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Abstract

Recently there has been considerable research on
Data Stream Management Systems (DSMS) to
support analysis of data that arrives rapidly in
high-speed streams. Most of these systems have
very expressive query languages in order to ad-
dress a wide range of applications.

In this paper, we take a different approach. Instead
of starting with a very powerful data stream query
language, we begin with a well-known class of
languages — event languages. Through the addi-
tion of several simple, but powerful language con-
structs (namely parameterization and aggregates),
we add pieces that extend their expressiveness to-
wards full-fledged languages for processing data
streams. Our resulting contributions are a novel
algebra for expressing data stream queries, and a
corresponding transformation of algebra expres-
sions into finite state automata that can be imple-
mented very efficiently. Our language is simple
and natural, and it can express surprisingly pow-
erful data stream queries. We formally introduce
the language including a formal mapping of alge-
bra expressions to finite state automata. Further-
more, we show the efficacy of our approach via an
initial performance evaluation, including a com-
parison with the Stanford STREAM System.

1 Introduction

Traditional Database Management Systems are built on the
concept ofpersistent data setsthat are stored on stable stor-
age and queried and updated repeatedly throughout their
lifetime. In many application domains, however, data ar-
rives in high-speed streams and needs to be processed con-
tinuously [BBD+02, GGR02]. As an example, consider a
system that permits financial analysts to configure custom
event notification queries over a stream of stock ticks [tra].
An analyst needs to be notified as soon as one of her queries
is satisfied. Other applications include transactions in retail
chains, ATM and credit card operations in banks, operating
system and Web server log records, and many more. These

applicationsmonitor data streams [CcC+02]: users regis-
ter long-runningcontinuousqueries, which compute their
results inreal-timewhile the data is streaming by. Stream
monitoring applications motivate the following desiderata:

• Scalability. The system must be scalable in both
the arrival rate of the data stream and the number of
queries.

• Expressiveness.The query language must be expres-
sive enough to meet application requirements. There
is a clear tradeoff between query expressiveness and
system performance.

• Well-Understood Formal Semantics. The mean-
ing of a query expression should be formally defined.
Well-defined semantics is a prerequisite for query-
rewriting and multi-query optimization.

Several groups are building Data Stream Man-
agement Systems (DSMS) with powerful query lan-
guages [AAB+05, MWA+03, CCD+03]. There are two
main thrusts in existing work. One line of work extends
SQL with constructs for data streams, resulting in very
powerful query languages with challenging implementa-
tion and query optimization problems. Another direc-
tion uses a similarly powerful procedural boxes-and-arrows
programming model, where the user is required to explic-
itly select an efficient query plan by deciding which boxes
to use and how to combine them. It is fair to characterize
most current work as adapting complex systems to apply to
data streams.

In this paper, we take a different approach. Instead of
starting with a complex system, we extend a much weaker
system originally intended for real-time data. We start with
event systems, an area that has been the focus of much re-
search over the last decade. Languages for event systems
(event algebras) can compose complex events from either
basic or complex events arriving on a data stream. How-
ever, there are significant shortcomings that prevent current
event systems to be used for data stream processing.

1.1 From Event Algebras to Data Streams

Our goal is to design an algebra that supports a large class
of data stream monitoring applications and is amenable
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to scalable implementation. As a running example, we
use an application for analyzing stock data. Assume
there is a stream of events whose data fields include
(name, price , vol ; timestamp ), indicating thatvol
shares of company with namename are sold at price
price . In addition, there is atimestamp attribute, indi-
cating when the sale happened.

Existing Constructs: Filtering and Sequencing. We
need basic operators tofilter events and attributes of inter-
est, like selection and projection in the relational algebra.
This is essentially the functionality of pub/sub systems, as
illustrated by the following:

Query 1. Notify me when the price of IBM is above$100.

This query can be evaluated on each incoming event in-
dividually. However, an important feature of monitoring
systems is the ability to detectsequencesof events:

Query 2. Notify me when the price of IBM is above$100,
and thefirst MSFT price afterwards is below$25.

Recall that Query 1 is memoryless – it only compares at-
tribute values of incoming events to constants. For Query 2,
however, the system has to maintainstate; it has to remem-
ber whether an event with a stock price of IBM above $100
has happened.

Extension 1: Parameterization. Stream queries of-
ten have constraints on events depending on constants from
earlier events in the query. Consider the following:

Query 3. Notify me when there is a sale of some stock at
some price (sayp), and the next transaction is a sale of the
same stock at a price above1.05p.

In this example,name andprice are parameters that
are not specified in the query. Instead, the second stock
event is constrained by the name and price of the first stock
quote (it has to be the same company at a price at least 5%
higher). The act of referring to values of prior events in a
multi-event query is calledparameterization.

Most previously proposed event processing systems ei-
ther do not support parameterized predicates at all or at-
tempt to simulate them by post-processing the output of
another less selective query [PSB03]. For example, Query
3 can be evaluated by generating all adjacent pairs〈p, q〉
of stock quotes, and then filtering them by (1) removing all
pairs in whichq.name 6= p.name, and then (2) removing
all pairs for whichq.price ≤ 1.05p.price . Such post-
processing might be tractable in an event processing system
where the base input stream contained only a limited num-
ber of predefined primitive events [CKAK94, ZU99]. How-
ever, for steam processing applications, the domain from
which events are drawn is potentially unbounded. Intu-
itively, this post-processing approach is analogous to com-
puting a join by first generating the full cross-product, and
then filtering based on the join condition.

More importantly, post-processing does not generalize
to queries for which a potentially unbounded number of
parameter values must actually be checked. Consider the
following:

Query 4. Notify me when the price of IBM increases mono-
tonically for at least 30 minutes.

In processing this query, each arriving IBM price must
be checked against the previous IBM price. To defer this
work to a post-processing phase, the output would have to
contain the entire event history for the query. This would
result in an output stream with events of unbounded size,
a design choice that is undesirable, and (since testing for
monotonicity only requires comparing adjacent quotes) un-
necessary. Furthermore, parameterizediteration (Kleene-
*) is an important concern, enabling powerful queries such
as the following:

Query 5. Notify me when the price of any stock increases
monotonically for at least 30 minutes.

Extension 2: Aggregation. Another immensely use-
ful feature for an event processing language is support for
aggregation. Again, most event processing systems either
do not support aggregation at all or handle aggregates “ex-
ternally” (i.e. pass events to another process for comput-
ing the aggregate) [CKAK94]. Not including aggregates as
part of the algebra severely limits opportunities for query
optimization – sound query rewrite rules must take the
presence of an aggregation operator into account.

Query 6 is an example of a data stream aggregate. Aver-
age is not part of our stock stream schema, and hence must
be computed from the events.

Query 6. Notify me when the next IBM stock is above its
52-week average.

Extension 3: Well-Defined Semanticsand Efficient
Implementation. Our final contribution is more subtle.
When surveying previous work, we observed an unfortu-
nate dichotomy between theoretical and systems-oriented
approaches. Theoretical approaches, based on formal lan-
guages and well-defined semantics, generally lack efficient,
scalable implementations. On the other hand, systems ap-
proaches usually introduce their event algebra only infor-
mally. The absence of a precise formal specification lim-
its the ability to do query optimization and query rewrites
on these systems. Indeed, previous work has shown that
the lack of clean operator semantics can lead to unex-
pected and undesirable behavior of complex algebra ex-
pressions [GA02, ZU99]. Our approach was informed by
this dichotomy, and we have taken great care to define a
language that can express very powerful queries and has a
formal semantics, but can be implemented efficiently.

1.2 Contributions of This Work

In this paper, we develop a novel event stream algebra
called CESAR (for Composite Event Stream AlgebRa) that
can express all example queries of the previous section.
CESAR queries are translated into finite state automata that
can be implemented efficiently and that are amendable to
multi-query optimization in the style of recent automata-
based systems for XML filtering[DAF+03]. This imple-
mentation is realized in Cayuga, a system architecture for
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processing queries in our event algebra. Cayuga leverages
pub/sub techniques to achieve high scalability.

