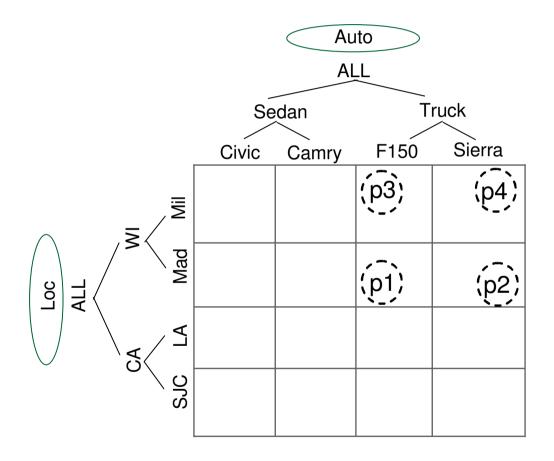
# OLAP over Imprecise Data with Domain Constraints

Doug Burdick University of Wisconsin – Madison

Joint work with AnHai Doan (UW-Madison), Raghu Ramakrishnan (Yahoo! Research), Shivakumar Vaithyanathan (IBM Research at Almaden)

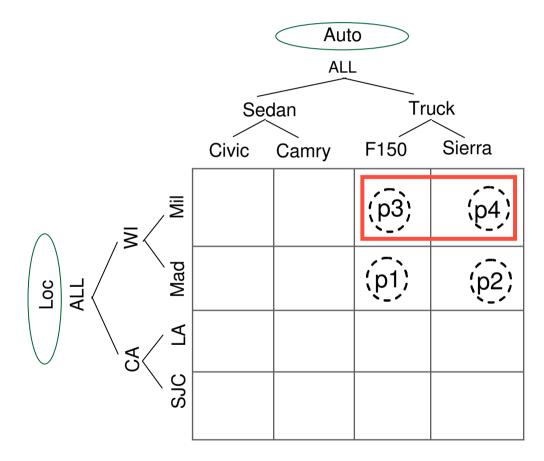
## Ŵ

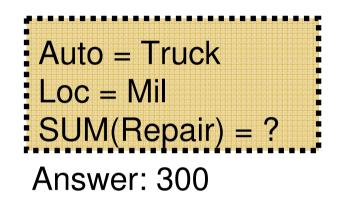
#### **Traditional OLAP: Data Model**



| FactID | Auto   | Loc | Repair |
|--------|--------|-----|--------|
| p1     | F150   | Mad | 100    |
| p2     | Sierra | Mad | 500    |
| р3     | F150   | Mil | 100    |
| p4     | Sierra | Mil | 200    |

#### **Traditional OLAP: Queries**





| FactID | Auto   | Loc | Repair |
|--------|--------|-----|--------|
| p1     | F150   | Mad | 100    |
| p2     | Sierra | Mad | 500    |
| р3     | F150   | Mil | 100    |
| p4     | Sierra | Mil | 200    |

## Querying Information Extracted from Text

| ID | Review Text                                                                                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------|
| р1 | I love the reliability of my F150<br>from Zimbrick Ford in<br>Milwaukee. Much better than my<br>Sierra. Paid \$30000 for a 4WD. |
| p2 | My 5-speed Subaru Outback<br>handles well in Wisconsin<br>winters. Great value at \$25000                                       |
| р3 | After my old car was totaled in<br>the Madison flood, I bought a<br>BMW 330. It's at the mechanic's<br>all the time.            |

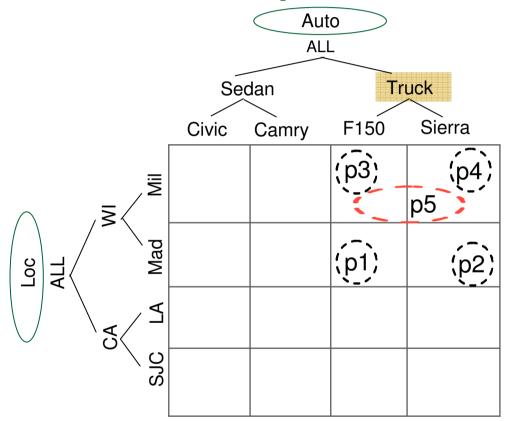
For each location, what is the average price for different cars?

