
1

InIn--Network Execution of Network Execution of

Monitoring Queries in Monitoring Queries in

Sensor NetworksSensor Networks

Xiaoyan Yang, Hock-Beng Lim, M. Tamer
Ozsu, Kian-Lee Tan

Presented by: Herodotos Herodotou

March 25, 2008

03/25/2008 Herodotos Herodotou 2 / 22

OutlineOutline

� Problem Setting

� Challenges

� Query Semantics

� Naïve Approaches

� Two-Phase Self-Join Approach

� Continuous TPSJ

� Experiments

� Discussion

03/25/2008 Herodotos Herodotou 3 / 22

Problem SettingProblem Setting

� Sensor Networks

� Consist of many small sensor nodes with

sensing, data processing and wireless

communication capabilities

� Monitoring Queries

� Track correlation among sensor data within a

time window to detect events of interests

� In-network processing of window self-join

queries

03/25/2008 Herodotos Herodotou 4 / 22

ChallengesChallenges

� Sensor nodes are resource-constraint

� Limited battery energy

� Limited processing power

� Limited storage

� Limited communication bandwidth

� Ability to handle node failures

� Ability to handle communication failures

03/25/2008 Herodotos Herodotou 5 / 22

Query SemanticsQuery Semantics

Query Template:

SELECT S1.AT1, S2.AT2

FROM Sensor AS S1, Sensor AS S2

WHERE p1(S1.AT3)

AND p2(S1.attj, S2.atth)

AND window(S1.ts,S2.ts,W)

Same Table (self-join)

Selection Predicate

Join Predicate

Time window of size W

Notes:

� Sensor relation is sorted by the reading’s timestamp

� ATj represents subset of attributes from Sensor table

� p1 is of the form attj opt Constant

� p2 is of the form attj opt atth

� Opt = { <, >, ≤, ≥, ≠, = }

03/25/2008 Herodotos Herodotou 6 / 22

Query ExampleQuery Example

Volcano Monitoring Application:

SELECT P1.pressure, P1.time, P2.pressure, P2.time

FROM Pressure AS P1, Pressure AS P2

WHERE P1.pressure > δ

AND P2.pressure > P1.pressure

AND P2.time > P1.time AND P2.time - P1.time < h

Query Explanation:

Learn whether the pressure detected has crossed a certain

threshold, δ, and is continuously increasing within some

period of time, h.

2

03/25/2008 Herodotos Herodotou 7 / 22

NaNaïïve Approach 1: Floodingve Approach 1: Flooding

� Approach:

� Propagate messages containing local sensor

data to neighboring nodes

� Pros:

� In-network query execution

� Cons:

� Overwhelm limited network bandwidth

� Need large amount of local storage

� Incur a lot of computational power and

memory

03/25/2008 Herodotos Herodotou 8 / 22

NaNaïïve Approach 2: Centralizationve Approach 2: Centralization

� Approach:

� All nodes periodically sense and transmit all

data back to base station

� Pros:

� Base station is more powerful

=> can handle self-join queries

� Cons:

� High data transmission cost

� Base station could still become bottleneck

03/25/2008 Herodotos Herodotou 9 / 22

Proposed Approach: TPSJProposed Approach: TPSJ

� TPSJ: Two-Phase Self-Join

� Phase 1:

� Preliminary filtering

� Find candidates that might be in final result

� Phase 2:

� Perform window join

� Candidates found in phase 1 are used to do

further filtering within the network

03/25/2008 Herodotos Herodotou 10 / 22

PreprocessingPreprocessing

� Query decomposition into 2 queries:

Q1
*:

SELECT S.AT1 INTO R1

FROM Sensor AS S

WHERE p1(S.AT3)

Selection query:

� Finds tuples that satisfy

selection predicate

� Stores results in

temporary relation R1

Q2
*:

SELECT S.AT2

FROM R1, Sensor AS S

WHERE p2(R1.attj, S.atth)