The important contributions of this paper are as follows:

• We introduce CESAR, a novel algebra for stream pro-
cessing, which supports expressive queries including
parameterization and aggregation, and hence is appli-
cable to a large class of applications. We discuss the
important design decisions and point out subtle chal-
lenges when defining operators for data stream pro-
cessing. (Section 2)

• We identify a subset of our algebra, calledlinear-plus
expressions, which while very expressive, is particu-
larly easy to implement. We define a new automaton
model such that every linear-plus expression can be
implemented by an automaton that is acyclic except
for self-loops. (Section 3)

• We introduce Cayuga, a novel system architecture that
enables high-speed processing large sets of queries ex-
pressed in our event algebra. Key to our scalability is
an interesting use of existing pub/sub techniques for
processing part of the queries, aggressive merging and
novel indices on automata states and instances, an ef-
fective form of multi-query optimization. (Section 4)

• In a thorough performance evaluation, we show the
scalability of our system both in terms of complex-
ity and number of queries, and we show interesting
tradeoffs between expressiveness of queries and their
performance. (Section 5)

The technical details of our approach are discussed in
Sections 2, 3, 4, and 5. We discuss related work in Section
6, and conclude in Section 7.

2 CESAR: An Event Processing Algebra

The algebra CESAR consists of a data model for event
streams plus operators for producing new streams from
existing ones. A streamS is a (infinite) set of tuples
〈a, t0, t1〉, which we callevents. As in the relational model,
a = (a1, . . . , an) are data values with corresponding at-
tributes (symbolic names). Theti’s are temporal values
representing the starting and ending timestamps of the
event. For example, an input event in the stock mon-
itoring application could be〈IBM , 90, 15000; 9:10; 9:10〉.
The timestamps are identical, because a sale is an instan-
taneous event. An example for an event with duration
is 〈IBM , 90, 85; 9:10; 9:15〉, which could indicate that the
price of IBM decreased from $90 to $85 between 9:10AM
and 9:15AM.

Our operator definitions depend on the timestamp val-
ues, so we do not allow users to query or modify them di-
rectly. However, we do allow constraints on thedurationof
an event, defined ast1 − t0 + 1 (we treat time as discrete,
so the duration of an event is the number of clock ticks
it spans). We store starting as well as ending timestamps

to avoid well-known problems involving concatenation of
complex events [GA02].

To support the functionality discussed in Section 1.1,
our algebra has four unary and three binary operators which
add the expressive power of regular expressions to pub/sub
expressions, making CESAR strictly more expressive than
both pub/sub and regular expressions. In the following,Si

refers to an arbitrary stream of tuples, possibly containing
events with non-zero duration and overlapping or simulta-
neous events.

2.1 Unary Operators

The operators introduced in this section are well known
from relational algebra. The first unary operator is the
standardprojection operatorπX, whereX is a set of at-
tributes. Projection can only affect data values; temporal
values are always preserved. The second unary operator is
the standardselectionoperatorσθ, whereθ is any selection
formula. A selection formula is any boolean combination
of atomic predicates of the formτ1 relop τ2, where the
τi are arithmetic combinations of attributes and constants,
and relop is one of=,≤, <,≥, >. We also allow selection
formulas to contain predicateDUR relopc wherec is a con-
stant, and relop is as above. We writee |= θ when selection
formulaθ is true of evente. So for any streamSi,

σθ(Si) = { e ∈ S | e |= θ } .

One last unary operator is therenaming opera-
tor ρf where f is a function taking one set of at-
tributes to another set of attributes. For example, if
S is our stock stream from Section 1.1, andf maps
price 7→ oldprice , then the streamρf (S) has schema
(name, oldprice , vol , timestamp ). It is important
to note that a renaming function applied to a stream sim-
ply changes the names of thedata attributesin the stream
schema. The timestamps cannot be renamed.

As the renaming operator only affects the schema of a
stream and not its contents, we will often ignore this oper-
ator for ease of exposition. Instead, we usually index the
attributes of an event by the ID of the input stream, mak-
ing renaming implicit. For example, thename attribute
of events from streamS1 will be referred to asS1.name.
From here on, will only use an explicit renaming operator
when we want a specific certain schema.

2.2 Basic Binary Operators

The unary operators enable filtering of events and at-
tributes, and when selection formula are limited to con-
junctions of atomic predicates, are the equivalent of a clas-
sical pub/sub system. They support queries over individual
events, but no composite events and no parameterization.
The added expressive power of our algebra, compared to
that of pub/sub systems, lies in the binary operators. All of
these operators are motivated by a corresponding operator
in regular expressions.
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Figure 1: Time intervals of arriving events

The first binary operator is the standardunion opera-
tor∪, whereS1 ∪S2 is defined as{ e | e ∈ S1 or e ∈ S2 }.
As in the relational model, we require “union compatible”
schemas, achievable by the renaming operatorρf .

For the following discussion, we introduce an operator
for concatenationof events. This operator is not part of
CESAR; it will only be used to simplify the definition of
CESAR operators. Lete0 = 〈a, t0, t1〉 ande1 =

〈
b, s0, s1

〉
be twonon-overlappingevents (t1 < s0). We define the
concatenated evente0ˆe1 =

〈
a ∪ b; t0, s1

〉
. The values of

e1 overwrite values ofe0 for data attributes that occur in
both schemas. For example, lete0 = 〈IBM , 10, 1000; 1, 1〉
have data schema – that is, not including the times-
tamps –(name, price , vol ) ande1 = 〈MSFT, 99; 2, 3〉
have data schema(company , price ). Then we obtain
e0ˆe1 = 〈IBM , 99, 1000, MSFT; 1, 3〉 with data schema
(name, price , vol , company ). When there is a renam-
ing functionf , e0ˆfe1 is the same ase0ˆe1 except that the
attributes ofe1 have been renamed byf .

For the remainder of the discussion it is important to un-
derstand that, when we refer toe0ˆe1, it is implicit that the
start time ofe1 follows the end time ofe0 (i.e. events can
only be concatenated if their time intervals do not overlap).

For streamsS1 andS2, and selection formulaθ, we de-
fine theconditional sequenceS1; θ S2 as{

e1ˆe2 |= θ

∣∣∣∣∣ e1 ∈ S1, e2 ∈ S2, and 6 ∃e′ ∈ S2

such thate′.END < e2.END, eˆe′ |= θ

}
Intuitively, this operator computes sequences of consecu-
tive events, filtering out those events fromS2 that do not
satisfyθ. We will use; as shorthand notation for; TRUE, i.e.,
when no events are filtered by the operator.

Assume streamsS1 andS2 are as shown in Figure 1 and
we want to computeS1; S2. The result of this query is a
single composite event, which contains the data fields of
e1 ande4, and whose starting and ending timestamps are
the starting time ofe1 and the ending time ofe4, respec-
tively. Evente2 cannot be combined withe1, because the
time intervals are not disjunct (conditions1 < s0 in above
definition). Evente3 does not combine withe1, becausee4

starts aftere1 ends, and it ends beforee3 ends (see defini-
tion above). For the same reason, any other event ending
after e4 cannot be combined withe1 any more. This is
exactly the expected semantics of sequential composition,
to combine an event fromS1 with and only with the first
matching event fromS2.

Two important design decisions are illustrated by the
above example. First, two eventse1 ∈ S1 ande2 ∈ S2

can only be combined ife2 starts aftere1 has ended. With-
out this requirement, i.e., by removing conditionss1 < s0

ands1 < r0 from the above definition, it can be shown that
S1; (S2; S3) is equivalent toS2; (S1; S3) [GA02]. This
would result in confusing and unexpected query semantics.
Notice, however, that if such semantics was desired, our
algebra could easily be modified to support it.

Second, out of all events fromS2 that start aftere1 ∈
S1 has ended, the operator selects the one with the earliest
end timestamp. In the above example,e3 is not combined
with e1, even though it started beforee4. This choice of
operator semantics is natural, because an eventoccursat
its end time and hence the event order is determined by the
end timestamp. From an implementation point of view this
semantics is desirable as well, because before the end time
of an event, the system has no knowledge if this event will
ever occur or not.

S1; θ S2 essentially works as a join, combining each
event inS1 with the event immediately after it inS2. How-
ever,θ works as a filter, removing uninteresting interven-
ing events. Notice that traditional event processing sys-
tems do not haveθ as part of the operator. Adding this
feature is essential for parameterization, becauseθ can re-
fer to attributes of bothS1 andS2. This enables our alge-
bra to express “group-by” operations such as in Query 3,
where we group stock quotes by name viaS1; θ S2, and
θ is S1.name = S2.name. Any selection formulaθ′ in
σθ′(Si) can only refer to attributes inSi. Withoutθ as part
of the sequencing operator, we would have to resort to post-
processing, which is equivalent to computing a join by first
generating the cross-product and then filtering based on the
join condition afterwards.