| ID | Location  | Model             | Price |
|----|-----------|-------------------|-------|
| p1 | Milwaukee | {F150,<br>Sierra} | 30000 |
| p2 | Wisconsin | Subaru<br>Outback | 25000 |
| р3 | Madison   | BMW<br>330        | 330   |

In a dataset from a real-world application at IBM Almaden with 800,000 facts, 30% were imprecise



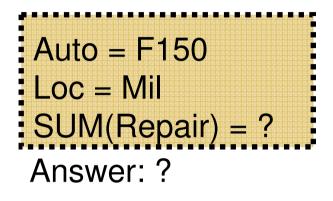
#### [VLDB 05] Proposed Solution: Allow Imprecise Facts

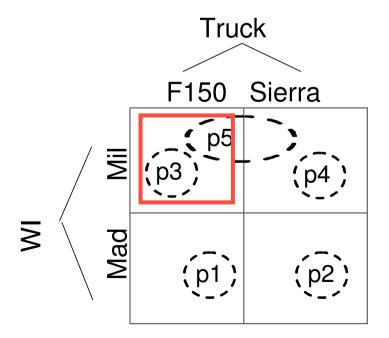


| FactID | Auto   | Loc | Repair |
|--------|--------|-----|--------|
| p1     | F150   | Mad | 100    |
| p2     | Sierra | Mad | 500    |
| p3     | F150   | Mil | 100    |
| p4     | Sierra | Mil | 200    |
| p5     | Truck  | Mil | 100    |



#### [VLDB 05] Problem: How to Query Imprecise Facts





| FactID | Auto   | Loc | Repair |
|--------|--------|-----|--------|
| p1     | F150   | Mad | 100    |
| p2     | Sierra | Mad | 500    |
| р3     | F150   | Mil | 100    |
| p4     | Sierra | Mil | 200    |
| р5     | Truck  | Mil | 100    |

