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Abstract applicationsmonitor data streams [Cc2]: users regis-
ter long-runningcontinuousqueries, which compute their
Recently there has been considerable research on results inreal-timewhile the data is streaming by. Stream
Data Stream Management Systems (DSMS) to  monitoring applications motivate the following desiderata:
support analysis of data that arrives rapidly in
high-speed streams. Most of these systems have
very expressive query languages in order to ad-
dress a wide range of applications.

e Scalability. The system must be scalable in both
the arrival rate of the data stream and the number of
queries.

e ExpressivenessThe query language must be expres-
sive enough to meet application requirements. There
is a clear tradeoff between query expressiveness and
system performance.

In this paper, we take a different approach. Instead
of starting with a very powerful data stream query
language, we begin with a well-known class of
languages — event languages. Through the addi-

tion of several simple, but powerful language con- e Well-Understood Formal Semantics. The mean-
structs (namely parameterization and aggregates), ing of a query expression should be formally defined.
we add pieces that extend their expressiveness to- Well-defined semantics is a prerequisite for query-
wards full-fledged languages for processing data rewriting and multi-query optimization.

streams. Our resulting contributions are a novel
algebra for expressing data stream queries, and a
corresponding transformation of algebra expres-
sions into finite state automata that can be imple-
mented very efficiently. Our language is simple
and natural, and it can express surprisingly pow-
erful data stream queries. We formally introduce
the language including a formal mapping of alge-
bra expressions to finite state automata. Further-
more, we show the efficacy of our approach via an
initial performance evaluation, including a com-
parison with the Stanford STREAM System.

Several groups are building Data Stream Man-
agement Systems (DSMS) with powerful query lan-
guages [AAB 05, MWAT03, CCD'03]. There are two
main thrusts in existing work. One line of work extends
SQL with constructs for data streams, resulting in very
powerful query languages with challenging implementa-
tion and query optimization problems. Another direc-
tion uses a similarly powerful procedural boxes-and-arrows
programming model, where the user is required to explic-
itly select an efficient query plan by deciding which boxes
to use and how to combine them. It is fair to characterize
most current work as adapting complex systems to apply to
. data streams.

1 Introduction In this paper, we take a different approach. Instead of

Traditional Database Management Systems are built on thefating with a complex system, we extend a much weaker

concept opersistent data setat are stored on stable stor- system originally intended for real-time data. We start with
age and queried and updated repeatedly throughout thefvent systems, an area that has been the focus of much re-
lifetime. In many application domains, however, data ar_search over the last decade. Languages for event systems
rives in high-speed streams and needs to be processed cc{)ﬁy ent algebrascan compose pomplex events from either
tinuously [BBDY02, GGR02]. As an example, consider a °&S!C Of complex events arriving on a data stream. How-
system that permits financial analysts to configure custor§Ver there are significant shortcomings that prevent current
event notification queries over a stream of stock ticks [tra] €VENt Systems to be used for data stream processing.

An analyst needs to be notified as soon as one of her queries
is satisfied. Other applications include transactions in retai -1 From Event Algebras to Data Streams

chains, ATM and credit card operations in banks, operatingdur goal is to design an algebra that supports a large class
system and Web server log records, and many more. Thes# data stream monitoring applications and is amenable



to scalable implementation. As a running example, weQuery 4. Notify me when the price of IBM increases mono-
use an application for analyzing stock data. Assumedonically for at least 30 minutes.

there is a stream of events whose data fields include

(name, price ,vol ;timestamp ), indicating thatvol
shares of company with nameame are sold at price
price . Inaddition, there is imestamp attribute, indi-

In processing this query, each arriving IBM price must
be checked against the previous IBM price. To defer this
work to a post-processing phase, the output would have to
cating when the sale happened. contain the entire event h|st(_)ry for the query. This wogld

! L MLI . result in an output stream with events of unbounded size,

Existing Constructs: Filtering and Sequencing. We . . . ; . :

a design choice that is undesirable, and (since testing for

need basic operators fitter events and attributes of inter- monotonicity only requires comparing adjacent quotes) un-
est, like selection and projection in the relational algebra, yonlyreq paring ad 9

o : ; : necessary. Furthermore, parameteridedhtion (Kleene-
This is essentially the functionality of pub/sub systems, as, . ; . )
illustrated by the following: ) is an important concern, enabling powerful queries such

as the following:
Query 1. Notify me when the price of IBM is abo§200. Query 5. Notify me when the price of any stock increases

This query can be evaluated on each incoming event inmonotonically for at least 30 minutes.
dividually. However, an important feature of monitoring

systems is the ability to deteséquencesf events: Extension 2: Aggregation. Another immensely use-

ful feature for an event processing language is support for
Query 2. Notify me when the price of IBM is abo$&00, aggregation Again, most event processing systems either
and thefirst MSFT price afterwards is belo#25. do not support aggregation at all or handle aggregates “ex-

Recall that Query 1 is memoryless — it only compares at__ternally (i.e. pass events to another process for comput-

tribute values of incoming events to constants. For Query 2Ny the aggregate) [CKAK94]'. Not including aggregates as
however, the system has to maintatate it has to remem- part of the algebra severely limits opportunities for query

ber whether an event with a stock price of IBM above $1000pt|m|zat|on — sound query rewrite _rules must take the
has happened. presence of an aggregation operator into account.

Extension 1: Parameterization. Stream queries of- Query 6 is an example of a data stream aggregate. Aver-

ten have constraints on events depending on constants froﬁgec:)sn?m tpé?jr;r%fn?ltjrr]:t:c:nsttsream schema, and hence must
earlier events in the query. Consider the following: pu v .

Query 3. Notify me when there is a sale of some stock at,?zl"_s\gei altl/gtrgéne when the next IBM stock is above its

some price (say), and the next transaction is a sale of the
same stock at a price above)5p. Extension 3: Well-Defined Semanticsand Efficient

In this examplename andprice  are parameters that Implementation. Our final contribution is more subtle.
are not specified in the query. Instead, the second StOCWheré.SIFJ]rveylngbprewous Kvork, yvelobs(jerved an unfprtu-d
event is constrained by the name and price of the first stocRAte dichotomy between theoretical and systems-oriente

guote (it has to be the same company at a price at least SQUoproaches. Theorgtlcal approa_ches, based on form_a_l lan-
higher). The act of referring to values of prior events in aguages a_nd well-defln.ed semantics, generally lack efficient,
multi-event query is callegarameterization scalable implementations. On the other hand, systems ap-

Most previously proposed event processing systems eproaches usually introduce thgir event algebr_a_ on_Iy infor—
ther do not support parameterized predicates at all or atr_nally. Th.e' absence of a precise fqrmal specn‘lcatlonlllm-
tempt to simulate them by post-processing the output oks the ability to do query optimization and query rewrites
another less selective query [PSBO03]. For example, Quer n these systems. Indeed, previous work has shown that
3 can be evaluated by generating all adjacent pairg) he lack of clean operator semantics can lead to unex-

of stock quotes, and then filtering them by (1) removin a”pecteq and undesirable behavior of complex_ algebra ex-
pairs in v?/hichq.name ] p.namegand the>r/1((2)) removingg pressions [GA02, ZU99]. Our approach was informed by
all pairs for whichg.price < 1.é5p.price . Such post- this dichotomy, and we have taken great care to define a

processing might be tractable in an event processing systet'f\nguage that can express very powerful queries and has a

where the base input stream contained only a limited num-Ormal semantics, but can be implemented efficiently.

ber of predefined primitive events [CKAK94, ZU99]. How- _— :
ever, for steam processing applications, the domain froml'2 Contributions of This Work
which events are drawn is potentially unbounded. Intu-In this paper, we develop a novel event stream algebra
itively, this post-processing approach is analogous to comealled CESAR (for Composite Event Stream AlgebRa) that
puting a join by first generating the full cross-product, andcan express all example queries of the previous section.
then filtering based on the join condition. CESAR queries are translated into finite state automata that
More importantly, post-processing does not generalize&ean be implemented efficiently and that are amendable to
to queries for which a potentially unbounded number ofmulti-query optimization in the style of recent automata-
parameter values must actually be checked. Consider theased systems for XML filtering[DAF03]. This imple-
following: mentation is realized in Cayuga, a system architecture for



processing queries in our event algebra. Cayuga leveragés avoid well-known problems involving concatenation of
pub/sub techniques to achieve high scalability. complex events [GA02].
The important contributions of this paper are as follows:  To support the functionality discussed in Section 1.1,
) our algebra has four unary and three binary operators which
 We introduce CESAR, a novel algebra for stream pro-aqd the expressive power of regular expressions to pub/sub
cessing, which supports expressive queries includingypressions, making CESAR strictly more expressive than
parameterization and aggregation, and hence is appliyoth pub/sub and regular expressions. In the followisig,
cable to a large class of applications. We discuss theefers to an arbitrary stream of tuples, possibly containing

important design decisions and point out subtle chaleyents with non-zero duration and overlapping or simulta-
lenges when defining operators for data stream propegus events.

cessing. (Section 2)

e We identify a subset of our algebra, callewear-plus ~ 2-1 Unary Operators

expressions, which while very expressive, is particu-the gperators introduced in this section are well known
larly easy to implement. We define a new automatongm relational algebra. The first unary operator is the
model such that every linear-plus expression can b&andardorojection operatorry, whereX is a set of at-
implemented by an automaton that is acyclic exceplyjhytes. Projection can only affect data values; temporal
for self-loops. (Section 3) values are always preserved. The second unary operator is

o We introduce Cavuoa. a novel svstem architecture th he standardelectionoperatofoy, whered is any selection
yuga, y ormula. A selection formula is any boolean combination

enables high-speed processing large sets of queries ex;

ressed in our event algebra. Key to our scalabilit ismc atomic predicates of the form relop 7, where the
P 9 - ey y T, are arithmetic combinations of attributes and constants,

an interesting use of existing pub/sub techniques for, nd relop is one ok, <, <, >, >. We also allow selection

processing part of the queries, aggressive merging an]prmulas to contain predicat®ur relop c wherecis a con-

novel indices on automata states and instances, an ef; oD i : h lecti

fective form of multi-query optimization. (Section 4) stant, anq relop is as above. We wiite-  when selection
) formulaé is true of event. So for any streans;,

e In a thorough performance evaluation, we show the
scalability of our system both in terms of complex- 09(S;) = {e€SleE01}.

ity and number of queries, and we show interesting

tradeoffs between expressiveness of queries and thejr ON€ 1ast unary operator is theenaming opera-
performance. (Section 5) tor p; where f is a function taking one set of at-

tributes to another set of attributes. For example, if
The technical details of our approach are discussed i¥ is our stock stream from Section 1.1, arfdmaps
Sections 2, 3, 4, and 5. We discuss related work in Sectioprice — oldprice , then the stream;(S) has schema

6, and conclude in Section 7. (name, oldprice ,vol ,timestamp ). It is important
to note that a renaming function applied to a stream sim-
2 CESAR: An Event Processing Algebra ply changes the names of thata attributesn the stream

schema. The timestamps cannot be renamed.