2.3 Iteration

The last binary operator is motivated by the Kleene-+ op-
erator. For example, suppose we want to detect an upward
trend in a stock price as was shown in Examples 4 and 5.
To express such queries, we introduce theiteration opera-
tor µF,θ(S1, S2) where

• F is a unary operation formed from the composition
of selection and projection. This operation is used to
“trim” the output after each iteration.

• θ is a selection formula. This formula is used to filter
elements ofS2 just as it does in; θ

Additionally, we require the schema ofS2 be a subset of
the schema ofS1. This requirement can be dropped by
attaching a renaming function to theµ operator itself, but
we will ignore this for the purpose of clarity.

Informally, this operator acts as a fixed point operator
(hence the use of the symbolµ), applying the operator; θ

repeatedly until it produces an empty result. However, at
each stage, it will only remember the attribute values from
streamS1 and the values from the most recent iteration of
S2. For any attributeATTi in S2, we refer to the value
from the most recent iteration viaATTi.last . Initially,
this value is equivalent to the corresponding attribute inS1

(which is why we require that the schema ofS2 be a subset
of that ofS1), but it will be overwritten by each iteration.
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Formally, we define this operator as follows. We set
µF,θ(S1, S2) =

⋃
n≥1 S [n] where

S [0] =
{ 〈

a, b, t0, t1
〉
|= θ

∣∣ 〈a, t0, t1〉 ∈ S1, b ⊆ a
}

S [n+1] = πS1∪S2 ◦ F
(
(S [n]);

θ
S2

)
.

whereSi is the schema of the streamSi. Here◦ is the
standard composition operator, i.e., for two operatorsω1,
ω2, and inputx the expressionω1 ◦ ω2(x) is equivalent to
ω1(ω2(x)). We will use this notation to improve readabil-
ity. Furthermore, to avoid notational clutter, we omitted the
necessary renaming functions in the above definition. No-
tice that the valuesb in S [0] are obtained by projecting and
renaming the attributes ofa. Furthermore, the attributes
ATTi of S2 are renamed toATTi.last after each iteration,
right before applying the projection.

With iteration, we can express Query 5 as

σθ3

(
µσθ2 ,θ1(S1, S2)

)
(1)

where both S1 and S2 refer to the base stream of
stock quotes (think ofS1 and S2 as having the re-
naming operator applied to the base stream to distin-
guish the attributes of the same name, such asS1.name
and S2.name), θ1 is S1.name = S2.name, θ2 is
S2.price > S2.price .last , andθ3 is the duration con-
straintσDUR≥30 min. We illustrate the functionality of theµ
operator for the following example streamS1 = S2 ={ 〈IBM , 10; 1, 1〉 , 〈Dell, 22; 2, 2〉 , 〈IBM , 19; 3, 3〉 ,

〈Dell, 24; 4, 4〉 , 〈IBM , 22; 5, 5〉 , 〈Dell, 22; 6, 6〉

}
Notice that for this example for the sake of readability we
simplified the schema of the stream by removing the vol-
ume attribute, which is irrelevant for the query.

The initial set S [0] is computed by duplicating
the relevant attributesS1.ATTi and renaming them to
S2.ATTi. Hence the resulting schema ofS [0] is
(S1.name, S1.price , S2.name, S2.price ; t0, t1). For
the example stream we obtainS [0] =

〈IBM , 10, IBM , 10; 1, 1〉 , 〈Dell, 22, Dell, 22; 2, 2〉 ,
〈IBM , 19, IBM , 19; 3, 3〉 , 〈Dell, 24, Dell, 24; 4, 4〉 ,
〈IBM , 22, IBM , 22; 5, 5〉 , 〈Dell, 22, Dell, 22; 6, 6〉


From this set, the first iterationS [1] will hold all pairs

of adjacent quotes of the same stock (θ1 filters out quotes
from other companies, the same way this happens for; θ), in
which the second quote is higher. The latter is enforced by
θ2, which removes all pairs of quotes with non-increasing
price. This iteration has the same schema as the previ-
ous one. To achieve this, the attributesS2.ATTi of the
last iteration are renamed toS2.ATTi.last before con-
catenation; after concatenation and selection, the attributes
S2.ATTi.last are projected out. This gives usS [1] =

πS1∪S2 ◦ σS2.price >S2.price .last (S [0] ;
S1.name=S2.name

S2) ={ 〈IBM , 10, IBM , 19; 1, 3〉 , 〈Dell, 22, Dell, 24; 2, 4〉 ,
〈IBM , 19, IBM , 22; 3, 5〉

}

The next iteration is computed asS [2] =

πS1∪S2 ◦ σS2.price >S2.price .last (S [1] ;
S1.name=S2.name

S2) =

{〈IBM , 10, IBM , 22; 1, 5〉}

After this point,S [n] is empty for alln > 2. The union⋃
n≥1 S [n] is the result of theµ operator. The final query

result is obtained by selecting all those tuples (composite
events), which satisfyθ3, i.e., have a duration of at least 30
minutes.

At first it might seem surprising that our algebra needs
µF,θ(S1, S2) to express the equivalent of something as sim-
ple as(S2)+ in regular languages. The reason, like for the
; θ operator, is that we want to support parameterization ef-
ficiently. In fact,θ serves the same purpose as in; θ: during
each iteration it filters irrelevant events fromS2 when the
next event fromS2 is selected. In the above example, it
was used to make sure that no Dell stock would be selected
for a sequence of IBM prices, and vice versa. Similarly,F
removes irrelevant events during each iteration, like non-
increasing sequences in the example. Without this feature,
an iteration could produce a large number of irrelevant re-
sults, which in turn generates even more irrelevant results
in the following iterations, just to be removed by external
post-processing.

Another interesting feature is thatµ is a binary operator,
while Kleene-+ is unary. One reason, as can be seen in the
definition of µ, is that we need a way to initialize our at-
tributesATTi.last . The other reason is that, by addingS1

to µ, bothF andθ can refer toS1’s attributes. This enables
us to support powerful parameterized queries. For instance,
if S1 is generated by some complex algebra expression, the
µ operator can constrain its iterations by any of the previ-
ously generated bindings. Example 5 illustrates a simple
usage of this feature by constraining the sequence to con-
sist of a single stock only (θ is S1.name = S2.name).

2.4 Aggregates

Aggregates fit naturally into our algebra, where aggrega-
tion occurs over a sequence of events. Like in SQL, we
need to create new attributes where the aggregate values
are stored. More formally, anattribute introduction func-
tion g is a map that takes an attribute x and producesτx, an
arithmetic combination of attributes and constants. For any
evente, we letg[[e]] bee with extra values added according
to the rules ofg. For example, suppose

e = 〈IBM , 10, IBM , 19; 1, 3〉 ∈ S1;
θ
S2

where S1 and S2 refer to the stock stream, andθ is
the formula S1.name = S2.name. We let g be
the map AVG 7→ S1.price +S2.price

2 . Then, g[[e]] =
〈IBM , 10, IBM , 19, 14.5; 1, 3〉 for the new data schema
(S1.name, S1.price , S2.name, S2.price , AVG).

Given an expressionE and introduction functiong, the
attribute introduction operatorαg is defined as

αg(E) = { g[[e]] | e ∈ E }
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Together withµ, we get a natural aggregate. Consider an
expression of the form

αg3

(
µαg2◦F,θ(αg1(E1), E2)

)
In this expression,αg1 functions as an initializer,αg2 is an
accumulator, andαg3 is a finalizer.

For example, suppose we want the average of IBM stock
over the past 52 weeks, as referenced in Query 6. If we let
S1, S2 = S be our stream of stock quotes, this is expressed

E = σDUR=52 weeks
(
µαg2 ,TRUE(αg1 ◦ σθ(S1), σθ(S2))

)
(2)

where θ is name = IBM, g1 is defined asAVG 7→
price , COUNT 7→ 1, and g2 is defined asAVG 7→
COUNT.last ×AVG.last +price

COUNT.last +1 , COUNT 7→ COUNT.last + 1.
Notice that we uselast feature ofµ to compute our ag-
gregate recursively.