#### [VLDB 05] Solution: Use possible worlds Imprecise fact table D Allocation Allocation $W_1$ $W_2$ $W_3$ $W_4$ $W_4$

Query answer is expected value over possible worlds

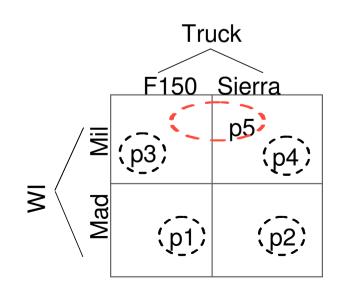
#### [VLDB 05] Example

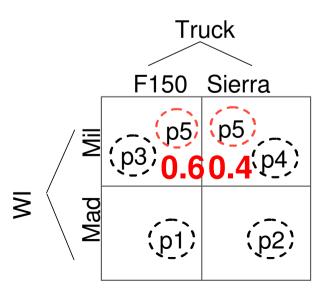
#### Imprecise Fact Table D

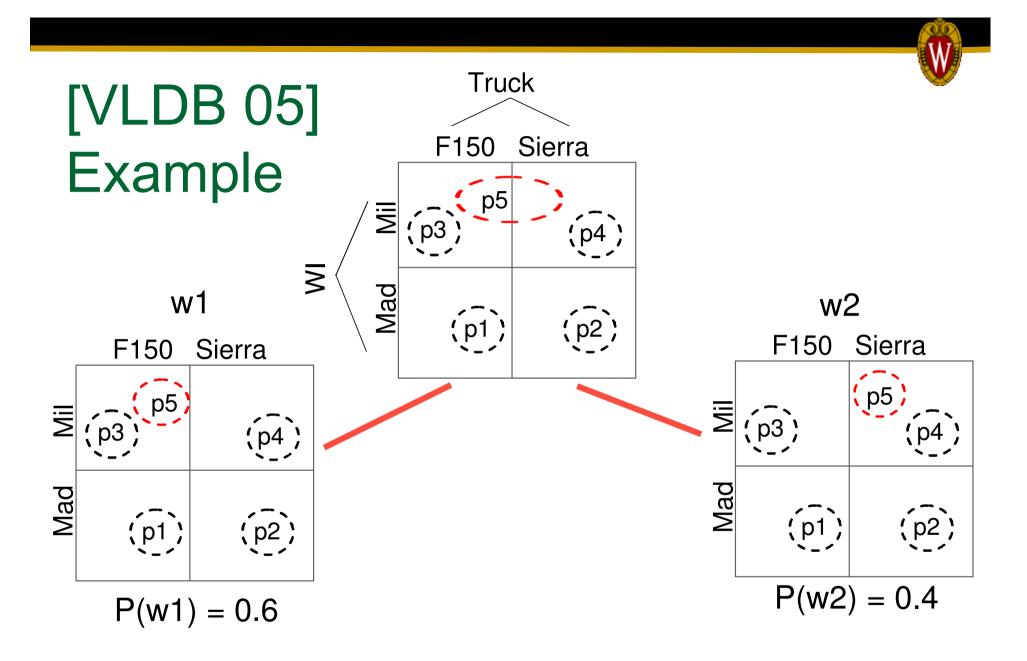
| FactID | Auto   | Loc | Repair |
|--------|--------|-----|--------|
| p1     | F150   | Mad | 100    |
| p2     | Sierra | Mad | 500    |
| р3     | F150   | Mil | 100    |
| p4     | Sierra | Mil | 200    |
| p5     | Truck  | Mil | 100    |

#### Extended Database D'

| ID | FactID | Auto   | Loc | Repair | Alloc |
|----|--------|--------|-----|--------|-------|
| 1  | p1     | F150   | Mad | 100    | 1.0   |
| 2  | p2     | Sierra | Mad | 500    | 1.0   |
| 3  | р3     | F150   | Mil | 100    | 1.0   |
| 4  | p4     | Sierra | Mil | 200    | 1.0   |
| 5  | p5     | F150   | Mil | 100    | 0.6   |
| 6  | p5     | Sierra | Mil | 100    | 0.4   |









Formalize entire process

# Assumes all imprecise facts are independent

 Demonstrate how to answer queries efficiently



#### Challenge: Incorporate Domain Constraints

| ID | Repair Text                                                                |
|----|----------------------------------------------------------------------------|
| r1 | F150, oil change, \$100,<br>WI, John Smith                                 |
| r2 | customer John Smith<br>brought F150 to garage<br>engine noise, WI, \$250   |
| r3 | Madison, Honda, broken<br>ex. pipe, Dells & I-90,<br>towed 25 miles, \$130 |

| FactID | Loc       | Auto  | Name       | Cost |
|--------|-----------|-------|------------|------|
| p1     | Wisconsin | F150  | John Smith | 100  |
| p2     | Wisconsin | F150  | John Smith | 250  |
| р3     | Madison   | Honda | Dells      | 130  |
| р4     | Dells     | Honda | Madison    | 130  |

"Two facts with same person name and model must have same city"

"Exactly one of facts p3 or p4 exists"

#### Summary of Contributions

- Present constraint language L
  Define both syntax of L and semantics of answering queries with constraints defined in L
- Efficiently answer queries with constraints using a marginal database D\*
- Present algorithms to efficiently construct marginal database D\*

## Constraint Language: Examples

- "Two facts with same person name and model must have same location"
  - □ (r.Name = r'.Name) ^ (r.Auto = r'.Auto)  $\rightarrow$ (r.Loc = r'.Loc)
- "Exactly one of facts p3 or p4 exists"
  - □ exists(p3)  $\rightarrow$  ¬ exists(p4)
  - □ exists(p4)  $\rightarrow$  exists(p3)
- "If the location for p1 is Madison, then p3 must exist (and p4 cannot exist)"