AND window(R1.ts,S.ts,W)

Join query:

� Between Sensor and

intermediate table R1

03/25/2008 Herodotos Herodotou 11 / 22

Preprocessing ExamplePreprocessing Example

� Volcano Monitoring Application:

Q1
*:

SELECT P.pressure, P.time

INTO R1

FROM Pressure AS P

WHERE P.pressure > δ

Selection query:

� Finds tuples twith

pressure higher than a

certain threshold, δ

� Stores results in

temporary relation R1

Q2
*:

SELECT P.pressure, P.time

FROM R1, Pressure AS P

WHERE P.pressure > R1.pressure

AND window(R1.time,P.time,h)

Join query:

� Between Pressure and

intermediate table R1

03/25/2008 Herodotos Herodotou 12 / 22

TPSJ: Phase 1TPSJ: Phase 1

� Goal

� Find candidates that might contribute to final

result

� Tasks

� Execute query Q1
*

� If tuple satisfies p1, forward it to base station

� Example

� δ = 500

3

03/25/2008 Herodotos Herodotou 13 / 22

TPSJ: Phase 2TPSJ: Phase 2

� Goal

� Find matching tuples for candidates from Ph.1

� Complete event detection in one time window

� Tasks

� Construct R1

� Execute query Q2
*

� Example:

� h = 10

03/25/2008 Herodotos Herodotou 14 / 22

Basic OptimizationsBasic Optimizations

� Join predicate only involves { <, >, ≤, ≥ }

� Sort R1

� Send smallest/largest value instead of R1

� Rewrite Q2
* to a simple selection query

SELECT S.AT2

FROM Sensor AS S

WHERE p2(r.attj, S.atth)

AND window(W)

03/25/2008 Herodotos Herodotou 15 / 22

Continuous TPSJContinuous TPSJ

� Goal:

� Detect target events over a long period of time

� Challenges:

� Some tuples may trigger a new window self-

join within current processing window

� Avoid unnecessary/dublicate work

� Solution:

� New algorithm for efficient window triggering

03/25/2008 Herodotos Herodotou 16 / 22

Triggering of window selfTriggering of window self--joinsjoins

� Rule A:

� One window self-join per sampling interval

� Rule B:

� Delay Query Triggering As Much As Possible

� Rule C:

� Hidden Query

� Theorem:

� Number of phase 2 queries injected is minimal
for self-join query involving only { <, >, ≤, ≥ }

03/25/2008 Herodotos Herodotou 17 / 22

Experiments for TPSJ (1 window)Experiments for TPSJ (1 window)

� Network Topology

� Total Transmissions

03/25/2008 Herodotos Herodotou 18 / 22

Experiments for TPSJ (1 window)Experiments for TPSJ (1 window)

� Window Size

� Total Transmissions

4

03/25/2008 Herodotos Herodotou 19 / 22

� Self-Join Selectivity

� Total Transmissions

Experiments for TPSJ (1 window)Experiments for TPSJ (1 window)

03/25/2008 Herodotos Herodotou 20 / 22

Experiments for Continuous TPSJExperiments for Continuous TPSJ

� Network Topology

� Total Transmissions

03/25/2008 Herodotos Herodotou 21 / 22

Experiments for Continuous TPSJExperiments for Continuous TPSJ

� Window Size

� Savings

03/25/2008 Herodotos Herodotou 22 / 22

DiscussionDiscussion

� Unrealistic Assumptions

� Node Synchronization

� Same sampling rate

� Same transmission time from node to base station (no
network delay, no distance issues)

� Scalability - Large number of tuples satisfying the selection
predicate =>

� How to disseminate efficiently?

� How to store a number of queries in a memory-limited
sensor node?

� Redundant tuple transfer from nodes to base station and back

� Insufficient optimization for queries with (in) equality constraints

� No Recursive Generalization for Phase 2 Optimizations

� Experimental Procedure: 8*8 nodes is very limited