The algebra CESAR consists of a data model for event As the renaming operator only affects the schema of a
streams plus operators for producing new streams frongtream and not its contents, we will often ignore this oper-
existing ones. A streant is a (infinite) set of tuples ator for ease of exposition. Instead, we usually index the
(@, to, 1), which we callevents As in the relational model, attributes of an event by the ID of the input stream, mak-
@ = (ai,...,a,) are data values with corresponding at- ing renaming implicit. For example, theame attribute
tributes (symbolic names). Thg's are temporal values of events from strean; will be referred to asS;.name.
representing the starting and ending timestamps of th&rom here on, will only use an explicit renaming operator
event. For example, an input event in the stock monwhen we want a specific certain schema.
itoring application could b&IBM, 90, 15000; 9:10; 9:10).
The timestamps are identical, because a sale_ is an in.staQ_-2 Basic Binary Operators
taneous event. An example for an event with duration
is (IBM, 90, 85;9:10; 9:15), which could indicate that the The unary operators enable filtering of events and at-
price of IBM decreased from $90 to $85 between 9:10AMtributes, and when selection formula are limited to con-
and 9:15AM. junctions of atomic predicates, are the equivalent of a clas-

Our operator definitions depend on the timestamp valsical pub/sub system. They support queries over individual
ues, so we do not allow users to query or modify them di-events, but no composite events and no parameterization.
rectly. However, we do allow constraints on therationof =~ The added expressive power of our algebra, compared to
an event, defined &s — ¢y + 1 (we treat time as discrete, that of pub/sub systems, lies in the binary operators. All of
so the duration of an event is the number of clock ticksthese operators are motivated by a corresponding operator
it spans). We store starting as well as ending timestampi regular expressions.



S — ands; < ro from the above definition, it can be shown that
S e S1; (Sa; S3) is equivalent toSs; (S1; S3) [GA02]. This
— would result in confusing and unexpected query semantics.

time Notice, however, that if such semantics was desired, our
algebra could easily be modified to support it.
Figure 1: Time intervals of arriving events Second, out of all events froifi, that start aftee; €

S1 has ended, the operator selects the one with the earliest

The first binary operator is the standardion opera-  endtimestamp. In the above examptg, is not combined
tor U, whereS; U Sy is definedag e [e € S1ore € S2 }. with ¢;, even though it started beforg. This choice of
As in the relational model, we require “union compatible” gperator semantics is natural, because an evecirsat
schemas, achievable by the renaming operator its end time and hence the event order is determined by the

For the following discussion, we introduce an operatorend timestamp. From an implementation point of view this
for concatenationof events. This operator is not part of semantics is desirable as well, because before the end time
CESAR; it will only be used to simplify the definition of of an event, the system has no knowledge if this event will
CESAR operators. Lef = <6, to, t1> ande; = <b, S0, 81> ever occur or not.
be twonon-overlappingevents {; < sq). We define the S1;9 S essentially works as a join, combining each
concatenated eveng e, = (@ U b;to,s1). The values of  eventinS; with the eventimmediately after it ifi,. How-
e1 overwrite values Ofio for data attributes that occur in ever,d works as a filter, removing uninteresting interven-
both schemas. For example, gt= (IBM, 10,1000;1,1)  ing events. Notice that traditional event processing sys-
have data schema — that is, not including the timestems do not havé as part of the operator. Adding this
tamps «(name, price ,vol ) ande; = (MSFT,99:2,3)  feature is essential for parameterization, bec#usan re-
have data schem@ompany, price ). Then we obtain fer to attributes of bott; andS». This enables our alge-
eo e = (IBM, 99,1000, MSFT; 1,3) with data schema pra to express “group-by” operations such as in Query 3,
(name, price ,vol ,company ). When there is a renam- \yhere we group stock quotes by name g 4 S», and
ing functionf, ey " re; is the same as) "e; exceptthatthe ¢ is §;.name = S,.name. Any selection formula’ in
attributes ofe; have been renamed Iy o¢:(S;) can only refer to attributes i;. Without as part

For the remainder of the discussion itis important to un-of the sequencing Operator’ we would have to resort to post-
derstand that, when we referdg”ey, it is implicit that the  processing, which is equivalent to computing a join by first

start time ofe, follows the end time ok, (i.e. events can generating the cross-product and then filtering based on the
only be concatenated if their time intervals do not overlap)join condition afterwards.

For streamsS; andS,, and selection formulé, we de-

fine theconditional sequenceS; ¢ Ss as 2.3 lteration
A e1 € S1,e0 €8s, and Ae’ € Sy The last binary operator is motivated by the Kleene-+ op-
e1’es =0 , - erator. For example, suppose we want to detect an upward
such that’.END < e.END, e"¢’ |= ¢ trend in a stock price as was shown in Examples 4 and 5.

To express such queries, we introduceitbeation opera-

Intuitively, this operator computes sequences of consecl, 1i3.0(51, S5) where

tive events, filtering out those events frafha that do not

satisfyd. We will use as shorthand notation fpfgye, i.€., e F is a unary operation formed from the composition
when no events are filtered by the operator. of selection and projection. This operation is used to
Assume stream$; andsS- are as shown in Figure 1 and “trim” the output after each iteration.

we want to computeS;; Sa. The result of this query is a
single composite event, which contains the data fields of
e; andey, and whose starting and ending timestamps are
the starting time ok; and the ending time of4, respec- Additionally, we require the schema 6% be a subset of
tively. Evente, cannot be combined witk,, because the the schema of5;. This requirement can be dropped by
time intervals are not disjunct (conditich < sy in above  attaching a renaming function to theoperator itself, but
definition). Eventks does not combine with,, because,  we will ignore this for the purpose of clarity.
starts aftele; ends, and it ends beforg ends (see defini- Informally, this operator acts as a fixed point operator
tion above). For the same reason, any other event endin@ence the use of the symbg), applying the operatggp
after e4 cannot be combined with; any more. This is repeatedly until it produces an empty result. However, at
exactly the expected semantics of sequential compositioreach stage, it will only remember the attribute values from
to combine an event from§; with and only with the first streamS; and the values from the most recent iteration of
matching event fronss. Ss. For any attributeatT; in S, we refer to the value
Two important design decisions are illustrated by thefrom the most recent iteration viarT;.last . Initially,
above example. First, two evenis € S; ande; € S, this value is equivalent to the corresponding attribut&;in
can only be combined i, starts aftee; has ended. With-  (which is why we require that the schemaSifbe a subset
out this requirement, i.e., by removing conditions< sg of that of S), but it will be overwritten by each iteration.

e 0 is a selection formula. This formula is used to filter
elements of5; just as it does iny



Formally, we define this operator as follows. We set The next iteration is computed & =
13,0(S1,52) = U,,~, S™ where
§ [(]1 2 = TS1US, © 0S,.price >Sy.price .last (g[l] ; s 52) =

SO = L{a@,b,tg,t 0| @ty t1) € S1,bCa 1-Name=2z.name

) Habitota) =0 (@ to,t2) € 5 J {(IBM, 10,1BM, 22; 1, 5)}
S+ — TS, US, O S((S[n]);052>-

After this point, S is empty for alln > 2. The union
where§; is the schema of the streaff). Hereoisthe [ ., SI" is the result of the. operator. The final query
standard composition operator, i.e., for two operators  result is obtained by selecting all those tuples (composite
wg, and inputr the expressiow; o wy(x) is equivalentto  events), which satisfgs, i.e., have a duration of at least 30
w1 (w2(x)). We will use this notation to improve readabil- minutes.

ity. Furthermore, to avoid notational clutter, we omitted the At first it might seem surprising that our algebra needs
necessary renaming functions in the above definition. Noy; »(S;, S5) to express the equivalent of something as sim-
tice that the valueg in S% are obtained by projecting and ple as(S,)* in regular languages. The reason, like for the
renaming the attributes @f. Furthermore, the attributes ;, operator, is that we want to support parameterization ef-
ATT; of S, are renamed taTT;.last  after each iteration, ficiently. In fact,d serves the same purpose asinduring

right before applying the projection. each iteration it filters irrelevant events frafa when the
With iteration, we can express Query 5 as nextevent fromySs is selected. In the above example, it
was used to make sure that no Dell stock would be selected
6, (Koo, 0, (S1,52)) 1)

for a sequence of IBM prices, and vice versa. Similggly,
where both S; and S; refer to the base stream of removes irrelevant events during each iteration, like non-
stock quotes (think ofS; and S, as having the re- increasing sequences in the example. Without this feature,
naming operator applied to the base stream to distinan iteration could produce a large number of irrelevant re-
guish the attributes of the same name, suclbasame  sults, which in turn generates even more irrelevant results

and Sy.name), ¢, is S;.name = Sj;.name, 6 is in the following iterations, just to be removed by external
Sy.price > Sp.price .last ,andds isthe duration con- post-processing.
straintopyr>30 min- We illustrate the functionality of thg Another interesting feature is thatis a binary operator,
operator for the following example streath = S, = while Kleene-+ is unary. One reason, as can be seen in the
. . ) definition of u, is that we need a way to initialize our at-
{ (IBM,10;1,1), (Dell, 22;2,2) , (IBM, 19; 3, 3) ’} tributeSATTi.lILast . The other reason is that, by addifig
(Dell, 24;4,4) , (IBM, 22;5,5) , (Dell, 22; 6, 6) to i, both andé can refer taS;’s attributes. This enables

Notice that for this example for the sake of readability weUs to support powerful parameterized queries. For instance,
simplified the schema of the stream by removing the voldf S1 is generated by some complex algebra expression, the
ume attribute, which is irrelevant for the query. v operator can constrain its iterations by any of the previ-
The initial set SI% is computed by duplicating Ously generated bindings. Example 5 illustrates a simple
the relevant attributesS;.ATT; and renaming them to Usage of this feature by constraining the sequence to con-

So ATT;. Hence the resulting schema afl? is  sistof asingle stock only(is S;.name = S3.name).
(S1.name, S;.price ,Ss.name, So.price ;tg,t1). For
the example stream we obtafit’! = 2.4 Aggregates

(IBM, 10,1BM, 10; 1, 1) , (Dell, 22, Dell, 22; 2, 2) Aggregates fit naturally into our algebra, where aggrega-

tion occurs over a sequence of events. Like in SQL, we
(IBM, 19,1BM, 19;3,3) , (Dell, 24, Dell, 24; 4, 4), need to create new attributes where the aggregate values
(IBM, 22,1BM, 22;5,5) , (Dell, 22, Dell, 22; 6, 6) are stored. More formally, aattribute introduction func-

tion g is a map that takes an attribute x and produgean

£ ad f th | arithmetic combination of attributes and constants. For any
of adjacent quotes of the same stogk filters out quotes evente, we letg[e] bee with extra values added according

from other companies, the same way this happens foin to the rules ofy. For example. suppose
which the second quote is higher. The latter is enforced by b. pie, stpp

0>, which removes all pairs of quotes with non-increasing e = (IBM,10,IBM,19;1,3) € S1; S
price. This iteration has the same schema as the previ- 0
ous one. To achieve this, the attribut€s.AtT, of the  where S; and S, refer to the stock stream, andl is

From this set, the first iteratio§*! will hold all pairs

last iteration are renamed i8,.ATT;.last before con- the formula S;.name = S;.name. We let g be
catenation; after concatenation and selection, the attributébe mapAvG - SuPfice £Saprice  Then gle] =
S,.ATT,.last are projected out. This gives &' = (IBM, 10,1BM, 19, 14.5;1,3) for the new data schema
‘ _ o . _ (S1.name, S;.price ,Ss.name, Sy.price | AVG).
78118, © 06 price >55.price last (ﬁl_name’:slnfngg - Given an expressioéi and introduction functiory, the