□  $(p1.Loc = "Madison") \rightarrow exists(p3) ^ ¬ exists(p4)$ 

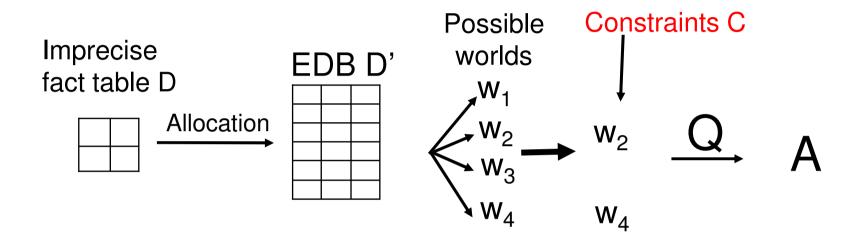
W

## Ŵ

#### Constraint Language: Syntax

- A constraint has form A ⇒ B where A,B are conjunctions of atoms
- Atoms have form [r.A Θ c ] or [r.A Θ r'.A] or exists(r), ¬exists(r) where
  - □ r,r' are either
    - specific factIDs themselves
    - variables that bind to factIDs in D
  - r.A is the value of attribute A of fact r.
  - □ Θ∈ {=, ≠, ≤,<,≥,>} is a comparison operator over the appropriate domain
  - □ c is a constant from dom(A), and
  - exists(r) (¬exists(r)) is a predicate that holds if fact r exists (cannot exist)

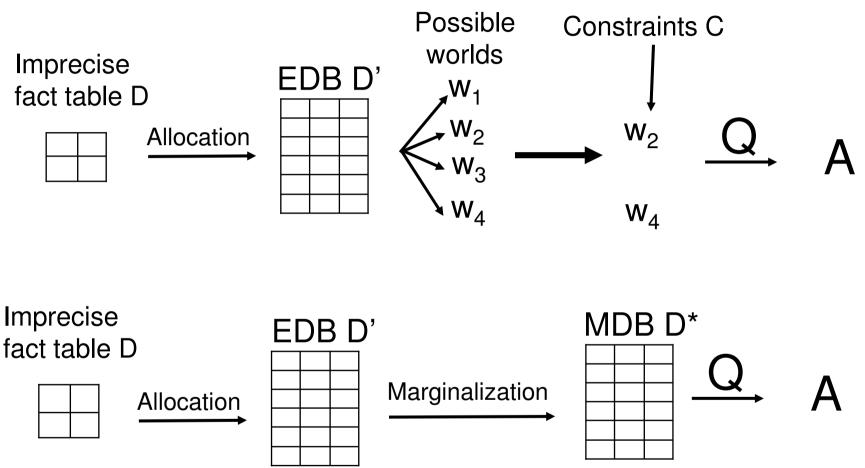
#### **Constraint Language: Semantics**



- A possible world satisfying all constraints is valid
- Query answer is expected value over valid possible worlds

W

#### **Efficient Query Answering**

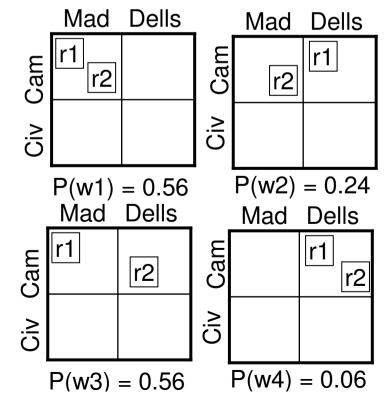


 Can compute expected value over valid possible worlds in single scan of Marginal Database (MDB) D\*