Note the average is now a value attached to an attribute
and can be used in more complex queries. For example,
we express Query 6 asσθ2(E ; θ1 S3) whereS3 = S is our
stream of stock quotes,E is as in (2),θ1 is S3.name =
IBM, andθ2 is S3.price > AVG.

3 Processing Expressions
Our algebra defines the output of an expression, but does
not indicate the most efficient way to compute it. Given the
algebra’s similarity to regular expressions, finite automata
would appear to be a natural implementation choice. How-
ever, standard finite automata are not sufficient for several
reasons. First, our algebra expressions generate output,
hence the automata must be transducers rather than recog-
nizers [HMU00]. Second, because of parameterization, we
need a mechanism for keeping track of parameter values.
Third, attributes of events can have infinite domains, e.g.,
text attributes. Thus, the input alphabet of the automaton,
which is the set of all possible events, can be infinite as
well.

3.1 Automaton Example

At a high level, an automaton that implements an alge-
bra expression (the query) works as follows. Based on the
events seen so far in the stream, the automaton maintains
all “partially matched sequences”. Recall that a query de-
scribes a complex sequence of events, which itself is also
an event—acompositeevent. The following query illus-
trates this point:

Query 7. Notify me when for any stocks, there is a mono-
tonic decrease in price for at least 10 minutes, which starts
at a large trade (vol > 10, 000). The immediately next
quote on the same stock after this monotonic sequence
should have a price 5% above the previously seen (bottom)
price.

After the first large trade of a stock, the automaton will
be looking for a monotonically decreasing sequence, then
for a sudden up-move in price. At any given moment in

time, there might be several event sequences that satisfy
some prefix of the query pattern.

For presentation purposes, we use a slightly simplified
version of our actual automata for this example. Its purpose
is to provide an intuitive understanding of the approach,
before introducing the formal definition.

Our event automata are similar to nondeterministic fi-
nite automata [HMU00]. Whenever an automaton is in
a state where it can traverse more than one edge for an
incoming event, it nondeterministically explores all these
branches. If it cannot traverse any edge, the corresponding
branch “dies”. This is equivalent to having multipleactive
instancesof the automaton explore the different branches,
each branch corresponding to a prefix of the query se-
quence. Since our automata have to keep track of param-
eters, an instance of the automaton has to store event at-
tributes and their values.

Let S be the input stream of stock quotes, and assume
for the purpose of this example that no two quotes in the
stream have the same timestamp. The algebraic expression
for Query 7 is thenσθ5(σθ4(µσθ3 ,θ2(S1, S2)); θ2 S3). The
Si are shorthand notation for appropriately renamed and
projected versions ofS:

S1 ≡ ρf1 ◦ πname,price ◦ σθ1(S)
S2 ≡ ρf2 ◦ πname,price (S)
S3 ≡ ρf3 ◦ πname,price (S).

The corresponding predicates and renaming functions are

θ1 ≡ vol > 10, 000
θ2 ≡ company = company .last

θ3 ≡ θ2 ∧minP < minP .last

θ4 ≡ θ3 ∧ DUR ≥ 10 min
θ5 ≡ θ2 ∧ price > 1.05 minP

f1 ≡ (name, price ) 7→ (company , maxP)
f2 ≡ (name, price ) 7→ (company , minP )
f3 ≡ (name, price ) 7→ (company , finalP )

The explicit use of renaming is necessary for this example
to make the schemas of the intermediate results clear.

The algebra expression is interpreted as follows.S1 is
obtained fromS by selecting only large volume trades (θ1),
then projecting out the volume attribute and changing the
attribute names (f1). HenceS1 contains only large trades
and has data schema(company , maxP). Theµ operator
searches for a monotonically decreasing sequence (θ3) for
the same stock, ignoring quotes from other companies (θ2).
During each iterationµ compares the current lowest price
(temporarily renamed tominP .last ) to the price of the
incoming event, renamed byf2 to minP . If a new mini-
mum price is found, the concatenation overwrites the pre-
viously lowest price by the new one, otherwise the mono-
tonic sequence has ended. Theµ operator produces output
events as soon as the duration constraint inθ4 is satisfied.
Finally, the; θ2 operator finds the next quote for the same
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Figure 2: Automaton for query 7

company (θ2). If the price of that quote satisfiesθ5, the
query produces an output event. As before, the renaming
operatorf3 ensures, that the final price is added to the result
as attributefinalP .

The corresponding automaton is shown in Figure 2.
Table 1 presents a sample input event stream, and illus-
trates how the automaton processes these events. The input
events are displayed in the first column. For an incoming
event, the state of the automaton after processing it is in-
dicated by the active automaton instances in the same row.
The table headers show the schema of the instances at a
given automaton state. For readability, the timestamp at-
tributes, which cannot be projected out or renamed anyway,
are not shown in the schema.

Initially there is no active automaton instance, but the
start state is always active by default. Whene1 arrives, the
automaton checks if it satisfiesθ1, the predicate on the edge
emanating from the start state. This is the case, therefore
it applies the projection and renaming functionf1 to the
attributes ofe1 and advances the resulting instance to state
A. Notice that currently the instance has nominP attribute,
which is indicated by theNULL value in the corresponding
position inI1.

The next evente2 does not satisfyθ1, hence the start
state does not create a new instance. ForI1 at stateA,
the automaton performs the following computation to
determine ifI1 can traverse any outgoing edge. First, it
applies the projection and renaming toe2. Then it checks
if the composite event, obtained by concatenatingI1 and
the projected and renamede2, satisfies the predicate of
any of the edges emanating from stateA. Recall that
the µ operator performs a temporary renaming of the
attributes of the second operand fromATTi to ATTi.last
during an iteration. Hence, this concatenated event is
〈IBM , 90, NULL , IBM , 85; 9:10; 9:15〉 with data schema
(company .last , maxP.last , minP .last , company ,
minP ). This event only satisfiesθ3 on the the rebind
edge (self-loop belowA). This edge therefore is traversed
and instanceI1 is updated by concatenatingI1 and the
projected and renamede2 (this time without the temporary
renaming ofI1). Hence the new values ofI1 are obtained
by concatenating the old tuple with〈IBM , 85; 9:15; 9:15〉
for data schema(company , minP ). The result is shown
in Table 1. Notice how the previousNULL value forminP
is now replaced bye2’s value.

Evente3 matchesθ1, therefore a new instanceI2 is cre-
ated at stateA. ForI1, the concatenation ofI1 ande3 only
satisfies the predicate of the filter edge (top loop of stateA),

becausecompany .last = IBM and company = Dell.
Filter edges have special semantics—traversing them never
updates the bindings of an instance. This is indicated in
Figure 2 by theNULL value for the renaming function.

The arrival ofe4 illustrates the non-determinism of the
µ operator. e4 is filtered forI2 (the Dell pattern). How-
ever, forI1 bothθ3 andθ4 are satisfied (duration condition
is now true). HenceI1 non-deterministically traverses both
the forward edge fromA to B and the rebind edge of state
A. This is implemented by cloningI1 so that there is an
instance to traverse each satisfied edge. In the example,
cloneI3 traverses the forward edge, concatenating the in-
stance with the renamed and projectede4.

Eventse5 ande6 are processed similarly. Fore5 each of
the instances traverses the corresponding filter edge. The
interesting aspect ofe6 is its affect on instanceI1. I1 con-
catenated withe6 does not satisfy the predicate on any out-
going edge of stateA, therefore the instance is deleted. No-
tice how the nondeterminism ensures correct discovery of
the IBM pattern for instanceI3 (eventse1, e4, e6 match it),
but prevents any later arriving IBM event from generating
another matching pattern starting withe1, becauseI1 has
failed.

At this point we need to point out two subtleties that
need to be addressed by our automata. First, notice that
the example automaton cannot properly handle concur-
rent events. For instance, let there be another evente′6 :
〈IBM , 80, 8000; 9:24; 9:24〉 at the same time ase6. Even
though this event failsθ5, according to algebra semantics
the automaton should still produce the output result with
e6. This suggests that forward edges (and rebind edges as
well) are traversed if thereexistsa satisfying event. On the
other hand, the same is not true for filter edges. The arrival
of an additional evente′3 : 〈IBM , 99, 8000; 9:17; 9:17〉 at
the same time ase3 would causeI1 to be deleted based on
algebra semantics. Hence a filter edge should only be tra-
versed ifall simultaneously arriving events satisfy the filter
predicate.