{ (IBM, 10,1BM, 19; 1, 3) , (Dell, 22, Dell, 24; 2, 4) ,

attribute introduction operatoty, is defined as
(IBM, 19,1BM, 22; 3, 5) }

ag(€) = {glel lec &}



Together withu, we get a natural aggregate. Consider antime, there might be several event sequences that satisfy

expression of the form some prefix of the query pattern.
For presentation purposes, we use a slightly simplified
Qg (MQHQOf,e(Oégl (£1),£2)) version of our actual automata for this example. Its purpose

. . . o ) is to provide an intuitive understanding of the approach,
In this expressiony,, functions as an initializeryy, is an  pefore introducing the formal definition.

accumulator, andy, is a finalizer. Our event automata are similar to nondeterministic fi-
For example, suppose we want the average of IBM stockyiie automata [HMUOO]. Whenever an automaton is in
over the past 52 weeks, as referenced in Query 6. If we lef gtate where it can traverse more than one edge for an
51,52 = S be our stream of stock quotes, this is expressedcoming event, it nondeterministically explores all these
_ branches. If it cannot traverse any edge, the corresponding
€ = Tour=s2 weeks(ILa,, . True(@lg, © 79 (S1), 09(52)))(2) branch “dies”. This is equivalent to having multietive
where 8 is name — IBM is defined asave instancesof the automaton explore the different branches,
fice . COUNT - 1 an,d 91 is defined asavG each branch corresponding to a prefix of the query se-
Eouma’st e last 1 orice 92 w guence. Since our automata have to keep track of param-
X +P COUNT — COUNT.last +1 :
. COUNT.last +1 ' ’ " eters, an instance of the automaton has to store event at-
Notice that we uséast feature ofu to compute our ag- tributes and their values
Let S be the input stream of stock quotes, and assume

gregate recursively.
Note the average is now a value attached to an attrlbutf1ac)r the purpose of this example that no two quotes in the
eam have the same timestamp. The algebraic expression

and can be used in more complex queries. For examples.tr
for Query 7 is thervy, (00, (oy, 0. (51, 52)); 0, S3). The

we express Query 6 ag, (£; 9, S3) whereS; = S'is our
stream of stock quotes is as in (2),01 is S3.name = S; are shorthand notation for appropriately renamed and
projected versions of:

IBM, and 0, is Ss.price > AVG.

3 Processing Expressions S, pfr © Tnameprice © 0o, (S)
Our algebra defines the output of an expression, but does Sy = pf, © Tnameprice (S)
not indicate the most efficient way to compute it. Given the S3 = pyy 0 Mameprice (S)

= py, 7 .

algebra’s similarity to regular expressions, finite automata

would appear to be a natural implementation choice. How-The corresponding predicates and renaming functions are
ever, standard finite automata are not sufficient for several
reasons. First, our algebra expressions generate output, 6,
hence the automata must be transducers rather than recog- 0,
nizers [HMUOQOQ]. Second, because of parameterization, we
need a mechanism for keeping track of parameter values. “3
Third, attributes of events can have infinite domains, e.g., 4
text attributes. Thus, the input alphabet of the automaton, g,
which is the set of all possible events, can be infinite as f (name, price ) — (company , maxP)

well. . .
fo (name, price ) — (company, minP)
3.1 Automaton Example fs = (name,price )+— (company,finalP )

vol > 10,000

company = company .last
6> A minP < minP .last

A3 A DUR > 10 min

0> A price > 1.05minP

At a high level, an automaton that implements an algé-rpg expjicit use of renaming is necessary for this example
bra expression (the query) works as follows. Based on thg, nake the schemas of the intermediate results clear.
events seen so far in the stream, the automaton maintains The algebra expression is interpreted as follows.is

all “partially matched sequences”. Recall that a query de'obtained fromsS by selecting only large volume trade ),

scribes a complex sequence of events, which itself is alsg, oy projecting out the volume attribute and changing the
an eveﬂj[—ac_on.wposneevent. The following query illus-  54ripte namesf;). HenceS, contains only large trades
trates this point: and has data schenjaompany , maxP). The ;. operator

Query 7. Notify me when for any stock there is a mono- searches for a monot'onically decreasing sequa?gc)efc(r
tonic decrease in price for at least 10 minutes, which start$h® Same stock, ignoring quotes from other comparfigs (
at a large trade Yol > 10,000). The immediately next During ea_ch iteration. compares the current I_owest price
quote on the same stock after this monotonic sequencdeémporarily renamed teninP.last ) to the price of the

should have a price 5% above the previously seen (bottorr§’cOMing event, renamed bf to minP .. If a new mini-
price. mum price is found, the concatenation overwrites the pre-

viously lowest price by the new one, otherwise the mono-
After the first large trade of a stock, the automaton will tonic sequence has ended. Tiheperator produces output
be looking for a monotonically decreasing sequence, thervents as soon as the duration constrairttiis satisfied.
for a sudden up-move in price. At any given moment inFinally, the; o, operator finds the next quote for the same



(—6,NuLL) (—6,NuLL) becauseompany.last = IBM and company = Dell.
Filter edges have special semantics—traversing them never
updates the bindings of an instance. This is indicated in
Figure 2 by thenuLL value for the renaming function.
The arrival ofey illustrates the non-determinism of the
1, operator. ey is filtered for I (the Dell pattern). How-
ever, forl; both#; andd, are satisfied (duration condition
is now true). Hencé; non-deterministically traverses both
Figure 2: Automaton for query 7 the forward edge frond to B and the rebind edge of state
A. This is implemented by cloning, so that there is an
company ¢2). If the price of that quote satisfigh, the  instance to traverse each satisfied edge. In the example,
query produces an output event. As before, the renaminglone I; traverses the forward edge, concatenating the in-
operatorfs ensures, that the final price is added to the resulstance with the renamed and projected
as attributdinalP . Eventse; andeg are processed similarly. Feg each of
The corresponding automaton is shown in Figure 2the instances traverses the corresponding filter edge. The
Table 1 presents a sample input event stream, and illusnteresting aspect af; is its affect on instancé,. I; con-
trates how the automaton processes these events. The inpidtenated witles does not satisfy the predicate on any out-
events are displayed in the first column. For an incomingyoing edge of statd, therefore the instance is deleted. No-
event, the state of the automaton after processing it is intice how the nondeterminism ensures correct discovery of
dicated by the active automaton instances in the same rowhe IBM pattern for instancé; (eventsey, ey, eg match it),
The table headers show the schema of the instances atpat prevents any later arriving IBM event from generating
given automaton state. For readability, the timestamp atanother matching pattern starting with, becausd; has
tributes, which cannot be projected out or renamed anywayajled.
are not shown in the schema. At this point we need to point out two subtleties that
Initially there is no active automaton instance, but theneed to be addressed by our automata. First, notice that
start state is always active by default. Whgrarrives, the  the example automaton cannot properly handle concur-
automaton checks if it satisfiés, the predicate on the edge rent events. For instance, let there be another evjgnt
emanating from the start state. This is the case, thereforgBM’SO’ 8000; 9:24; 9:24) at the same time as;. Even
it applies the projection and renaming functignto the  though this event fail§s, according to algebra semantics
attributes ofe; and advances the resulting instance to statg@he automaton should still produce the output result with
A. Notice that currently the instance hasmmP attribute, ¢ This suggests that forward edges (and rebind edges as
which is indicated by theiuLL value in the corresponding  well) are traversed if therexistsa satisfying event. On the
position in/;. other hand, the same is not true for filter edges. The arrival
The next event; does not satisfy;, hence the start of an additional event} : (IBM, 99, 8000;9:17;9:17) at
state does not create a new instance. Foat stateA, the same time as; would causéd; to be deleted based on
the automaton performs the following computation toalgebra semantics. Hence a filter edge should only be tra-
determine if/; can traverse any outgoing edge. First, it versed ifall simultaneously arriving events satisfy the filter
applies the projection and renamingeto Then it checks  predicate.
if the composite event, obtained by concatenatingnd Second, there is a subtlety related to duration con-
the projected and renamed, satisfies the predicate of straints illustrated by the following simple sequence query
any of the edges emanating from state Recall that ;, (5; 5y, (5)), where thed; both are predicates on dura-
the 1 operator performs a temporary renaming of thetion, In this queryg- refers to the duration of input events,
attributes of the second operand framr; to ATT;.last  while ¢, refers to the duration of the composite events gen-
during an iteration. Hence, this cqncatenated event igrated by the sequencing operator. In the automaton in
(IBM,90,NULL,IBM, 85:9:10;9:15) with data schema Figyre 2, the predicate on an edge refers to the concate-
(company last ,maxPlast ,minP.last ,company,  nated event (active instance concatenated with input event),
minP). This event only satisfie§; on the the rebind hence that automaton cannot support a duration predicate

edge (self-loop belowd). This edge therefore is traversed Jike ¢, on input events. Our formal automaton model ad-
and instancel; is updated by concatenating and the  gresses these issues.

projected and renamed (this time without the temporary
renaming ofl;). Hence the new values df are obtained
by concatenating the old tuple withBM , 85; 9:15; 9:15)
for data schemg@company, minP). The result is shown Now that we have seen both a high-level example and an
in Table 1. Notice how the previowsJLL value forminP overview of some of the more subtle issues, we are ready to
is now replaced by,’s value. present a formal description of our translation from expres-
Eventez matched);, therefore a new instandg is cre-  sions to automata. Rather than directly translating arbitrary
ated at statel. For I, the concatenation df, andez only algebra expressions into automata, we will start with a sim-
satisfies the predicate of the filter edge (top loop of stgte  pler, but still powerful subset, which we refer tolasear-

(6,:) (0, (6515

3.2 The Formal Automata Model



Input event Instances at staté Instances at stat8 Instances at staté
(name, price ,vol ) (company , maxP, minP) (company , maxP, minP) (company , maxP, minP, finalP )
e1 : (IBM, 90, 15000; 9:10; 9:10) I; = (IBM, 90, NULL; 9:10; 9:10)
es : (IBM, 85, 7000; 9:15; 9:15) I; = (IBM, 90, 85; 9:10; 9:15)
e3 : (Dell, 40, 11000; 9:17; 9:17y | I, = (IBM, 90, 85; 9:10; 9:15)
I> = (Dell, 40, NULL;9:17; 9:17)
I =

(

eq : (IBM, 81, 8000; 9:21; 9:21) IBM, 90, 81; 9:10; 9:21) Is = (IBM, 90, 81; 9:10; 9:21)
Iz = (Dell, 40, NULL; 9:17; 9:17)
es : (MSFT, 25, 6000; 9:23;9:23) | I; = (IBM, 90, 81; 9:10; 9:21) I3 = (IBM, 90, 81; 9:10; 9:21)
I = (Dell, 40, NULL; 9:17; 9:17)
es : (IBM, 91,9000; 9:24; 9:24) I> = (Dell, 40, NULL; 9:17; 9:17) I3 = (IBM, 90, 81, 91; 9:10; 9:24)

Table 1: Example computation

plus expressionsThe name “linear-plus” is inspired by the — fis an attribute renaming function taking the at-

linear structure of the corresponding automata, which are tributes in S to another set of attributeX. f

acyclic with the addition of self-loops. In Section 3.5, we prevents naming conflicts as we generate output.

will show how to generalize the approach to handle arbi-

trary algebra expressions. e V-type edges are labeléd, 0, , 62) where the); are as
L o ) for the3-type edgesy-type edges generate no output,