## Constraint: (r.Model = r'.Model) $\rightarrow$ (r.Loc = r'.Loc)

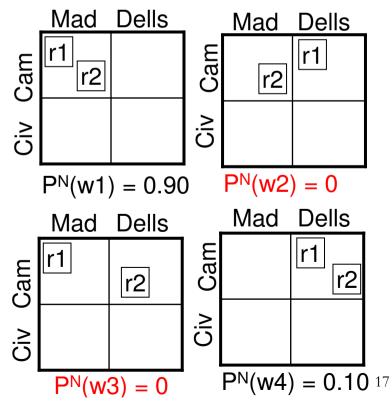
#### EDB D'

| FactID | Model | Loc   | Cost | Alloc |
|--------|-------|-------|------|-------|
| r1     | Cam   | Mad   | 100  | 0.7   |
| r1     | Cam   | Dells | 100  | 0.3   |
| r2     | Cam   | Mad   | 400  | 0.8   |
| r2     | Cam   | Dells | 400  | 0.2   |



#### MDB D\*

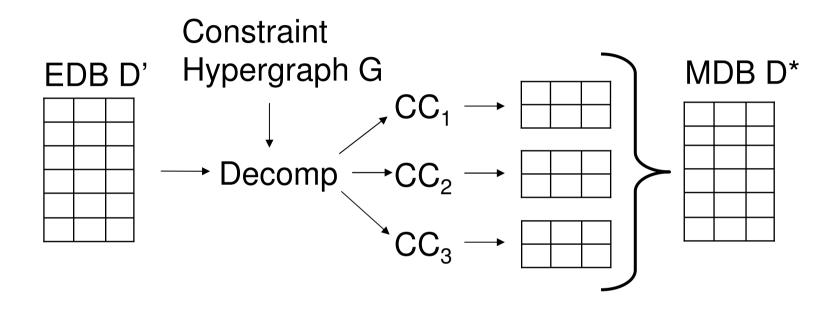
| FactID | Model | Loc   | Cost | Mar |
|--------|-------|-------|------|-----|
| r1     | Cam   | Mad   | 100  | 0.9 |
| r1     | Cam   | Dells | 100  | 0.1 |
| r2     | Cam   | Mad   | 400  | 0.9 |
| r2     | Cam   | Dells | 400  | 0.1 |