Second, there is a subtlety related to duration con-
straints illustrated by the following simple sequence query
σθ1(S; σθ2(S)), where theθi both are predicates on dura-
tion. In this query,θ2 refers to the duration of input events,
while θ1 refers to the duration of the composite events gen-
erated by the sequencing operator. In the automaton in
Figure 2, the predicate on an edge refers to the concate-
nated event (active instance concatenated with input event),
hence that automaton cannot support a duration predicate
like θ2 on input events. Our formal automaton model ad-
dresses these issues.

3.2 The Formal Automata Model

Now that we have seen both a high-level example and an
overview of some of the more subtle issues, we are ready to
present a formal description of our translation from expres-
sions to automata. Rather than directly translating arbitrary
algebra expressions into automata, we will start with a sim-
pler, but still powerful subset, which we refer to aslinear-
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Input event Instances at stateA Instances at stateB Instances at stateC
(name, price , vol ) (company , maxP, minP) (company , maxP, minP) (company , maxP, minP , finalP )

e1 : 〈IBM , 90, 15000; 9:10; 9:10〉 I1 = 〈IBM , 90, NULL ; 9:10; 9:10〉
e2 : 〈IBM , 85, 7000; 9:15; 9:15〉 I1 = 〈IBM , 90, 85; 9:10; 9:15〉
e3 : 〈Dell, 40, 11000; 9:17; 9:17〉 I1 = 〈IBM , 90, 85; 9:10; 9:15〉

I2 = 〈Dell, 40, NULL ; 9:17; 9:17〉
e4 : 〈IBM , 81, 8000; 9:21; 9:21〉 I1 = 〈IBM , 90, 81; 9:10; 9:21〉 I3 = 〈IBM , 90, 81; 9:10; 9:21〉

I2 = 〈Dell, 40, NULL ; 9:17; 9:17〉
e5 : 〈MSFT, 25, 6000; 9:23; 9:23〉 I1 = 〈IBM , 90, 81; 9:10; 9:21〉 I3 = 〈IBM , 90, 81; 9:10; 9:21〉

I2 = 〈Dell, 40, NULL ; 9:17; 9:17〉
e6 : 〈IBM , 91, 9000; 9:24; 9:24〉 I2 = 〈Dell, 40, NULL ; 9:17; 9:17〉 I3 = 〈IBM , 90, 81, 91; 9:10; 9:24〉

Table 1: Example computation

plus expressions. The name “linear-plus” is inspired by the
linear structure of the corresponding automata, which are
acyclic with the addition of self-loops. In Section 3.5, we
will show how to generalize the approach to handle arbi-
trary algebra expressions.

Definition 1. We define alinear-plus expressionas follows.

• Any base streamSi is linear-plus.

• If E is linear-plus andF is a unary operator formed
from selection, projection, renaming, and aggrega-
tion, thenF(E) is linear-plus.

• If E is linear-plus andF is a unary operator, then
E1; θ F(Si) is linear-plus.

• If E is linear-plus andFi are unary operators, then
µF1,θ(E ,F2(Si)) is linear-plus.

• If E1 andE2 are linear-plus, then so isE1 ∪ E2.

To preserve the intuition from Section 3.1, our automata
presentation will be graphical instead of algebraic. In ad-
dition, without loss of generality, we will assume that there
is only one input streamS; the case of multiple input
streams can be handled by distinguishing them via an at-
tributestreamid .

For the sake of readability, our initial automata will not
be capable of implementing expressions with projection or
aggregation (i.e. selection and renaming are the only unary
operators allowed). In Section 3.4, we will see how to mod-
ify the automata for the additional operators. With this in
mind, asimplified event automatonis a directed multigraph
A with the following properties:

• Vertices are are marked as initial, final, both, or nei-
ther.

• Every edge is marked as having either∃-type or∀-
type.

• ∃-type edges are labeled(∃, θ1, θ2, f) where

– θ1 is a selection formula referencing only at-
tributes inS. θ1 filters input events.

– θ2 is any selection formula.θ2 filters the com-
posite event obtained by concatenating an in-
stance at the edge’s source vertex with the input
event (see discussion below).

– f is an attribute renaming function taking the at-
tributes inS to another set of attributesX. f
prevents naming conflicts as we generate output.

• ∀-type edges are labeled(∀, θ1, θ2) where theθi are as
for the∃-type edges.∀-type edges generate no output,
and have no associated attribute renaming function.

An instanceof an event automatonA is an evente together
with a stateq ∈ A. An instance represents the current
state of the automaton together with the non-null contents
of the buffer. We will not actually define the buffer of an
automaton; its existence will be implicit in our definition
of an automaton computation. The output of an automaton
will be the set of all eventse where, for some final stateqF ,
(e, qF ) is instance ofA generated by the streamS.

To generate instances from the streamS, we first need
to breakS up into finite strings. The strings for our au-
tomata will beintervalsof events. For any two time units
t0 ≤ t1, the interval[t0, t1] is the set of all eventse with
t0 ≤ DETECT(e) ≤ t1. As time is discrete and there are
only finitely many simultaneous events at any time, this is
a finite set of events. We order the events by detection time
to get our string.

Unfortunately, as events can have simultaneous detec-
tion time, this set is not necessarily totally ordered. Instead
of a string, we get amultistring. That is, each position
contains a (nonempty) set of events instead of just a sin-
gle event. For example, consider the following interval of
length 4:

e1,0 e2,0

e0,0 e2,1 e3,0

e1,1 e2,2

Position 0 has a single evente0,0, while position 1 has two
eventse1,i wheree1,0.END = e1,1).END > e0,0.END. Note
that despite the use of double indices in positions 1 and 2,
simultaneous events are not ordered.

To define the computation of an automaton on an inter-
val, recall from Section 2.2 thate0ˆe1 is the concatenation
of two events, and thate0ˆfe1 is the concatenation of two
events with the attributes ine1 renamed via the function
f . To make the construction simpler, we also introduce the
empty eventε, for which εˆe = eˆε = e for any evente.
Suppose now that we have an automatonA and an inter-
val [t0, t1] of lengthn. For eachi ≤ n, we define the set
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of valid instances forA at positioni of [t0, t1]. The set of
valid instances at position 0 is{ (e, qS) | qS a start state}.
Algorithm 1 computes the setIi of valid instances at po-
sition i for i > 0, given the set of eventsEi−1 at position
i− 1.

Algorithm 1 Generating Instance Sets
Require: Ii−1 is defined

1: Ii = ∅
2: for all instances(e0, q) ∈ Ii−1 do
3: for all edges(θ1, θ2type , f) outgoing fromq do
4: let q′ be the destination state of this edge
5: if type = ∀ then
6: for all eventse ∈ Ei−1 do
7: test that eithere.START ≤ e0.END or e 6|= θ1

or e0ˆe 6|= θ2

8: if evente ∈ Ei−1 passes the testthen
9: Ii = Ii ∪ { e0 }

10: else
11: for all eventse ∈ Ei−1 do
12: if e.START > e0.END and e |= θ1 and

e0ˆe |= θ2 then
13: Ii = Ii ∪ { e0ˆfe }
14: return Ii

From this algorithm we see that∀ edges check all of the
simultaneous events against a single instance, but do not
alter the instance event;∃ edges on the other hand, spawn
a new instance for each satisfying event, thus recording the
data from that event. This solves the simultaneity issues
from Section 3.1. Algorithm 1 may appear to be expen-
sive because it has several nested loops. However, in prac-
tice the algorithm is handled via multiple subscriptions to a
pub/sub system, and so the two external loops can be han-
dled fairly efficiently.

Given Algorithm 1, the output ofA on an interval[t0, t1]
of lengthn is the set of all eventse such that(e, qF ) ∈ In

for some final stateqF . Then theoutput ofA is the set of
events output byA on any interval ofS. We are now ready
to state our primary theorem.

Theorem 1. Let E be any linear-plus expression without
projection or aggregation. There is an simplified event au-
tomaton such thatE is the output ofA.

3.3 Proof of Theorem 1

Our proof proceeds by induction on the definition of a
linear-plus expression. Throughout this proof, we will
make use of the following lemma, which gives us a con-
venient order to perform renaming and selection.

Lemma 2. Let F be any unary operation formed from
selection and renaming, including multiple instances of
each operator in any order. ThenF can be rewritten as
F = ρf ◦ σθ.