Definition 1. We define dinear-plus expressioas follows. and have no associated attribute renaming function.

e Any base strearfy; is linear-plus. . .
y ! P An instanceof an event automatad is an event together

e If £ is linear-plus andg is a unary operator formed with a stateq € A. An instance represents the current
from selection, projection, renaming, and aggrega- state of the automaton together with the non-null contents
tion, theng(€) is linear-plus. of the buffer. We will not actually define the buffer of an

automaton; its existence will be implicit in our definition

o If £ is linear-plus andg is a unary operator, then of an automaton computation. The output of an automaton

€1508(S;) is linear-plus. will be the set of all events where, for some final statg-,
e If £ is linear-plus and3; are unary operators, then (e, qr) is instance of4 generated by the streath
13,.0(E,F2(S:)) is linear-plus. To generate instances from the stre&mwe first need
. . to breakS up into finite strings. The strings for our au-
e If & and&; are linear-plus, then so i, U &s. tomata will beintervalsof events. For any two time units

To preserve the intuition from Section 3.1, our automatafo < t1, the interval[to, ¢1] is the set of all events with
presentation will be graphical instead of algebraic. In adfo < DETECT(e) < 1. As time is discrete and there are
dition, without loss of generality, we will assume that thereonly finitely many simultaneous events at any time, this is
is only one input strean®; the case of multiple input @ finite set of events. We order the events by detection time
streams can be handled by distinguishing them via an afl© géet our string.
tribute streamid . Unfortunately, as events can have simultaneous detec-

For the sake of readability, our initial automata will not tion time, this set is not necessarily totally ordered. Instead
be capable of implementing expressions with projection oPf & string, we get anultistring That is, each position
aggregation (i.e. selection and renaming are the only unargontains a (nonempty) set of events instead of just a sin-
operators allowed). In Section 3.4, we will see how to mod-gle event. For example, consider the following interval of
ify the automata for the additional operators. With this inlength 4:

mind, asimplified event automatas a directed multigraph €1,0 €2,0
A with the following properties: €0,0 €2,1 €3,0
€1,1 €22

e \ertices are are marked as initial, final, both, or nei-
ther. Position 0 has a single eveny,y, while position 1 has two
. . . eventse; ; wheree; o.END = ¢; 1).END > ¢ o.END. Note
* Every edge is marked as having eitfietype orv- .. despite the use of double i)ndices in positions 1 and 2,
type. simultaneous events are not ordered.
e J-type edges are labeléd, 6, , 6, f) where To define the computation of an automaton on an inter-
) _ ) val, recall from Section 2.2 that, "e; is the concatenation
— 0, is a selection formula referencing only at- of two events, and that,” se; is the concatenation of two
tributes inS. 6, filters input events. events with the attributes ia; renamed via the function
— 65 is any selection formulad; filters the com-  f. To make the construction simpler, we also introduce the
posite event obtained by concatenating an in-empty eveng, for whiche"e = e”e = e for any evente.
stance at the edge’s source vertex with the inputSuppose now that we have an automatband an inter-
event (see discussion below). val [to, t1] of lengthn. For eachi < n, we define the set



of valid instances ford at position: of [to, ¢1]. The set of ton with a single edge labele@, TRUE, 3, f) (see Fig-
valid instances at position 0 is(e, ¢s) | qs a start statg¢.  ure 3). This automaton will be referred to as theseau-
Algorithm 1 computes the sét of valid instances at po- tomaton. That this automaton is correct should be clear
sition i for ¢+ > 0, given the set of events;_; at position  from Algorithm 1.

i— 1.

Algorithm 1 Generating Instance Sets C (3.6.1) []

Require: I;_; is defined
1. L=0 Figure 3: Automaton fop o a4 (.S;)
2: for all instancegey, q) € I;_, do

3. forall edgeq6;, O-type , f) outgoing fromg do ) )

4 let ¢’ be the destination state of this edge Next we consider the cagg, o 0y, (154, £2). As this

5: if type = Vthen expression is linear-plug; = py, o gy, (S;). Our automa-

6: for all eventse € E;_; do ton combines the two automatd , A; for &1, &, respec-

7: test that eithee. START < eg.END Or e £~ 6, tively, as shown in Figure 4. We identify the start state
oreg e b 0, of A, with the terminal state ofd;; we call this statey;.

8: if evente € E;_, passes the teiten We add a loop edgéd:. 6,V f1); this edge will remove

9 Li=ILU{e} events that do not qualify as successor. We call this type

10: else of self-loop edge on which the predicate correspond to the

11: for all eventse € F;_; do selection formul& in; 4 afilter edge. In comparison, an

12: if e.START > eg.END ande |= 6, and edge that goes from one node to another is calledveard
eo e |= 0, then edge. We always draw a filter edge on top of a node.

13: I =1;U{ey se} We letgs,, the final state ofd,, be the final state of this

14: return I; composite automaton. Finally, the forward edge frgim

to g2, we replace the second formul&®TE from the base

From this algorithm we see thetedges check all of the @utomaton withds A 63, and compose the final renaming

simultaneous events against a single instance, but do ndfnction f2 with f,.

alter the instance event; edges on the other hand, spawn

a new instance for each satisfying event, thus recording the (¥.6,,6)

data from that event. This solves the simultaneity issues & &o

from Section 3.1. Algorithm 1 may appear to be expen- ©—> W
sive because it has several nested loops. However, in prac- % ) 2
tice the algorithm is handled via multiple subscriptions to a

pub/sub system, and so the two external loops can be han- Figure 4: Automaton fopy, o og, (€15 ¢, &2
dled fairly efficiently.
Given Algorithm 1, the output ofl on an intervalt, ¢1] . .
of lengthn is the set of all events such that(e, gr) € I, To see that the output of this automaton is exa€fliake

for some final statgy. Then theoutput of A is the set of ~ any event output by A. Then there is some intervib, ¢

events output by on any interval ofS. We are now ready Of lengthn such that(e, ¢2) is an instance at positiom of

to state our primary theorem. this automaton. By definition, there are eventses; such
thate = e, " ye; and(eq, ¢1) is an instance at some position

Theorem 1. Let £ be any linear-plus expression without k£ < n. Letk be the least such and l&t= e;.END. Then

projection or aggregation. There is an simplified event au-[¢,, ¢'] must be an interval of length such thate; is an

tomaton such thaf is the output of4. element of the set in the final position. Ass least, this
instance is not produced by traversing the loop edgg of
3.3 Proof of Theorem 1 So,e; is output by.4; on[ty,t'], and thus; € &;.

The loop edge of;; does not add any new data values
as it produces new instances; it only forwards the instance
to the next stage. The only edge that can possibly add new
data values is the forward edge frgmto ¢». Hencees €
S;. By definition,e |= 61, and soey € &, (this is the step
Lemma 2. Let § be any unary operation formed from Where we need two formulas on each edge, and not just
selection and renaming, including multiple instances ofone). Furthermoreg;“e; |= 62 A 65, and by definition

each Operator in any order. The‘@ can be rewritten as of Concatenati0n€2.START > e1.END. Fina”y, the filter
3 =ps ooy edge guarantees that for aaywith ¢/.END < e5.END,

eithere’ .START < e1.END, ¢’ [~ 01, ore; "€’ £~ 6. Hence
For the base case, consider the expresgjon oy (.S;). e € &, and so we have shown the outputéfs contains in
We implement this expression as a two-state event automa-. Running this argument in reverse gives the equivalence

Our proof proceeds by induction on the definition of a
linear-plus expression. Throughout this proof, we will
make use of the following lemma, which gives us a con-
venient order to perform renaming and selection.



of £ and A.

The construction fopy, o a9, (s}, 00,0, (E1,E2)) IS
shown in Figure 5. Again, we are given théat = py, o &q
oo, (S;). We exploit the fact thaf, is a unary operator ap- @0y 105150 @O, 0N fof )
plied to a base streai$y, and thus can be recognized by a
single edge. We implement the fixed-point implicit in the
1 operator by a loop for this edge. We call this type of self-
loop edge on which the predicate corresponds to selection
formulads in the above expressionrebind edge, since it  Theorem 3. Let § be any unary Operation formed from
controls whether an event can “rebind” to the automatorselection, projection, renaming, and aggregate, including
instance by modifying some of its existing values (as op-multiple instances of each operator in any order. THen
posed to concatenating new ones). We usually draw thean be rewritten ag§ = 7x o g 0 pg 0 T
rebind edge below a node. Note that the renaming function
f1 for the rebind edge is the same as for the forward edge; This theorem allows us to delay projection and aggre-
this automaton makes use of the fact that the concatenatid@@tion until after the selection step for each edge of the

&
(3,0, 15611110 I (3,0,,,00¢y /o1 )

Figure 6: Automaton fop; o o (&1 U &)

eo” pe1 overwrites old values with attributes iange( f). automata. All we have to do is modify line 13 of Al-
gorithm 1 to introduce new attributes, and to project out
(V.0,.6,) old ones. This is accomplished by two modifications to

e our 3-type edges. First, out-type edges are now labeled
2 (3,61,602,X, f), whereX is the set of attributes to preserve

El
o 3’61"92”3“64"3"-”29/5[%] at this state. Any value in the instance added at line 13

(3,6,,6,705 /017 whose attribute is not iiX; is removed (i.e. the buffer lo-
cation is set tovULL).

To implement aggregation, we must modify the attribute
renaming functionf on the3d-type edges. Note that jf is
an aggregate renaming function, theén' is an attributen-
troductionfunction, albeit a trivial one that copies the value

Two more details are needed for the automaton to bérom one attribute to another. So instead of Iabeling the
correct. First of all, the formula&, and#; make reference €dge with a renaming function, we label it with an intro-
to attributes of the formaTT,.last . As the composite re- duction function that instructs how to compute the value
naming functionf, o f; appears on both the rebind and for each buffer location at that stage of the computation.
filter edge, we need to rename all such attribute&,iand ~ The introduction function labeling that edge is a compo-
9, according to this function. In addition, these two pred-Sition of f~!, wherep; is the renaming operator for this
icates are attached to the rebind edge. However, the fir@dge, and;, whereoy is the aggregate for this edge.
instance(e, ¢,) to reach this state will have no values for ~ We refer to the automata with the expandetype edges
the attributes imange(f o f1), and hence the rebind edge s eventautomata. Combining Theorem 3 with the proof of
will always evaluate to ALSE. To solve this, we rewrite Theorem 1, we get the following.
the formulad, A 63 as a disjunction that either uses the
attributes inrange(f2 o f1), or if those values areluLL,
use the corresponding attributes fréin The proof that4d
is equivalent tc€ should now be clear, following the same
steps from the construction for.

Finally, the construction fopy o gg(& U &) is given
in Figure 6. Again we start with the event automatafor
for each expressio#;, but we combine them differently Since we limited ourselves to linear-plus expressions in
this time. We identify the start states with each other, andlheorem 1, our automata are all simple. As the operators
similarly identify the terminal states. In addition, we atid in our algebra are similar regular expressions, one might
to the second formula of each edge entering the final statdhink that it is possible to construct more complex automata

and compose its renaming function with This completes  to implement general expressions. However, as we shall
our construction. demonstrate in the following example, this is not necessar-

ily true.