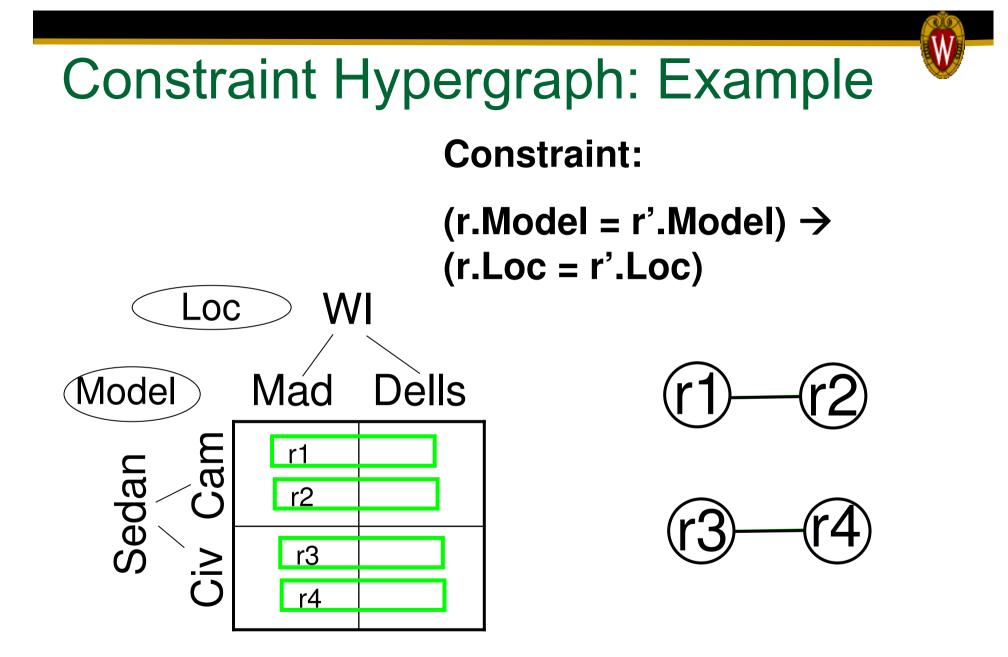
### Marginal Database (MDB) D\*

- Let D' be EDB obtained from imprecise fact table D
- Each claim in D' has tuple f<sub>t</sub> with allocation weight w<sub>t</sub>
- Let W be set of valid possible worlds satisfying a given set of constraints C
- Let m<sub>t</sub> be the total probability of worlds in W where f<sub>t</sub> is true.
- We refer to m<sub>t</sub> as the marginal probability of f<sub>t</sub> and (f<sub>t</sub>, m<sub>t</sub>) is a marginal tuple.
- Store all marginal tuples in marginal database (MDB) D\*

#### **Marginalization Algorithms**



Can process connected component in constraint hypergraph independently



### Constraint Hypergraph: G=(V,H)

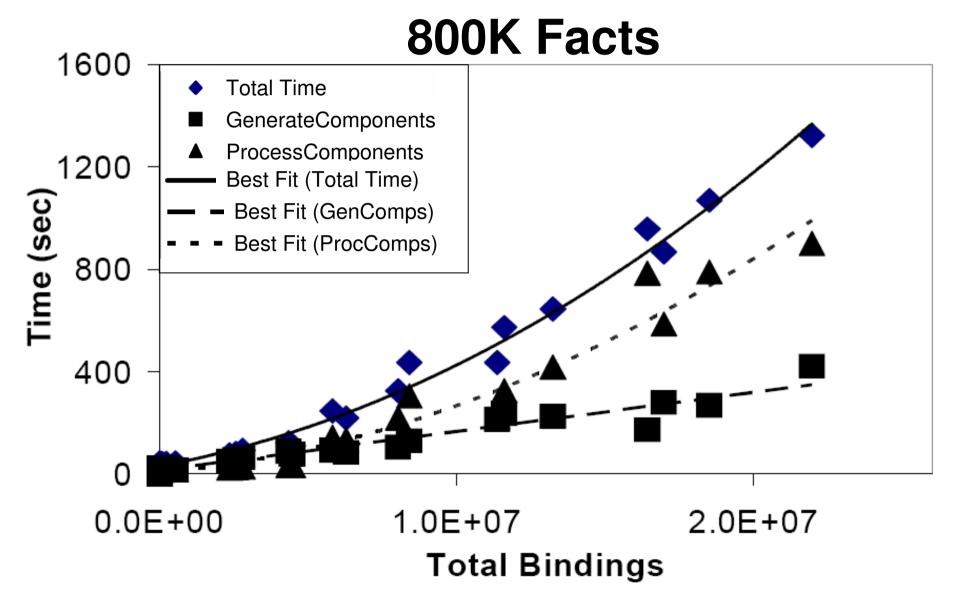
- Nodes V: For each fact r in given imprecise database D, introduce a node to V
- Hyperedges H: For each minimal set of facts with a combination of completions violating a constraint, introduce a hyperedge to H

