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Traditional OLAP: Data Model
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Traditional OLAP: Queries
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Querying Information Extracted from Text

After my old car was totaled in 
the Madison flood, I bought a 
BMW 330. It’s at the mechanic’s 
all the time.

p3

My 5-speed Subaru Outback
handles well in Wisconsin
winters. Great value at $25000

p2

I love the reliability of my F150
from Zimbrick Ford in 
Milwaukee. Much better than my 
Sierra. Paid $30000 for a 4WD.

p1

Review TextID

330BMW 
330

Madisonp3

25000Subaru 
Outback

Wisconsinp2

30000{F150,

Sierra}

Milwaukeep1

PriceModelLocationID

For each location, what 
is the average price for 
different cars?

In a dataset from a real-world application at IBM Almaden
with 800,000 facts, 30% were imprecise
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[VLDB 05] Proposed Solution: 
Allow Imprecise Facts
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[VLDB 05] Problem: How to Query 
Imprecise Facts
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[VLDB 05] Solution: Use possible 
worlds

EDB D’
Imprecise
fact table D

QAllocation

w1

w2

w3

w4

A

Possible 
worlds

Query answer is expected value over 
possible worlds
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[VLDB 05] Example
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Contributions [VLDB 05, VLDB 06]

� Formalize entire process

� Develop several allocation policies

� Show how to execute allocation efficiently

� Demonstrate how to answer queries 
efficiently

Assumes all imprecise     
facts are independent
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Challenge: Incorporate Domain 
Constraints

130MadisonHondaDellsp4

130DellsHondaMadisonp3

250John SmithF150Wisconsinp2

100John SmithF150Wisconsinp1

CostNameAutoLocFactID

Madison, Honda, broken 
ex. pipe, Dells & I-90, 
towed 25 miles, $130

r3

customer John Smith
brought F150 to garage 
engine noise, WI, $250

r2

F150, oil change, $100, 
WI, John Smith

r1

Repair TextID

“Two facts with same person 
name and model must have 
same city”

“Exactly one of facts p3 or 
p4 exists”



12

Summary of Contributions
� Present constraint language L

� Define both syntax of L and semantics of 
answering queries with constraints defined in L

� Efficiently answer queries with constraints 
using a marginal database D*

� Present algorithms to efficiently construct 
marginal database D*
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Constraint Language: Examples
� “Two facts with same person name and model must 

have same location”

� (r.Name = r’.Name) ^ (r.Auto = r’.Auto) �

(r.Loc = r’.Loc)

� “Exactly one of facts p3 or p4 exists”

� exists(p3) � exists(p4)

� exists(p4) � exists(p3)

� “If the location for p1 is Madison, then p3 must exist 
(and p4 cannot exist)”

� (p1.Loc = “Madison”) � exists(p3) ^       exists(p4)

¬

¬

¬
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Constraint Language: Syntax
⇒� A constraint has form A    B where A,B are 

conjunctions of atoms 

� Atoms have form [r.A Θ c ] or [r.A Θ r’.A] or 
exists(r),   exists(r) where
� r,r' are either 

� specific factIDs themselves

� variables that bind to factIDs in D  

� r.A is the value of attribute A of fact r.

� Θ {=, ≠, ≤,<,≥,>} is a comparison operator over 
the appropriate domain

� c is a constant from dom(A), and

� exists(r) (   exists(r)) is a predicate that holds if 
fact r exists (cannot exist)

∈

¬

¬
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Constraint Language: Semantics

� A possible world satisfying all constraints 
is valid

� Query answer is expected value over
valid possible worlds

EDB D’
Imprecise
fact table D

QAllocation

w1

w2

w3

w4

A

Possible 
worlds

Constraints C

w2

w4
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Efficient Query Answering
EDB D’

Imprecise
fact table D

QAllocation

w1

w2

w3

w4

A

Possible 
worlds

Constraints C

w2

w4

� Can compute expected value over valid possible 
worlds in single scan of Marginal Database (MDB) D*

EDB D’
Imprecise
fact table D

Q A

MDB D*

Allocation Marginalization
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Marginal Database (MDB) D*
� Let D’ be EDB obtained from imprecise fact table D

� Each claim in D’ has tuple ft with allocation weight wt

� Let W be set of valid possible worlds satisfying a 
given set of constraints C

� Let mt be the total probability of worlds in W where ft
is true.

� We refer to mt as the marginal probability of ft and 
(ft, mt) is a marginal tuple.

� Store all marginal tuples in marginal database 
(MDB) D*
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Marginalization Algorithms
MDB D*EDB D’

Decomp

CC1

CC2

CC3

Constraint 
Hypergraph G

� Can process connected component in 
constraint hypergraph independently
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Constraint Hypergraph: Example
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Constraint Hypergraph: G=(V,H)
� Nodes V: For each fact r in given imprecise 

database D, introduce a node to V

� Hyperedges H: For each minimal set of facts 
with a combination of completions violating a 
constraint, introduce a hyperedge to H
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Experimental Setup
� Algorithms evaluated on several datasets

� Real-world dataset: 798K facts , 4 dimensions

� Used several synthetic datasets

� Scalability (up to 3.2 million tuples)

� Constraint sets

� Randomly generated several constraint sets of 
varying “complexity”

� Develop suitable complexity metric
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Performance
800K Facts

Total Time

GenerateComponents

ProcessComponents
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24

Performance
3200K Facts

Total Time

GenerateComponents

ProcessComponents
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Component Sizes
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Related work
� Imprecise data with constraints

� MayBMS [Antova et al. 07]

� Representing and Querying Correlated Tuples in 
Probabilistic Databases [Sen, Deshpande 07]

� ConQuer [Fuxman et al 05]

� Probabilistic databases

� Probabilistic Databases [Dalvi et al. 04]

� TRIO system for uncertain data [Widom et al.05]

� OLAP

� Constraints in OLAP [Hurtado et. al 02]

� OLAP over Incomplete Data [Dyreson 96]
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Summary
� We extend our framework for OLAP over 

imprecise data to support domain 
information.

� Eliminate the strong independence 
assumptions required earlier
� Often violated in many applications (e.g., IE 

from text)

� First work we are aware of to consider OLAP 
aggregation queries over imprecise data in 
the presence of constraints



  

Discussion
● Pretty brute-force
● Fact Table => EDB, how?
● Other Queries: AVG, MIN, MAX

– How to generate MDB?
● Expressiveness of Constraints

– A => B (0.4) or C (0.6)
– More complex distributional constraints on data