Let 51, 52,53 = S be our stream of stock prices, and
consider the expressiofi = Si;4(S2; S3), whered is
In order to complete the proof of Theorem 1, we need toSs.price > S;.price . £ is one of the simplest exam-
extend the definition of our automata to include linear-plusples of an expression that is not linear-plus. However, it
expressions with projections and aggregates. Both of casés the composition of two linear-plus expressions; g Ss
can be handled by the following theorem, which is an ex-and Ss; true S3. The automatond for Ss; S3 has a dis-
tension of Lemma 2. tinct start and terminal state, so naively we should be able

€

Figure 5: Automaton fopy, o og, (17,6, (&1, E2))

Theorem 4. Let £ be any linear-plus expression. There is
an event automaton such thétis the output ofd. Fur-
thermore, the number of states of this automaton is linear
in the size of.

3.5 General Algebra Expressions

3.4 Adding Projection and Aggregation

10



to replace the5 -edges in the automaton fék ; y S, with need the3-type edge from the filter loop to act as both a
A. This produces the automaton in Figure 7 (the filter edgé/-type edge, which processes all simultaneous events to-
for the two copies of4 has been removed as it is never gether, and a-type edge, which records them separately.
traversed). Hence a direct construction of this expression appears to
require a fundamental change in our automata model.
O Instead of changing our automata model, we choose to
implement general expressions is throughlubscription

1.0 (%L1 In resubscription, an automaton is allowed subscribe to the
—~ output of another automaton instead of just the base stream.

@ ATT,) ~ ATLTLS) O ET.0/5) [] To implement a general expression with resubscription, we
break it up into a sequence of linear-plus expressions, like

As we went through the trouble of ensuring that our au-
tomata could deal with simultaneous events of nontrivial
However, the automaton in Figure 7 is not correct. Theduration, there is no problem with treating the output of
filter “edge” is now a loop consisting of two edges, the first other automata as data streams. The only issue is how to
of which is never satisfied (as it¥type, an event mustot  specify which stream the automaton should use. To do this,
satisfy TRUEto traverse this edge). This is a minor problem we extend our data model to allow for multiple streams, and
which we can solve by changing the first half of the filter to assign an index for each base stream and for each automa-
(V, FALSE, FALSE); this change delays all selection to the ton. Then, to each edge of an automaton, we add the index

end of the filter loop. of the stream to use for that edge. The proof of Theorem 1
Unfortunately, this fix causes another problem. Con-is the same as before.
sider the streany = The only issue to worry about is that we cannot have any

circular references. We cannot have two autoroétaand
{ (IBM,10;1,1), (Dell, 22;2,2) , (IBM, 9; 3, 3) ’} 3) A that subscribe to each other, as all automata are evalu-
(Dell,24;4,4) , (IBM, 11;5,5) ated simultaneously. Fortunately, if we only allow the al-
-~ o ) gebraic expressions to refer to base streams, this can never
The modified automaton in Figure 7 will not output happen.
{IBM., 10,1BM, 9, Dell, 24; 1, 4) even though it is part of  Resupscription has the benefit that it can implement all
the expressiod. The eventDell, 22;2,2) is at fault here.  possible algebraic expressions. However, resubscription
If this event traverses the forward edge from the secongs more complicated than the single automaton implemen-
state then then this instance of this machine will be elimyation of Section 3. An interesting method of optimiza-
inated a the next event. On the other hand, if this evenfion would be to use rewrite rules to convert a general ex-
traverses the first half of the filter, there is Bdype edge  pression to a minimal sequence of linear-plus expressions,

to record the eventiBM, 9;3,3). and then use resubscription to combine the expressions to-
A correct automata implementation must be able to hangether, This is an area of future work.

dle the overlap of events ifi;; S5 . This requires a for-
ward 3-type edge from the intermediate state of the filter ) :
loop. For example, the automaton in Figure 8 processes th% Cayuga: The Implementation
stream in (3) correctly. For each incoming event, the system must determine which
automaton instances need to be modified. At any time, the

AT-61) total number of active instances can be very large, but typ-
ically the number of instanceaffectedby an event is or-
ders of magnitude lower. In the stock monitoring applica-
tion, for example, a query that matches a sequence of IBM
prices can ignore events for any other company. Rather
than sequentially testing each instance, as suggested by Al-
gorithm 1, we can use indexes that efficiently identify the
instances that are affected by the incoming event.

Note that an instance isnaffectedby an input event if
However, this automaton does not handle simultaneouand only if that event makes the instance traversdilits

V.,T,0) (V,EF)

@ M
arrs) S aATT) AT.0/)

Figure 8: Modified Solution foy; ¢(Ss; S3)

events properly. Consider the stre&th= ter edge. Traversing a forward or rebind edge modifies
bindings, affecting the instance; and if no edge can be tra-
(IBM,10;1,1), (Dell, 22;2,2) , (IBM, 9;3,3) , versed, the instance is affected by being deleted. Thus, to
(Dell, 23;3,3) , (Dell, 24; 4,4) , (IBM, 11; 5, 5) find all affected instances efficiently we simply index each

instance by the predicate on the filter edge of its current
For this stream, the automaton in Figure 8 will outputstate. This is the problem addressed by pub/sub systems:
(IBM, 10, Dell, 23, Dell, 24; 1, 4), which is not correct. We Index a large number of predicates, such that for each in-
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coming event all satisfied predicates are found efficientlya greater variety of edge types and edge labels. The final

Hence we can leverage existing and proven technology foresult of the merging process is a DAG of all automaton

this task [FJI"01]. The for-all semantics of filter edges states.

makes dealing witlsimultaneouslharriving events easy— Formally, the merging of automata is based on the fol-

the affected instances are obtained as the union of the réswing notion ofequivalent states

sults returned by the index for each of the simultaneous

input events. Definition 2. Let n and m denote automaton nodes
Two challenges need to be addressed when usinfftates), andE, and E,, denote the sets of edges

pub/sub engines. First, most pub/sub systems assume ttfitering n and m respectively. We define a nested

predicates are conjunctions of atomic formulas. We carsequencg=; |[i=0,1,...} of equivalence relations on

handle an arbitrary boolean formula by transforming itstates as follows.

to disjunctive normal form(DNF), a disjunction of con-

junctions of atomic formulas, and then registering each

conjunction as a separate subscription in the pub/sub en-

gine. The second challenge is parameterized predicates

like ATT; relop ATT,, because pub/sub systems expect

static predicates of the formTT relop CONST. To ad-

e n =y m forall n,m.

n =;41 m if and only if there exists a bijection
between the entering edge séts and F,,, such that
for each mapped pait,, ~ e,

dress this, in our current prototype implementation, we in- — e, ande,, have identical edge labels, and
dex only static predicates to avoid high index maintenance _
cost. Since all sub-formulas are conjunctions, the index T En.SOUTCE =; Em.SOUTCE

returns a superset of the affected instances, WhICh IS POSktates, andm are equivalent writtenn = m, if and only
processed based on the parameterized predicates. Int

e .
g X . . . n =; m forall 5.
remainder of this section, we introduce notation and then ’

describe the Cayuga implementation in more detail. It is possible to computes using a slight generaliza-
] tion of the traditional techniques for state minimization
4.1 Notation of finite automata [Hop71]. Our current implementation

A static atomic predicatés an atomic predicate of the form takes a simpler approach, merging opiiefixesof paths
ATT relop CONST, e.g.,price > 10. Other atomic pred- ©f equivalent automaton states, as in [DAF3]. The fol-
icates are referred to afynamic A dynamic predicate lowing example illustrates how we do this in gsmgle.pas's.
ATT; relop ATT, that compares an attribute value of the in- We merge automata one-by-one. The top diagram in Fig-
coming event with an attribute of an earlier event s referrecdreé 9(a) shows the current merged automata DAG (it is
to as aparameterized atomic predicatdn the following  fairly easy to prove by induction that it is a DAG with a
discussion we consider only static and parameterized pregingle root node), while the bottom diagram in Figure 9(a)
icates; dynamic predicates of the fommT; relop ATT,, IS the new query to be inserted.
whereATT; andATT, are both attributes of the incoming  In the first step, we can trivially merge the start states
event, are treated by postprocessing as in {fall]. We  (see Figure 9(b)). Then we proceed with the other nodes of
also assume all selection predicates are supplied in DNF. the new query irtopological order until no more merges

Each conjuncP can be rewritten a® = A, ATT; relop ~ are _p033|ble. In the example, we determine that node 9 is
CONST; A A\, ATT; relop ATT, by grouping the static equivalent to node 5 (but not node 2, because of the self-
atomic predicates and the parameterized dynamic atomi@op edges). Hence we can merge the two nodes as well,
predicates together and then canonicalizing them, e.g. bigsulting in the DAG shown in Figure 9(c). Node 10 is not
sorting them lexicographically by attribute names. We re-€quivalent to any of the other nodes at level 2 (root node is
fer to A\, ATT; relop CONST; and A ; ATT, relop ATT;, as & level 0), hence the merging process terminates. Note that
thestaticanddynamic parof P, respectively. If either part We cannot merge nodes 10 and 6, because of the additional
is empty, it is equivalent to theRUE predicate. edge with labet; .

A node of an automaton ictiveif there are active in- We can identify equivalent nodes efficiently by comput-
stances at this node, otherwise itriactive The start node ing a hash signature of the set of predicates for each incom-

is active by default. Similarly, we say all the outgoing ing edge, and using this signature to prune the search space.
edges of an active node are active as well. This is fairly straightforward and not discussed here.

4.2 Merging Automata 4.3 Efficient MQO Implementation

Our automata have a structure similar to the automata ofhe overall system architecture is shown in Figure 10. Its
YFilter [DAFT03] or linear finite automata in general. core component is tifgtate Machine Managewhich man-
Hence we can use a similar procedure for merging commoages the merged query DAG and the active instances at the
prefixes of different automata. Our procedure is slightlyautomaton nodes. It also maintains several indices for effi-
more general, since the union operator creates a DAG (diiently determining which automaton instances are affected
rected acyclic graph), rather than a tree, and since there sy incoming events.
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(a) Original DAGs to Merge (b) After merging start nodes (c) After merging nodes 5 and 9

Figure 9: State Merging Example

New Query Ve [ mame = company A vol > 5K) ] Current Query DAG
event stream F I d (name = conpany A price > $100)
s eid, cid a
sz ~(name — BN A vol = 10K) ¥ laane K
o E. 2. 0y T3 (aane - MSFT Avo > 8K) nid, 3: nid, insert/merge
=1z ..
H B a
a a

static
conjuncts
i~

insert

FR-Index

83 Al-Index| _
o . oo (name = IBM A vol > 10K : eid;) key: static part of a conjuncts
= 0, . . (name = MSFT A vol > 8K : eid;) in forward & rebind edges
= : notification (vol > TK : cidy) value: edge id
Z. . Seam .

queries ¢ ) )