W

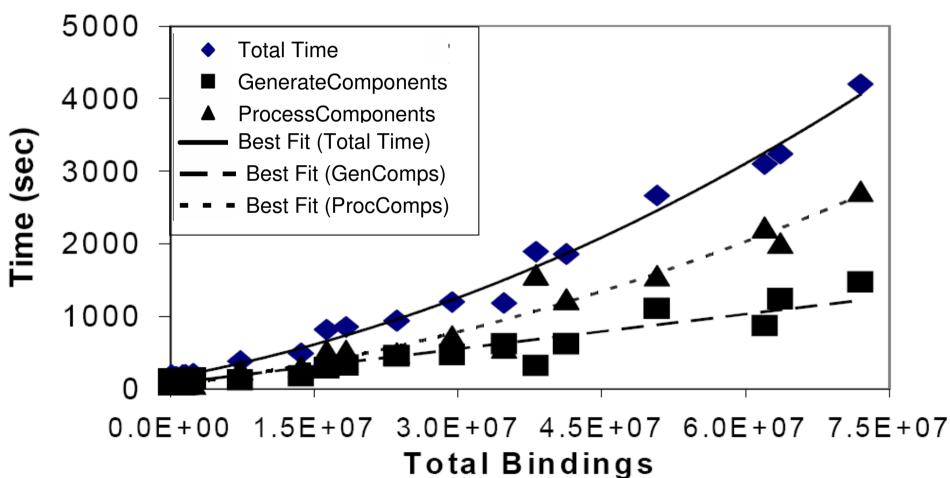
#### **Experimental Setup**

- Algorithms evaluated on several datasets
  - Real-world dataset: 798K facts , 4 dimensions
  - Used several synthetic datasets
    - Scalability (up to 3.2 million tuples)
- Constraint sets
  - Randomly generated several constraint sets of varying "complexity"
  - Develop suitable complexity metric

#### Performance

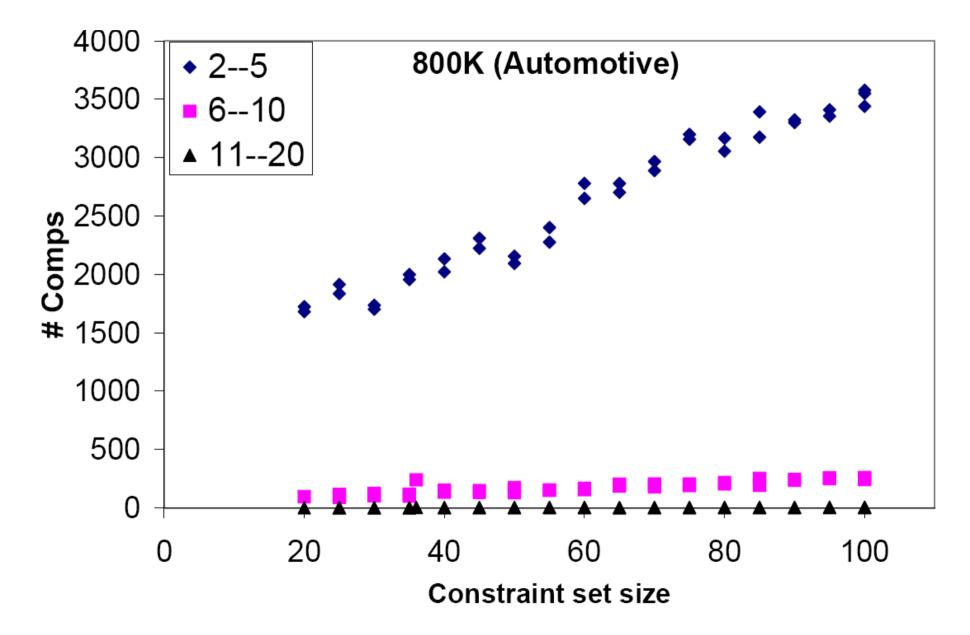


#### Performance



#### **3200K Facts**

#### **Component Sizes**



#### Related work



- Imprecise data with constraints
  - MayBMS [Antova et al. 07]
  - Representing and Querying Correlated Tuples in Probabilistic Databases [Sen, Deshpande 07]
  - ConQuer [Fuxman et al 05]
- Probabilistic databases
  - Probabilistic Databases [Dalvi et al. 04]
  - □ TRIO system for uncertain data [Widom et al.05]
- OLAP
  - Constraints in OLAP [Hurtado et. al 02]
  - OLAP over Incomplete Data [Dyreson 96]

#### Summary



- We extend our framework for OLAP over imprecise data to support domain information.
- Eliminate the strong independence assumptions required earlier
  - Often violated in many applications (e.g., IE from text)
- First work we are aware of to consider OLAP aggregation queries over imprecise data in the presence of constraints

### Discussion

- Pretty brute-force
- Fact Table => EDB, how?
- Other Queries: AVG, MIN, MAX
  - How to generate MDB?
- Expressiveness of Constraints
  - A => B (0.4) or C (0.6)
  - More complex distributional constraints on data