For the base case, consider the expressionρf ◦ σθ(Si).
We implement this expression as a two-state event automa-

ton with a single edge labeled(θ, TRUE,∃, f) (see Fig-
ure 3). This automaton will be referred to as thebaseau-
tomaton. That this automaton is correct should be clear
from Algorithm 1.

Figure 3: Automaton forρf ◦ σθ(Si)

Next we consider the caseρf2 ◦ σθ3(E1; θ2 E2). As this
expression is linear-plus,E2 = ρf1 ◦ σθ1(Si). Our automa-
ton combines the two automataA1, A2 for E1, E2, respec-
tively, as shown in Figure 4. We identify the start state
of A2 with the terminal state ofA1; we call this stateq1.
We add a loop edge(θ1, θ2,∀, f1); this edge will remove
events that do not qualify as successor. We call this type
of self-loop edge on which the predicate correspond to the
selection formulaθ in ; θ a filter edge. In comparison, an
edge that goes from one node to another is called aforward
edge. We always draw a filter edge on top of a node.

We letq2, the final state ofA2, be the final state of this
composite automaton. Finally, the forward edge fromq1,
to q2, we replace the second formula TRUE from the base
automaton withθ2 ∧ θ3, and compose the final renaming
functionf2 with f1.

Figure 4: Automaton forρf2 ◦ σθ3(E1; θ2 E2

To see that the output of this automaton is exactlyE , take
any evente output byA. Then there is some interval[t0, t1]
of lengthn such that(e, q2) is an instance at positionn of
this automaton. By definition, there are eventse1, e2 such
thate = e1ˆfe2 and(e1, q1) is an instance at some position
k < n. Let k be the least such and lett′ = e1.END. Then
[t0, t′] must be an interval of lengthk such thate1 is an
element of the set in the final position. Ask is least, this
instance is not produced by traversing the loop edge ofq1.
So,e1 is output byA1 on [t0, t′], and thuse1 ∈ E1.

The loop edge ofq1 does not add any new data values
as it produces new instances; it only forwards the instance
to the next stage. The only edge that can possibly add new
data values is the forward edge fromq1 to q2. Hence,e2 ∈
Si. By definition,e |= θ1, and soe2 ∈ E2 (this is the step
where we need two formulas on each edge, and not just
one). Furthermore,e1ˆe2 |= θ2 ∧ θ3, and by definition
of concatenation,e2.START > e1.END. Finally, the filter
edge guarantees that for anye′ with e′.END < e2.END,
eithere′.START ≤ e1.END, e′ 6|= θ1, or e1ˆe′ 6|= θ2. Hence
e ∈ E , and so we have shown the output ofA is contains in
E . Running this argument in reverse gives the equivalence
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of E andA.
The construction forρf3 ◦ σθ4(µρf2◦σθ3 ,θ2(E1, E2)) is

shown in Figure 5. Again, we are given thatE2 = ρf1 ◦
σθ1(Si). We exploit the fact thatE2 is a unary operator ap-
plied to a base streamSi, and thus can be recognized by a
single edge. We implement the fixed-point implicit in the
µ operator by a loop for this edge. We call this type of self-
loop edge on which the predicate corresponds to selection
formulaθ3 in the above expression arebind edge, since it
controls whether an event can “rebind” to the automaton
instance by modifying some of its existing values (as op-
posed to concatenating new ones). We usually draw the
rebind edge below a node. Note that the renaming function
f1 for the rebind edge is the same as for the forward edge;
this automaton makes use of the fact that the concatenation
e0ˆfe1 overwrites old values with attributes inrange(f).

Figure 5: Automaton forρf3 ◦ σθ4(µF,θ2(E1, E2))

Two more details are needed for the automaton to be
correct. First of all, the formulasθ2 andθ3 make reference
to attributes of the formATTi.last . As the composite re-
naming functionf2 ◦ f1 appears on both the rebind and
filter edge, we need to rename all such attributes inθ2 and
θ3 according to this function. In addition, these two pred-
icates are attached to the rebind edge. However, the first
instance(e, q1) to reach this state will have no values for
the attributes inrange(f2 ◦ f1), and hence the rebind edge
will always evaluate to FALSE. To solve this, we rewrite
the formulaθ2 ∧ θ3 as a disjunction that either uses the
attributes inrange(f2 ◦ f1), or if those values areNULL ,
use the corresponding attributes fromE1. The proof thatA
is equivalent toE should now be clear, following the same
steps from the construction for; θ.

Finally, the construction forρf ◦ σθ(E1 ∪ E2) is given
in Figure 6. Again we start with the event automata forAi

for each expressionEi, but we combine them differently
this time. We identify the start states with each other, and
similarly identify the terminal states. In addition, we addθ
to the second formula of each edge entering the final state,
and compose its renaming function withf . This completes
our construction.

3.4 Adding Projection and Aggregation

In order to complete the proof of Theorem 1, we need to
extend the definition of our automata to include linear-plus
expressions with projections and aggregates. Both of cases
can be handled by the following theorem, which is an ex-
tension of Lemma 2.

Figure 6: Automaton forρf ◦ σθ(E1 ∪ E2)

Theorem 3. Let F be any unary operation formed from
selection, projection, renaming, and aggregate, including
multiple instances of each operator in any order. ThenF
can be rewritten asF = πX ◦ αg ◦ ρf ◦ σθ.

This theorem allows us to delay projection and aggre-
gation until after the selection step for each edge of the
automata. All we have to do is modify line 13 of Al-
gorithm 1 to introduce new attributes, and to project out
old ones. This is accomplished by two modifications to
our ∃-type edges. First, our∃-type edges are now labeled
(∃, θ1, θ2, X, f), whereX is the set of attributes to preserve
at this state. Any value in the instance added at line 13
whose attribute is not inXi is removed (i.e. the buffer lo-
cation is set toNULL ).

To implement aggregation, we must modify the attribute
renaming functionf on the∃-type edges. Note that iff is
an aggregate renaming function, thenf−1 is an attributein-
troductionfunction, albeit a trivial one that copies the value
from one attribute to another. So instead of labeling the
edge with a renaming function, we label it with an intro-
duction function that instructs how to compute the value
for each buffer location at that stage of the computation.
The introduction function labeling that edge is a compo-
sition of f−1, whereρf is the renaming operator for this
edge, andg, whereαg is the aggregate for this edge.

We refer to the automata with the expanded∃-type edges
as event automata. Combining Theorem 3 with the proof of
Theorem 1, we get the following.

Theorem 4. Let E be any linear-plus expression. There is
an event automaton such thatE is the output ofA. Fur-
thermore, the number of states of this automaton is linear
in the size ofE .

3.5 General Algebra Expressions

Since we limited ourselves to linear-plus expressions in
Theorem 1, our automata are all simple. As the operators
in our algebra are similar regular expressions, one might
think that it is possible to construct more complex automata
to implement general expressions. However, as we shall
demonstrate in the following example, this is not necessar-
ily true.

Let S1, S2, S3 = S be our stream of stock prices, and
consider the expressionE = S1; θ(S2; S3), whereθ is
S3.price > S1.price . E is one of the simplest exam-
ples of an expression that is not linear-plus. However, it
is the composition of two linear-plus expressions:S1; θ S4

andS2; TRUE S3. The automatonA for S2; S3 has a dis-
tinct start and terminal state, so naively we should be able
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to replace theS4-edges in the automaton forS1; θ S4 with
A. This produces the automaton in Figure 7 (the filter edge
for the two copies ofA has been removed as it is never
traversed).

Figure 7: Naive Automaton forS1; θ(S2; S3)

However, the automaton in Figure 7 is not correct. The
filter “edge” is now a loop consisting of two edges, the first
of which is never satisfied (as it is∀-type, an event mustnot
satisfy TRUE to traverse this edge). This is a minor problem
which we can solve by changing the first half of the filter to
(∀, FALSE, FALSE); this change delays all selection to the
end of the filter loop.

Unfortunately, this fix causes another problem. Con-
sider the streamS ={ 〈IBM , 10; 1, 1〉 , 〈Dell, 22; 2, 2〉 , 〈IBM , 9; 3, 3〉 ,

〈Dell, 24; 4, 4〉 , 〈IBM , 11; 5, 5〉

}
(3)

The modified automaton in Figure 7 will not output
〈IBM , 10, IBM , 9, Dell, 24; 1, 4〉 even though it is part of
the expressionE . The event〈Dell, 22; 2, 2〉 is at fault here.
If this event traverses the forward edge from the second
state then then this instance of this machine will be elim-
inated a the next event. On the other hand, if this event
traverses the first half of the filter, there is no∃-type edge
to record the event〈IBM , 9; 3, 3〉.