—> Figure 11: Insertion of a query

conjunct and the value is the unique ID of the edge.
There are two types of updates that Cayuga needs to
The Active Node (AN) index contains (key: value) handle—insertion/deletion of queries and arrival of input
pairs, where the key is trgtaticpart of a conjunction from events. A new query is inserted by first merging it into the
thefilter predicate of a node, and the value is a pointer toquery DAG in the State Machine Manager. This is shown
that node. The AN-index contains entries only &mtive  in Figure 11 for a simple example query. For simplicity we
nodes. assume that only the start states can be merged. Then, for
Each automaton node in the query DAG has an addieach conjunction in the DNF of each forward and each re-
tional local index, the Active Instance (Al) index. This in- bind edge, an entry is added into FR-index. This entry has
dex contains the active automaton instances at the nod#)e static part of the conjunction as the key and the ID of the
indexed by thelynamicpart of the node’s filter predicate. edge as the value. In the example, each of the two conjuncts
More precisely, for each conjunction of the DNF of the fil- of edgeeid; results in a separate entry. AN-index and Al-
ter predicate and for each active instance at the node, theredex are not affected, because they maintain only active
is an entry in Al-index with the dynamic part of the con- nodes and instances. When the query is deleted, the inser-
junction as key and the corresponding instance as valudion process is simply reversed. Only nodes and edges that
Note there is no particular problem with indexing the dy-are not shared with other queries are physically removed
namic part of a predicate associated witheativeinstance  from the DAG.
—while the instance is active, the attribute values associated Incoming events are sent to both the State Machine
with previous events are already bound, and can be treatddanager and the FR-index. Figure 12 illustrates how an
as if they were constant. event is processed right after the new query was inserted.
Outside the State Machine Manager, there is the Forin the example we omit the timestamp attributes for read-
ward/Rebind (FR) index. It indexes all forward and rebindability. Probing the FR-index produces a set of edge IDs as
edges by thetaticpart of their edge predicates. More pre- the result. This is the set of edges whose static predicate
cisely, for each forward and rebind edge, and for each conparts are satisfied by the event. Note the index returns both
junction of the DNF of the edge’s predicate, FR-index con-eid; andeids, based on their static predicate parts. For ef-
tains a (key: value) pair. The key is the static part of theficiency during later probing, the resulting set of edge IDs

Figure 10: Cayuga architecture
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1. Probe with event Current Query DAG 1. Probe with event
e,: (IBM, $90, 15K) e,: (MSFT, $28, 11K)

key: static part of a conjunct
in filter edge predicate
value: node id

5. Create instance
I,: (MSFT, $28) at

nid,: . .
URCS“M 1 Al-Index ?ldl with schema )
T company, startP
nids  nidy. nidyg ... FR-Index key: dynamic part of
a conjunct in filter
edge predicate
2. Add 0, to node list. value: instance id ——————— 6.Insert (MSFT, $28: L)
Qn.nid_‘w nid,, nid g ...
{ Resut Figure 13: Processing second event

3. Scan each node in list. eid, , eid,, eidy, eid,, eid,, ...
Note that AN-index returns nodeid;, because its static
partvol > 5K of the filter predicate is satisfied by the
event. However, when processing the node, Al-index re-
turns an empty result, because the event is for a different

1 6. Insert: 4. Scan outgoing edges.
(vol> 5K : nid)) '
(price > $100: nid,) ' ..
: @éd : company ¢ompany #+ name). Thl§ is exactly the ex-
¥ 5. Create instance : pected behavior of the filter edge—it is traversed because

— I (BM.S90)at . the MSFT event didhot satisfy the edge predicate for the

id, with schema ' .
1 Al-Index ?(lzoln\:;;a.n;s - IBM instance.

key: dynamic part of ii {y : In Figure 14, we show how the next incoming event

sajeorpaid orureukp
SOJSIIES $)ePIPULd
se pajoapas 'pro

a conjunct in filter . . . .
edge predicate is processed. This event is for IBM. AN-index and FR-
index are probed as befor@, is also processed as before,

value: instance id

6. Insert (IBM, $90: 1))

! but this timeeid; is not traversed (FR-index filters it out).
Pmmeeeroefliiiii..oi..o....................!  When processing nodgd;, probing its Al-index produces
only I; as the result, because tgnamicpart of its filter

Figure 12: Processing first event predicate is satisfiedy is for MSFT and hence its dynamic
_ ) filter predicate part is not satisfied and it traverses the filter
is stored in & hash table. edge. Forl; we look up all outgoing forward and rebind

Atthe State Maching Manager, firstAN.-index is probed.edgeS ofnid,, only eids in the example, in the result of
It returns the set of active nodes whose filter edges are n¢ig_jngex. cidy is found and therefore its dynamic predi-

traversed, based on the static parts of the filter predicalgye harts are tested. Since they are satisfied by the event,
conjuncts. This immediately prunes a large number of ac:

. . - instancel; traverses edgeid, and advances to the final
tive nodes, whose instances all traverse the filter edge. 1gate.

the example in Figure 12 some arbitrary nodes are shown
but nid; is not among them, because it is not yet active.
The system addg) to the result, because the start node is
always active and relevant by default.

For each node in the result list of AN-index, the sys- 1 FR.index generates a set of edges whose static predi-
tem determines which instances at the node are affected by ¢4t parts are satisfied by the event. This set is stored
the event. We discuss this step first for the start node only. i, 3 hash-index on edge ID.

When processing, we look up each of its outgoing edges

in the result of FR-index (reca” that it is stored in a hash 2. AN-index generates a set of relevant active nodes.
table for fast lookups). If there is a hit, the corresponding

edge is acandidatefor a traversal. Recall the FR-index 3. For each node in the set we do the following. We first
only uses the static parts of edge predicates; therefore, to  obtain the set of relevant active instances for which the
eliminate false positives, we must test whether a candidate filter condition is satisfied from Al-index. Then we
also satisfies theynamicparts of the edge conjunctions. determine for each relevant instance the candidates of
If it does, then the edge “fires” — we create a new instance  satisfied edges by a lookup of the output of FR-index,
and advance it to the destination node. In the example, the  followed by a verification of the edge predicates based
event satisfies the predicate on edgy . Hence the corre- on their dynamic parts.

sponding instance is inserted into nadd; 's Al-index.

Figure 13 shows how the next incoming event is pro- In the above example and discussion, events have been
cessed. AN-index and FR-index are probed as before. Prassumed to arrive individually. However, simultaneous
cessingQ)q results in creation of a new instance at nodeevents pose no serious problems for our implementation,
nid; as before, but this time for the MSFT stock price. as long as all simultaneously arriving events are processed

' The diagram in Figure 15 summarizes the Cayuga event
processing steps. On arrival of an event, the following hap-
pens:
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1. Probe with event
ey: (IBM, $105, 6K)

AN-Index FR-Index

7. Probe node currently
being processed

U Result U Result
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Figure 14: Processing third event

together. As mentioned earlier, the for-all semantics of fil-
ter edges implies that affected instances can be computed ) ) )
as the union of the affected instances for each of the si- Figure 15: Event Processing Diagram
multaneous input events. The nondeterministic there-exists )

semantics of forward and rebind edges is naturally handle@-1  Teéchnical Benchmark

by first accumulating the set of new instances (generateq, (et the overall efficiency of Cayuga and measure the
by firing candidate edges) for all the simultaneous inpute, 41 ation cost of the different operators of our algebra,
events, then deleting old instances and installing the new . designed a synthetic technical benchmark Instead of

ones atomically. the stock stream example, we generated a stream with
eight data attributes: four discrete attributes (e.g. company
name) and four continuous attributes (e.g. stock price). The
. parameters for generating both the stream and the associ-
5 Performance Evaluation ated queries are shown in Table 2.
We generated queries according to five different
We built an initial prototype implementation of Cayuga in templates: LinearStat , LinearDyn , Filter
C++. For standard data structures such as hash indices aRgnpDeterministic , andNonDeterministicAgg

lists we relied on the C++ Standard Library implementa-a queries are over a single input streas hence, as
tions. We believe that using specifically tailored implemen-

tations would lead to a considerable gain in system per- [ Variable [ Value |
formance. However, even with the current prototype im- Number of events 100,000
plementation we show that, with no more than a standard, Number of attributes per event 8
off-the-shelf PC, we can process thousands of events per mumber of discrete attributes 4
h umber of continuous attributes 4
second, for hundreds of thousands of concurrently active Number of queries 200,000
sequence queries. Number of atomic predicates 2+2
All experiments were run on a 3 GHz Pentium 4 PC with gjésnﬁ;?;esfzgoor}tg}ggfe?e S .
1 GB of RAM and 512 KB cache. The operating system is Number of distinct ranges that can be 75
Red Hat Linux 9. We loaded the input stream into memory selected for inequality predicates
before starting the experiment to make sure that the input Selectivity of atomic inequality predicate 0.7
tuples are delivered at least as fast as our system can pro- Number of steps per sequence query 3
. A Zipf parameter, first step:Apf7 ) 1
cess them. For this setup we measuredaba runtime for Zipf parameter, second stepif3) 1
matching all incoming events with all sequence queries in Zipf parameter, third stepp/s) 0.8
the system. For each experiment we perform several runs, Duration constanttj 20
clearing the cache between runs. As the standard deviation
in all experimental runs was well below 1%, we therefore
only report averages and omit error bars from the graphs. Table 2: Parameters (default values)
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described in Section 2.15; refers to an appropriately re- suppose we took Query 8 and mattlethe filer predicate

named occurrence d¢f in the algebraic expression. DUR < 10min A Sy.name = IBM. In this case, stock
LinearStat  queries define simple sequential patternsquotes of other companies that arrive between the first two
of three consecutive events, expressed as IBM quotes would not lead to a failure of the pattern, as
long as consecutive IBM quotes arrive within 10 minutes
005(00, (00, (51); S2); S3) of each other. The second filter formulais similar tof,;

. . . we merely replacé,.ATT with S3.ATT.
in our algebra. Essentially, this query looks at any three e effect of non-determinism in our automata is mea-
consecutive events in the stream, and outputs the concatggeq by theNonDeterministic template

nated event if it satisfiedy A 05 A 65. For example, if such
a template where applied to our stock stream example, then 005 © tip,o5 (00, © fup 0, (00, (S1),52), S3)

our template might generate the following query.
where ID is the identity unary operation. This query is

Query 8. Notify me when there are three consecutivemuch more powerful than the previous ones. An analogy
stock quotes representing IBM beldd0, followed by IBM  ysing our example Query 8 would be a query that not only
aboves$15, and finally IBM below§15. searches for patterns obnsecutivéBM stock quotes, but

As our input stream is not the stock stream, but a Syn_one that can finany 3-tupleof IBM stock quotes that satis-

. . i . fies the duration constraints and selection criteria, ignoring
thetic stream of eight attributes, thgare conjuncts of four . : ;

: . ; ) . ; all stock quotes (including other quotes for IBM) in be-
staticatomic predicates: two equality predicates on two Oftween Hence the outout of this query will be a superset of
the discrete attributes, and two inequality predicates on tw ; X query P

of the continuous attributes. One of the discrete attributes([fhe F_|Iter query with exactly the_ same formulﬁ_g
Finally, template NonDeterministicAgg imple-

ATT, IS Qe3|gr)ated as tharimary att”bl.JteOf the query. ments aggregation. It extendnDeterministic by
This attribute is guaranteed to appear in all three ofthe : .
computing the sum of the values of the continuous at-

and to select exactly the same value for each formula. Th?ributes, for the three events that satisfy the query pattern.

