yvw must be set to
1. Hence, the edges (v, w) such that yvw = 1 specify a cut in the graph: if these edges are removed,
there is no longer any way to get from s to t. The vertices v with gv = 1 are the vertices on s’s side
of the cut, and those with gv = 0 are those on t’s side of the cut. Conversely, it can be seen that
any cut in fact corresponds to a feasible solution to the dual. Hence, the dual asks for the minimum
cut in the graph, where the weight of a cut is the sum of the capacities of the edges in the cut.

Weak duality means that for any cut, the weight of that cut is an upper bound on the flow
from s to t. This makes intuitive sense, because all flow from s to t must cross the cut somewhere,
and hence the total capacity of the cut is an upper bound on our flow. Strong duality now means
that there is in fact a cut whose weight is exactly equal to the maximum flow. This is known
as the Maximum Flow/Minimum Cut Theorem. Complementary slackness implies that in optimal
solutions: 1. If an edge has positive flow (fvw > 0), then the edge does not go backwards across the
cut (yvw + gw − gv = 0, so gw ≤ gv). 2. If an edge is in the cut (yvw > 0), then the full capacity of
that edge must be used in the flow (fvw = cvw).

6 Rank aggregation (the Kemeny rule)

Finally, we once again consider the problem of aggregating rankings according to the Kemeny rule.
For this, we have the following integer program:

maximize
∑

a6=b nabxab

subject to
(∀a, b : a 6= b) xab + xba = 1
(∀a, b, c : a 6= b, b 6= c, c 6= a) xab + xbc + xca ≤ 2
(∀a, b : a 6= b) xab ∈ {0, 1}

This integer program is slightly different from the one we gave before: this one seeks to maximize
the number of agreements rather than minimize the number of disagreements, but this is equivalent
in the sense that the optimal rankings will be the same. If we take this program very literally, then
there is a lot of redundancy in these constraints. For example, if A and B are distinct alternatives
(elements to be ranked), then we have the constraint xAB + xBA = 1 as well as the constraint
xBA + xAB = 1. Also, if A,B, and C are distinct alternatives, we have the following three cycle
constraints: xAB + xBC + xCA ≤ 2, xBC + xCA + xAB ≤ 2, and xCA + xAB + xBC ≤ 2. If we have
to introduce a dual variable for every redundant constraint, it will make our job more difficult, so
we should try to write the program in a more concise way. Let < a, b > denote a pair of distinct
alternatives, with the understanding that < a, b >=< b, a >. Similarly, let < a, b, c > denote a cycle
of three distinct alternatives, with the understanding that < a, b, c >=< b, c, a >=< c, a, b > (but
we do not have < a, b, c >=< a, c, b >, since these two cycles have opposite orientations). Then, we
can rewrite the program as:
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maximize
∑

a6=b nabxab

subject to
(∀ < a, b >) xab + xba = 1
(∀ < a, b, c >) xab + xbc + xca ≤ 2
(∀a, b : a 6= b) xab ∈ {0, 1}

Before taking the dual, we first take the LP relaxation (so the result will only be an upper bound
on the number of agreements that we can obtain). We do not need the constraint xab ≤ 1 because this
is already implied by xab +xba = 1 and xba ≥ 0. Hence, we have the following primal linear program:

maximize
∑

a6=b nabxab

subject to
(∀ < a, b >) xab + xba = 1
(∀ < a, b, c >) xab + xbc + xca ≤ 2
(∀a, b : a 6= b) xab ≥ 0

Taking the dual, we get:

minimize
∑

<a,b> y<a,b> +
∑

<a,b,c> 2y<a,b,c>

subject to
(∀a, b : a 6= b) y<a,b> +

∑
c/∈{a,b} y<a,b,c> ≥ nab

(∀ < a, b, c >) y<a,b,c> ≥ 0

Any feasible solution to this dual gives an upper bound to the LP relaxation of the rank aggrega-
tion problem, and hence it gives an upper bound on the original rank aggregation problem as well.
There is no guarantee that we can get a feasible dual solution that has the same objective value
as the optimal solution to the original problem (with integrality constraints), because the optimal
objective value for the LP relaxation can be higher than the optimal solution value for the original
problem.

But how can we interpret such an upper bound? For this, it is helpful to consider a graph whose
vertices are the alternatives, and for any two alternatives a and b, there is an edge from a to b with
weight nab (corresponding to nab rankings that rank a ahead of b, that is, nab opportunities for an
agreement). Now, let us interpret setting y<a,b> = k as taking weight k away from each of the edges
(a, b) and (b, a). We note that the final ranking can only agree with k of this 2k weight. Similarly,
let us interpret setting y<a,b,c> = k as taking weight k away from each of the edges (a, b), (b, c), and
(c, a). Because these edges form a cycle, the final ranking at best agrees with two of these edges;
that is, of the 3k weight, the final ranking can agree with at most 2k. Now, in order to get a feasible
solution to the dual, we must take weights away in this manner until we have taken all the weight
away from the graph: y<a,b> +

∑
c/∈{a,b} y<a,b,c> is the weight we take away from (a, b), and this

is required to be at least nab. Each time that we take some weight away, we consider how much
of this weight a final ranking could have agreed with, and add this to the objective. That is, if we
increase y<a,b> by k, we add k to the objective, and if we increase y<a,b,c> by k, we add 2k to the
objective. In fact, this results in the objective in the dual. In the end, we have accounted for all the
weight, so our objective must be an upper bound on the weight that any final ranking agrees with;
this corresponds to the weak duality property.
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