A correct automata implementation must be able to han-
dle the overlap of events inS2; S3 . This requires a for-
ward ∃-type edge from the intermediate state of the filter
loop. For example, the automaton in Figure 8 processes the
stream in (3) correctly.

Figure 8: Modified Solution forS1; θ(S2; S3)

However, this automaton does not handle simultaneous
events properly. Consider the streamS′ ={ 〈IBM , 10; 1, 1〉 , 〈Dell, 22; 2, 2〉 , 〈IBM , 9; 3, 3〉 ,

〈Dell, 23; 3, 3〉 , 〈Dell, 24; 4, 4〉 , 〈IBM , 11; 5, 5〉

}
For this stream, the automaton in Figure 8 will output
〈IBM , 10, Dell, 23, Dell, 24; 1, 4〉, which is not correct. We

need the∃-type edge from the filter loop to act as both a
∀-type edge, which processes all simultaneous events to-
gether, and a∃-type edge, which records them separately.
Hence a direct construction of this expression appears to
require a fundamental change in our automata model.

Instead of changing our automata model, we choose to
implement general expressions is throughresubscription.
In resubscription, an automaton is allowed subscribe to the
output of another automaton instead of just the base stream.
To implement a general expression with resubscription, we
break it up into a sequence of linear-plus expressions, like
we did with the example in Section 3.5.

As we went through the trouble of ensuring that our au-
tomata could deal with simultaneous events of nontrivial
duration, there is no problem with treating the output of
other automata as data streams. The only issue is how to
specify which stream the automaton should use. To do this,
we extend our data model to allow for multiple streams, and
assign an index for each base stream and for each automa-
ton. Then, to each edge of an automaton, we add the index
of the stream to use for that edge. The proof of Theorem 1
is the same as before.

The only issue to worry about is that we cannot have any
circular references. We cannot have two automataA1 and
A2 that subscribe to each other, as all automata are evalu-
ated simultaneously. Fortunately, if we only allow the al-
gebraic expressions to refer to base streams, this can never
happen.

Resubscription has the benefit that it can implement all
possible algebraic expressions. However, resubscription
is more complicated than the single automaton implemen-
tation of Section 3. An interesting method of optimiza-
tion would be to use rewrite rules to convert a general ex-
pression to a minimal sequence of linear-plus expressions,
and then use resubscription to combine the expressions to-
gether. This is an area of future work.

4 Cayuga: The Implementation

For each incoming event, the system must determine which
automaton instances need to be modified. At any time, the
total number of active instances can be very large, but typ-
ically the number of instancesaffectedby an event is or-
ders of magnitude lower. In the stock monitoring applica-
tion, for example, a query that matches a sequence of IBM
prices can ignore events for any other company. Rather
than sequentially testing each instance, as suggested by Al-
gorithm 1, we can use indexes that efficiently identify the
instances that are affected by the incoming event.

Note that an instance isunaffectedby an input event if
and only if that event makes the instance traverse itsfil-
ter edge. Traversing a forward or rebind edge modifies
bindings, affecting the instance; and if no edge can be tra-
versed, the instance is affected by being deleted. Thus, to
find all affected instances efficiently we simply index each
instance by the predicate on the filter edge of its current
state. This is the problem addressed by pub/sub systems:
Index a large number of predicates, such that for each in-
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coming event all satisfied predicates are found efficiently.
Hence we can leverage existing and proven technology for
this task [FJL+01]. The for-all semantics of filter edges
makes dealing withsimultaneouslyarriving events easy—
the affected instances are obtained as the union of the re-
sults returned by the index for each of the simultaneous
input events.

Two challenges need to be addressed when using
pub/sub engines. First, most pub/sub systems assume that
predicates are conjunctions of atomic formulas. We can
handle an arbitrary boolean formula by transforming it
to disjunctive normal form(DNF), a disjunction of con-
junctions of atomic formulas, and then registering each
conjunction as a separate subscription in the pub/sub en-
gine. The second challenge is parameterized predicates
like ATT1 relop ATT2, because pub/sub systems expect
static predicates of the formATT relop CONST. To ad-
dress this, in our current prototype implementation, we in-
dex only static predicates to avoid high index maintenance
cost. Since all sub-formulas are conjunctions, the index
returns a superset of the affected instances, which is post-
processed based on the parameterized predicates. In the
remainder of this section, we introduce notation and then
describe the Cayuga implementation in more detail.

4.1 Notation

A static atomic predicateis an atomic predicate of the form
ATT relop CONST, e.g.,price > 10. Other atomic pred-
icates are referred to asdynamic. A dynamic predicate
ATT1 relop ATT2 that compares an attribute value of the in-
coming event with an attribute of an earlier event is referred
to as aparameterized atomic predicate. In the following
discussion we consider only static and parameterized pred-
icates; dynamic predicates of the formATT1 relop ATT2,
whereATT1 and ATT2 are both attributes of the incoming
event, are treated by postprocessing as in [FJL+01]. We
also assume all selection predicates are supplied in DNF.

Each conjunctP can be rewritten asP =
∧

i ATTi relop
CONSTi ∧

∧
j ATTj relop ATTkj by grouping the static

atomic predicates and the parameterized dynamic atomic
predicates together and then canonicalizing them, e.g. by
sorting them lexicographically by attribute names. We re-
fer to

∧
i ATTi relop CONSTi and

∧
j ATTj relop ATTkj

as
thestaticanddynamic partof P , respectively. If either part
is empty, it is equivalent to the TRUE predicate.

A node of an automaton isactive if there are active in-
stances at this node, otherwise it isinactive. The start node
is active by default. Similarly, we say all the outgoing
edges of an active node are active as well.

4.2 Merging Automata

Our automata have a structure similar to the automata of
YFilter [DAF+03] or linear finite automata in general.
Hence we can use a similar procedure for merging common
prefixes of different automata. Our procedure is slightly
more general, since the union operator creates a DAG (di-
rected acyclic graph), rather than a tree, and since there is

a greater variety of edge types and edge labels. The final
result of the merging process is a DAG of all automaton
states.

Formally, the merging of automata is based on the fol-
lowing notion ofequivalent states.

Definition 2. Let n and m denote automaton nodes
(states), andEn and Em denote the sets of edges
entering n and m respectively. We define a nested
sequence{≡i | i = 0, 1, . . .} of equivalence relations on
states as follows.

• n ≡0 m for all n, m.

• n ≡i+1 m if and only if there exists a bijection∼
between the entering edge setsEn andEm such that
for each mapped pairen ∼ em

– en andem have identical edge labels, and

– en.source ≡i em.source

Statesn andm are equivalent, writtenn ≡ m, if and only
if n ≡i m for all i.

It is possible to compute≡ using a slight generaliza-
tion of the traditional techniques for state minimization
of finite automata [Hop71]. Our current implementation
takes a simpler approach, merging onlyprefixesof paths
of equivalent automaton states, as in [DAF+03]. The fol-
lowing example illustrates how we do this in a single pass.
We merge automata one-by-one. The top diagram in Fig-
ure 9(a) shows the current merged automata DAG (it is
fairly easy to prove by induction that it is a DAG with a
single root node), while the bottom diagram in Figure 9(a)
is the new query to be inserted.

In the first step, we can trivially merge the start states
(see Figure 9(b)). Then we proceed with the other nodes of
the new query intopological order, until no more merges
are possible. In the example, we determine that node 9 is
equivalent to node 5 (but not node 2, because of the self-
loop edges). Hence we can merge the two nodes as well,
resulting in the DAG shown in Figure 9(c). Node 10 is not
equivalent to any of the other nodes at level 2 (root node is
at level 0), hence the merging process terminates. Note that
we cannot merge nodes 10 and 6, because of the additional
edge with label̀ 1.

We can identify equivalent nodes efficiently by comput-
ing a hash signature of the set of predicates for each incom-
ing edge, and using this signature to prune the search space.
This is fairly straightforward and not discussed here.