Frﬁanl]teeat;rslbiltjtii 'nguﬁgj ?OISIBaI\q ﬁ,xzr;]fr:ecgfsjuc,zsa2||a(; In processing these queries, events were generated by

' 9 : .__uniformly selecting values for each of the eight attributes
the formula select the same value, we refer to the predicatg: . <o e nama. We also examined skewed event dis-
ATT = CONSTas theprimary predicateof the query. '

Attributes and their values are selected independentl tributions, but observed the same trends. Different distribu-

usingzipf; to select attributes angpf; to select the value tions only affect results by changing the selectivity of the

for 0. This setup is motivated by practical scenarios wher edge predicates. The same effect is achieved by adjusting

user preferences typically follow a skewed (often Zipf) dis-(:t;ﬂe query constants, and so we did not investigate this fur-

tribution. By adjusting the Zipf parameter, we can control r

the similarity of the different subscriptions.
To test the overhead of evaluatipgrameterizegredi- 51.1 Results
cates in Cayuga, we designed thirearDyn template Figure 16 illustrates the results of various throughput ex-
periments. Figure 16(a) shows how the system through-
005(00, (06, (S1); S2); S3) put changes with the number of subscriptions. Even for
) _ _ 400K concurrently active queries, throughput is well above
The difference between this template dridearStat 1000 events per second. As expected, the more complex

is that ¢, and f3 now have an additiongbarameterized the query workload, the lower the throughput, except for
atomic predicate. An example of such a predicate from ouf jnearStat ~ andLinearDyn , which are almost identi-
stock stream would be the requirement that the stock pricga| because the cost of checking parameterized predicates
from the second quote is 1% above the price of the originajs negligible compared to the other matching costs and the

quote. o _ cost of maintaining the index structures.
We measure the overhead of evaluating filter predicates Cayuga’s high throughput is achieved despite a chal-
with theFilter  template lenging workload. Each event on average matches about
S-S S 100 static predicates in the pub/sub engine. Furthermore,
965 (96, (06, ( 1)0’4 2) ; 3) at any time, an average of 6000 to 16,000 nodes are active

in the State Machine Manager, indicating that events sat-
In this template,0, 65, 05 are all selected in the same isfied a high percentage of the edge predicates. The high
way as forLinearStat . On the other hand), is a fil-  throughput was achieved because the index structures en-
ter formula of the formburR < ¢ A S5.ATT = CONST, sured that only about 40 to 120 of these active nodes had
wheret is as shown in Table 2 anf,.ATT = CONSTis  to be accessed per incoming event. Overall Fiiter

the primary predicate of the query liinearStat . 6, workload generated between 41 (100K queries) and 171
relaxes the selectivity of the originalnearStat  query (400K queries) sequence matchesnDeterministic

by allowing intermediate non-matching events to be filteredandNonDeterministicAgg had a few more matches,
out. To illustrate this idea with our stock stream example,and the linear workloads generated virtually no matches.
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Figure 16: Throughput Measurements

This outcome is not surprising. Even though each single 100000
edge predicate by itself is not very selective, the overall
pattern is very restrictive; the automata frequently advance
to the first state, but only rarely reach the second or last
state.

Note also that, despite the skewed query distribution,
the merged query DAG is very large. For instance, before

10000

1000 |

100

10 ¢

Throughput (events/second)

Filter, MQO ——
merging states the DAG for 100K queries would have 300K 1 | Moseeltes
nodes and edges. Our merged DAG still has about 215K 10000 20000 30000 40000

Number of Queries

nodes: 48K at level 1, 71K at level 2, and 96K at level
3. In the next result we show that a more skewed (hence
more homogeneous) query workload can greatly improve
throughput.

In Figure 16(b), we compare the effect of parameter5.2.1 Naive Extension of Pub/Sub
zipf; on system performance. Lower skewness makes th . . T
subscriptions less similar, hence reduces the possibilitie order to see the beneﬂts of our multl-qugry optimization,
for multi-query optimization. This can be observed in the W€ compare Cayuga with a nhaive extension of a pub/sub
graphs. Most of the performance difference is caused b ngine. This system uses a simple value-based pub/sub en-
the number of level 1 nodes in the query DAG, because th ine to filter Incoming events. Qsers then post-process the
is where most activity takes place. For Zipf parameter O.SOUtpUt of the_engme to recognize complex patterns. This
there are 101K nodes, while for Zipf parameter 1.4, therebost-processmg_ can be treated as a black box, but for_the
are 36K nodes. The overall number of matched queries igake of comparison, we use our automaton mode| to Im-
virtually unaffected by the Zipf parameter, because there ifPlement this black box. Hence the difference between this

no correlation between event values and query constants.'rmjlerm:"ntatlon and Cayuga is that, as each user runs her

. : . own individual automaton, it cannot have any multi-quer
Finally, we examined the effect of edge predicate se- y query

lectivity on the performance. Figure 16(c) shows how theOpt.:.rglzﬁr:(J:;te this setting, we take Cayuga and turn off

throughput decreases when the inequality predicates on ths“?ate merging, as well as a,ny indices that span multiple au-
continuous attributes select more values. Notice that the -, " o “ieo v o FRindex (see Section 4). The FR-
curve’s slope is inverse quadratic, which is to be expecte '

as we are varying the selectivity of two predicates simulta-hoIex IS retameo! as its functionality COUIO.' be provided in
neously the naive extension by an external cen_trallzeq pub/sub pro-
' cess where all users register their static predicates.
Figure 17 shows the performance of Cayuga compared
mark. To keep the runtime of the naive system manage-

To justify our approach, we compare the performance ofable, we reduced the number of concurrently active queries
Cayuga to two other systems. In the first case, we compar® 10K-40K, compared to 100K-400K in our other experi-
Cayuga to a similar system without the multi-query opti- ments. The throughput measurements in Figure 17 are for
mization of Section 4, in order to understand the benefit othe Filter ~ workload. The curve “Filter, MQO” denotes
that optimization. In the second case, we compare Cayugidne performance of Cayuga, while the “No MQQO” curve
to STREAM, a substantially more expressive system, in orrepresents the throughput of the naive extension. Note that
der to demonstrate the performance benefits of our weakehe y-axis is dog scale hence with multi-query optimiza-
language. tion the system is faster by a factor of 100.

Figure 17: Effect of multi-query optimization
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36 for each monotonic sequence). It is essentially an exten-
o sion to theNonDeterministic template in our techni-
- cal benchmark, which contains only twooperators.
@ o Itis possible to express Double-Top in our algebra with-
£ 5 out they operator. While the resulting query is not linear-
24 plus, we can implement it using the idea of resubscription
2 from Section 3.5. To see how, first we create the following
20 M shape expression for detecting local maxima.

18 Lo .
28-Jun-91  16-Oct-913-Jan-92  9-Apr-92 14-Aug-92

Date 001(002(510; S2); S3)

3 04

Figure 18: Double-Top pattern for Dell quotes
g PP : Here6, is (S,.price > Ss.price ), 02 is (Sz.price >

Sp.price ), 03 is (Se.name = S;.name), and b, is

In order to explore the effectiveness of different multi- (Ss.name = S;.name). Note that local minima can be de-
query optimization techniques, we also explored a Cayugéected similarly. We then define stredirto be the union of
system where state merging was turned off, but in whichall local minima generated by the above expression. Given
the automaton indices worked properly. The performancéhis stream of local minima, we now use resubscription
of this system is the “No State Merging” curve in Figure 17.to express Double-Top as an expression linear-plus in E.
Itis clear from this curve that most of the performance gainThe expression is
comes the indexing of active node, and not from merging

automata states. In particular, this indexing dramatically 6, (00, (09, (00, (Ela;s Ez)gG E3)9i7 E4)0;8 Es)
reduces the cost of “joining” the pub/sub engine’s result

with the set of active automata edges. where the selection formula are as follows:
5.2.2 Comparison to STREAM 0 = (Esprice < Ej.price)

0.9E,.price < Ey.price < 1.1E,.price )
0.9E;.price < Es.price < 1.1E;.price )

(
0
The CESAR algebra used by Cayuga is not as expressive as E
(Ey.price > 1.2 % E;.price )
(
(
(

many of the more traditional languages. We chose to intro-’3
duce a less expressive language in order that we may imé.
plement it more efficiently. In order to illustrate this trade- ¢,
off, we compare Cayuga to the Stanford STREAM system. s Es.name = £, .name
STREAM is a general stream processing system with a rel-

atively mature implementation, capable of processing the?’7 Ey.name = [£);.name
queries used in our experiments. Furthermore several of it§s = (Fs.name= E;.name
operators are very similar to the ones used in Cayuga.

Since multi-query optimization has not been fully _ STREAM's CQL query language lacks theoperator.
integrated into STREAM, we restrict the compar- To eﬁlc!ently flnql this pattern in CQL, the query |s.decom-
ison to a single query at a time. We report re- ppsed into manlpulatlon_s on several It_avel_s (_)f views (see
sults for a variant of the well-known Double-Top Figure 19(a)).! Hence this implementation is is similar to

(or M-Top) pattern used for stock analysis (seethe algebra expression with resubscription in our system.
for instance http://www.stockcharts.com/ The STREAM implementation first computes a stream of

education/ChartAnalysis/double Top.html ). ‘up”and “down” trends between consecutive quotes of the

The original Double-Top pattern is easy to express inSame stock. Then it detect; local extrema in that st_ream.
Cayuga and can be processed efficiently, but it would:'”f"‘”% every sequence of five consecutive extrema is ex-
be expensive for a system that was not optimized fo@mined to determine whether the constraints on the price
non-deterministic matching. attribute are satisfied. Note that, while nicely optimized,
We use a modified Double-Top pattern that consists ofhis query haq to created manually, an_d it requires consid-
five consecutive local extrema of stock prices, starting with€rable expertise to craft the query in this way.
aminimum at priced, rising monotonically to reachamax- A more direct way to formulate this query in CQL, de-
imum price B, such thatB > 1.24, then falling monoton- notgd as CQL2, is to use self-Joms..T.hys approach is shown
ically to reach a minimund, which is within 10% of the N Figure 19(b). First a 3-way self—Jom is used to discover
starting priced. Afterwards the stock rises monotonically '0c@l éxtrema. Then, on the resulting stream of extrema, we
to reach a new high a, which is within 10% of the previ- find the actual_pattern using a 5-way self-Jqln. In order to
ous highB. Finally the stock falls monotonically to a new Properly quantify the performance degradation caused by a
minimum E below A. Figure 18 shows an example of the Singlen-way self-join, in CQL2 we express the first part of
pattern, found in a real sequence of stock closing prices. the query in the standard 3-way self-join fashion, but use

The DO_Uble'TOD query is _natl_JraI!y expressed in our al-  1ye would like to thank Arvind Arasu for crafting this CQL query
gebra as #inear-plus expressiowith five ;s operators (one  formulation for us.

FEs.name = E;.name

)
)
)
)
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# Stock stream
table : register stream Stock (time integer, name integer, price float);

# Add difference to previous stock price to each tuple

vquery : Rstream (Select S.time, S.name, S.price, (S.price — P.price) From Stock [Now] as S,
Stock [Partition By P.name Rows 2] as P Where S.name = P.name and S.time > P.time);

vtable : register stream StockDiff (time integer, name integer, price float, pdiff float);

# Generate stream of extrema

vquery : Rstream (Select P.time, P.name, P.price, P.pdiff From StockDiff [Now] as S,
StockDiff [Partition By P.name Rows 2] as P
‘Where S.name = P.name and (S.pdiff * P.pdiff) < 0.0);

vtable : register stream Extrema (time integer, name integer, price float, pdiff float);

# Assign unique sequence numbers to extrema points
vquery : Select name, count(*) from Extrema Group By name;
vtable : register relation ExtremaCounter (name integer, seqNo integer);

# Attach sequence numbers to extrema
vquery : Rstream (Select E.name, E.price, E.pdiff, C.seqNo, C.seqNo — 1

From Extrema [Now] as E, ExtremaCounter as C Where E.name = C.name);
vtable : register stream ExtremaSeq (name integer, price float, pdiff float,

seq integer, prevSeq integer);

# State A: minimum
vquery : Select name, price, seq from ExtremaSeq Where pdiff < 0.0;
vtable : register relation stateA (name integer, price float, seq integer);

# State B: maximum, B> 1.2 A
vquery : Rstream (Select E.name, E.price, A.price, E.seq From ExtremaSeq [Now] as E,

stateA as A Where E.name = A.name and E.prevSeq = A.seq and E.price > (A.price*1.2));
vtable : register relation stateB (name integer, bprice float, aprice float, seq integer);

# State C: minimum, 0.9 A<C< 1.1 A

vquery : Rstream (Select E.name, E.price, B.bprice, B.aprice, E.seq From ExtremaSeq [Now] as E,
stateB as B Where E.name = B.name and E.prevSeq = B.seq and E.price > (B.aprice * 0.9)
and E.price < (B.aprice * 1.1));

vtable : register relation stateC(name integer, cprice float, bprice float, aprice float, seq integer);

# State D: maximum, 0.9 B<C<1.1B

vquery : Rstream (Select E.name, E.price, C.cprice, C.bprice, C.aprice, E.seq
From ExtremaSeq [Now] as E, stateC as C Where E.name = C.name and E.prevSeq = C.seq
and E.price > (C.bprice * 0.9) and E.price < (C.bprice * 1.1));

vtable : register relation stateD (name integer, dprice float, cprice float, bprice float, aprice float,
seq integer);

# The final query: D < A

query : Rstream (Select E.name, E.price, D.dprice, D.cprice, D.bprice, D.aprice
From ExtremaSeq [Now] as E, stateD as D Where E.name = D.name and E.prevSeq = D.seq
and E.price < D.aprice);

# Stock stream
table : register stream Stock (time integer, name integer, price float);

# Generate stream of extrema

vquery : Istream (Select S2.time, S2.name, S2.price, (S2.price=S1.price)
From Stock [Partition By S1.name Rows 3] as S1,
Stock [Partition By S2.name Rows 3] as S2,
Stock [Partition By S3.name Rows 3] as S3
‘Where S1.name = S2.name and S2.name = S3.name and
(S2.price—S1.price) * (S3.price—S2.price) < 0.0 and
Sl.time < S2.time and S2.time < S3.time);

vtable : register stream Extrema (time integer, name integer, price float, pdiff float);

# Assign unique sequence numbers to extrema points
vquery : Select name, count(*) from Extrema Group By name;
vtable : register relation ExtremaCounter (name integer, seqNo integer);

# Attach sequence numbers to extrema
vquery : Rstream (Select E.name, E.price, E.pdiff, C.seqNo, C.seqNo — 1

From Extrema [Now] as E, ExtremaCounter as C Where E.name = C.name);
vtable : register stream ExtremaSeq (name integer, price float, pdiff float,

seq integer, prevSeq integer);

# State A: minimum
vquery : Select name, price, seq from ExtremaSeq Where pdiff < 0.0;
vtable : register relation stateA (name integer, price float, seq integer);

# State B: maximum, B> 1.2 A
vquery : Rstream (Select E.name, E.price, A.price, E.seq From ExtremaSeq [Now] as E,

stateA as A Where E.name = A.name and E.prevSeq = A.seq and E.price > (A.price*1.2));
vtable : register relation stateB (name integer, bprice float, aprice float, seq integer);

# State C: minimum, 0.9 A<C< 1.1 A

vquery : Rstream (Select E.name, E.price, B.bprice, B.aprice, E.seq From ExtremaSeq [Now] as E,
stateB as B Where E.name = B.name and E.prevSeq = B.seq and E.price > (B.aprice * 0.9)
and E.price < (B.aprice * 1.1));

vtable : register relation stateC(name integer, cprice float, bprice float, aprice float, seq integer);

# State D: maximum,0.9B<C< 1.1 B

vquery : Rstream (Select E.name, E.price, C.cprice, C.bprice, C.aprice, E.seq
From ExtremaSeq [Now] as E, stateC as C Where E.name = C.name and E.prevSeq = C.seq
and E.price > (C.bprice * 0.9) and E.price < (C.bprice * 1.1));

vtable : register relation stateD (name integer, dprice float, cprice float, bprice float, aprice float,
seq integer);

# The final query: D < A

query : Rstream (Select E.name, E.price, D.dprice, D.cprice, D.bprice, D.aprice
From ExtremaSeq [Now] as E, stateD as D Where E.name = D.name and E.prevSeq = D.seq
and E.price < D.aprice);

(a) Formulation in STREAM (CQL1)

(b) Formulation in STREAM (CQL2)

Figure 19: Double-Top query formulation

the more efficient state-like expressions of CQL2 for the
latter part.

Figure 20 shows the performance difference between
the two equivalent queries in Cayuga, and the two equiv-

alent queries in STREAM. We run a single instance of the
Double-Top query on a stream of 112,635 real daily closing
stock prices for 24 different companies listed at the NYSE.
The effect of different degrees of smoothing (length of win-
dow for computing a running average) is examined. Note

that stronger smoothing reduces the number of local ex-
trema, and hence benefits the resubscription and STREAM

query formulation.

The “Mu Formulation” in Cayuga corresponds to the
natural linear-plus expression. This formulation clearly
outperforms the equivalent “Resubscription” formulation
in Cayuga, as well as the two CQL formulations in
STREAM. This result supports our focus on linear-plus
expressions in Section 3. It is important to note that the
Cayuga resubscription formulation and CQL1 perform al-
most identically; this should not be too surprising as their
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formulation is essentially identical. However, CQL1 is realis [CcC 02, AABT05]. These two systems, how-
essentially a hand-optimized version of the Double-Topever, use a procedural boxes-and-arrows paradigm which
query. The more natural formulation of CQL2 had lessis much less amenable to formal specification in our style.
than half of the throughput of CQL1, and a fourth of the In [LWZ04] it is shown that SQL lacks expressive power
throughput of theu formulation. Hence there is potential for continuous queries on data streams, and Wang et al.
for some synergy between Cayuga and STREAM, wherextend SQL with features to support data mining and data
we can use our algebra to optimize such pattern-searcétreams [WZLO03].

queries. In general, the semantics of some of the more expressive
event languages is not well-defined [GA02, ZU99], and it is
6 Related Work not clear how the different languages compare to each other

in terms of expressiveness. In addition, the performance of

To date, interest in building a DSMS has concentrateceyent processing systems with very expressive query lan-
principally at the extremes of the expressiveness spegyuages has not been explored in depth, especially in terms
trum. At the low end of the spectrum lie pub/sub sys-of scalability with the number of continuous queries.
tems [ASS 99, YSGO3, FJL'01]. These systems sacrifice  Efficient filtering and dissemination of information is
expressiveness to achieve high performance. For examplg, very active and diverse field of research. Due to lack
Le Subscribe [FIt01] is a very high-performance scal- of space, we only list selected approaches without claim-
able pub/sub system that performs aggressive multi-querjag completeness. IR-style approaches to document fil-
optimization. Work in this area includes scalable triggertering [cFG00, FD92, YGM99] typically rely on similar-
mechanisms [HCH99, SPAM91, TLPO3]. ity measures between incoming documents and stored user

Somewhat higher in the expressiveness spectrum igrofiles, but otherwise are conceptually similar to what we
work from the Active Database community [WC96] on refer to as simple attribute-value pub/sub in this paper. Our
languages for specifying more complex event-conditionyse of a pub/sub engine to implement selection is similar
action rules. The composite event definition languages ofo the idea of context-based subscriptions, although our
SNOOP [CKAK94, AC03] and ODE [GJS92] are impor- algebra is much more expressive than the languages pro-
tant representatives of this class. Both systems descrifgosed in previous work [ASS99, YSGO03]. There have
composite events in a formalism related to regular exprespeen several systems for large-scale filtering of stream-
sions, allowing events to be recognized using a nondeteiing XML documents [AF00, DAFE 03, NACP01, CFGRO2,
ministic finite automaton model. The automaton construc-GS03, GMOS03, BGKS03]. Their query languages usu-
tion of [GJS92] supports a limited form of parameterizedally are fragments of XPath, which is more expressive than
composite events defined by equality constraints betweepub/sub, but not as powerful as STREAM's CQL. Specifi-
attributes of primitive events. cally, XML filtering systems do not address parameteriza-

Our own work can be viewed as extending this styletion.
of system with full support for parameterized compos- Related to our implementation, Sellis [Sel88] is one
ite events and support for aggregate queries. Despite thgf the first to address general multi-query optimization in
significant added expressiveness, our queries can still bgatabases. Traditionally this is performed by sharing op-
evaluated by nondeterministic finite automata amenabl@rators and query results [BBM2, CcCH02, CCD'03,
to multi-query optimization using a combination of state KFHJ04, MSHR02, CDTWO00, LPT99]. Our multi-query
merging and indexing techniques. optimization is fundamentally different and aggressively

Still higher in the spectrum, several groups have deexploits the relationship of our stream query algebra to au-
scribed or are building systems with very expressive queryomata.
languages [Cc€02, MWAT03, CCD"03, AABTO05].
Sistla and Wolfson [SW95] describe an event defini-7 Conclusions and Future Work
tion and aggregation language based on Past Temporal
Logic. The TREPLE language [MZ97b] is a Datalog- We presented CESAR, a novel algebra for processing data
based system with a precise formal specification; it ex-streams, and Cayuga a prototype implementation of this al-
tends the parameterized composite event specification lamgebra. CESAR extends previous work on event processing
guage of EPL [MZ97a] with a powerful aggregation mech-in several directions. It adds built-in support for parame-
anism that is capable of explicit recursion. Perhaps theerization, aggregates, selection over infinite domains, and
most powerful formal approach is STREAM’s CQL query support for arbitrary streams of events, including simul-
language [MWA 03], which extends SQL with support taneous events and events with non-trivial duration. We
for window queries. Like SQL itself, CQL is declara- developed a new automaton model for implementing alge-
tive and admits of a formal specification [ABWO3]; and bra expressions efficiently. We discussed the challenges of
there are some initial results characterizing a sub-classnplementing this automaton model, together with several
of queries that can be computed with bounded memstrategies multi-query optimization. Finally, we presented
ory [SW04, ABB02]. The STREAM system is quite several initial performance results showing the efficacy of
mature, though it lacks multi-query optimization. A sim- our approach. We plan to extend this work by developing a
ilarly powerful approach is represented by Aurora and Bo-complete optimization framework, including query rewrite
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rules and more effective MQO strategies.

Apart from CESAR-specific optimizations, we see our
work as a step towards understanding the fundamental
tradeoffs involved in data stream processing. More pre-
cisely, how much scalability do we trade off for increasing
expressiveness? CESAR is very different from Aurora’s[CCC+02]
boxes-and-arrows approach and SQL-based languages like

STREAM’s CQL [ABWO03]. It will be interesting to for-

mally compare the expressiveness of the different lan-
guages by mapping them to a common powerful calculus,
and to see how much expressiveness (i.e., new operator,

we can add to CESAR, while still maintaining scalabil-

ity. Notice that CESAR’s operators and implementation

are closer in spirit to XML filtering than to the above men-

tioned DSMSs. An interesting direction of future research
therefore would be to explore the commonalities between
event processing, stream processing, and XML filtering,
and to determine how to combine the strengths of each gicDTWO00]

them.
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