4.3 Efficient MQO Implementation

The overall system architecture is shown in Figure 10. Its
core component is theState Machine Manager, which man-
ages the merged query DAG and the active instances at the
automaton nodes. It also maintains several indices for effi-
ciently determining which automaton instances are affected
by incoming events.
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(a) Original DAGs to Merge (b) After merging start nodes (c) After merging nodes 5 and 9

Figure 9: State Merging Example

Figure 10: Cayuga architecture

The Active Node (AN) index contains (key: value)
pairs, where the key is thestaticpart of a conjunction from
thefilter predicate of a node, and the value is a pointer to
that node. The AN-index contains entries only foractive
nodes.

Each automaton node in the query DAG has an addi-
tional local index, the Active Instance (AI) index. This in-
dex contains the active automaton instances at the node,
indexed by thedynamicpart of the node’s filter predicate.
More precisely, for each conjunction of the DNF of the fil-
ter predicate and for each active instance at the node, there
is an entry in AI-index with the dynamic part of the con-
junction as key and the corresponding instance as value.
Note there is no particular problem with indexing the dy-
namic part of a predicate associated with anactiveinstance
– while the instance is active, the attribute values associated
with previous events are already bound, and can be treated
as if they were constant.

Outside the State Machine Manager, there is the For-
ward/Rebind (FR) index. It indexes all forward and rebind
edges by thestaticpart of their edge predicates. More pre-
cisely, for each forward and rebind edge, and for each con-
junction of the DNF of the edge’s predicate, FR-index con-
tains a (key: value) pair. The key is the static part of the

Figure 11: Insertion of a query

conjunct and the value is the unique ID of the edge.
There are two types of updates that Cayuga needs to

handle—insertion/deletion of queries and arrival of input
events. A new query is inserted by first merging it into the
query DAG in the State Machine Manager. This is shown
in Figure 11 for a simple example query. For simplicity we
assume that only the start states can be merged. Then, for
each conjunction in the DNF of each forward and each re-
bind edge, an entry is added into FR-index. This entry has
the static part of the conjunction as the key and the ID of the
edge as the value. In the example, each of the two conjuncts
of edgeeid1 results in a separate entry. AN-index and AI-
index are not affected, because they maintain only active
nodes and instances. When the query is deleted, the inser-
tion process is simply reversed. Only nodes and edges that
are not shared with other queries are physically removed
from the DAG.

Incoming events are sent to both the State Machine
Manager and the FR-index. Figure 12 illustrates how an
event is processed right after the new query was inserted.
In the example we omit the timestamp attributes for read-
ability. Probing the FR-index produces a set of edge IDs as
the result. This is the set of edges whose static predicate
parts are satisfied by the event. Note the index returns both
eid1 andeid2, based on their static predicate parts. For ef-
ficiency during later probing, the resulting set of edge IDs
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Figure 12: Processing first event

is stored in a hash table.
At the State Machine Manager, first AN-index is probed.

It returns the set of active nodes whose filter edges are not
traversed, based on the static parts of the filter predicate
conjuncts. This immediately prunes a large number of ac-
tive nodes, whose instances all traverse the filter edge. In
the example in Figure 12 some arbitrary nodes are shown,
but nid1 is not among them, because it is not yet active.
The system addsQ0 to the result, because the start node is
always active and relevant by default.

For each node in the result list of AN-index, the sys-
tem determines which instances at the node are affected by
the event. We discuss this step first for the start node only.
When processingQ0, we look up each of its outgoing edges
in the result of FR-index (recall that it is stored in a hash
table for fast lookups). If there is a hit, the corresponding
edge is acandidatefor a traversal. Recall the FR-index
only uses the static parts of edge predicates; therefore, to
eliminate false positives, we must test whether a candidate
also satisfies thedynamicparts of the edge conjunctions.
If it does, then the edge “fires” – we create a new instance
and advance it to the destination node. In the example, the
event satisfies the predicate on edgeeid1. Hence the corre-
sponding instance is inserted into nodenid1’s AI-index.

Figure 13 shows how the next incoming event is pro-
cessed. AN-index and FR-index are probed as before. Pro-
cessingQ0 results in creation of a new instance at node
nid1 as before, but this time for the MSFT stock price.

Figure 13: Processing second event

Note that AN-index returns nodenid1, because its static
part vol > 5K of the filter predicate is satisfied by the
event. However, when processing the node, AI-index re-
turns an empty result, because the event is for a different
company (company 6= name). This is exactly the ex-
pected behavior of the filter edge—it is traversed because
the MSFT event didnot satisfy the edge predicate for the
IBM instance.

In Figure 14, we show how the next incoming event
is processed. This event is for IBM. AN-index and FR-
index are probed as before.Q0 is also processed as before,
but this timeeid1 is not traversed (FR-index filters it out).
When processing nodenid1, probing its AI-index produces
only I1 as the result, because thedynamicpart of its filter
predicate is satisfied.I2 is for MSFT and hence its dynamic
filter predicate part is not satisfied and it traverses the filter
edge. ForI1 we look up all outgoing forward and rebind
edges ofnid1, only eid2 in the example, in the result of
FR-index. eid2 is found and therefore its dynamic predi-
cate parts are tested. Since they are satisfied by the event,
instanceI1 traverses edgeeid2 and advances to the final
state.

The diagram in Figure 15 summarizes the Cayuga event
processing steps. On arrival of an event, the following hap-
pens:

1. FR-index generates a set of edges whose static predi-
cate parts are satisfied by the event. This set is stored
in a hash-index on edge ID.

2. AN-index generates a set of relevant active nodes.

3. For each node in the set we do the following. We first
obtain the set of relevant active instances for which the
filter condition is satisfied from AI-index. Then we
determine for each relevant instance the candidates of
satisfied edges by a lookup of the output of FR-index,
followed by a verification of the edge predicates based
on their dynamic parts.

In the above example and discussion, events have been
assumed to arrive individually. However, simultaneous
events pose no serious problems for our implementation,
as long as all simultaneously arriving events are processed
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Figure 14: Processing third event

together. As mentioned earlier, the for-all semantics of fil-
ter edges implies that affected instances can be computed
as the union of the affected instances for each of the si-
multaneous input events. The nondeterministic there-exists
semantics of forward and rebind edges is naturally handled
by first accumulating the set of new instances (generated
by firing candidate edges) for all the simultaneous input
events, then deleting old instances and installing the new
ones atomically.

5 Performance Evaluation

We built an initial prototype implementation of Cayuga in
C++. For standard data structures such as hash indices and
lists we relied on the C++ Standard Library implementa-
tions. We believe that using specifically tailored implemen-
tations would lead to a considerable gain in system per-
formance. However, even with the current prototype im-
plementation we show that, with no more than a standard,
off-the-shelf PC, we can process thousands of events per
second, for hundreds of thousands of concurrently active
sequence queries.

All experiments were run on a 3 GHz Pentium 4 PC with
1 GB of RAM and 512 KB cache. The operating system is
Red Hat Linux 9. We loaded the input stream into memory
before starting the experiment to make sure that the input
tuples are delivered at least as fast as our system can pro-
cess them. For this setup we measured thetotal runtime for
matching all incoming events with all sequence queries in
the system. For each experiment we perform several runs,
clearing the cache between runs. As the standard deviation
in all experimental runs was well below 1%, we therefore
only report averages and omit error bars from the graphs.

Relevant nodes

Event

Matched FR 
edges

Relevant 
instances

Matched FR 
edges

State Update

AI-index SE-index

FR-indexAN-index

Figure 15: Event Processing Diagram

5.1 Technical Benchmark

To test the overall efficiency of Cayuga and measure the
evaluation cost of the different operators of our algebra,
we designed a synthetic technical benchmark Instead of
the stock stream example, we generated a stream with
eight data attributes: four discrete attributes (e.g. company
name) and four continuous attributes (e.g. stock price). The
parameters for generating both the stream and the associ-
ated queries are shown in Table 2.

We generated queries according to five different
templates: LinearStat , LinearDyn , Filter ,
NonDeterministic , andNonDeterministicAgg .
All queries are over a single input streamS; hence, as

Variable Value

Number of events 100,000
Number of attributes per event 8
Number of discrete attributes 4
Number of continuous attributes 4
Number of queries 200,000
Number of atomic predicates 2 + 2
(discrete + continuous)
Domain size of discrete attribute 100
Number of distinct ranges that can be 25
selected for inequality predicates
Selectivity of atomic inequality predicate 0.7
Number of steps per sequence query 3
Zipf parameter, first step (zipf1 ) 1
Zipf parameter, second step (zipf2 ) 1
Zipf parameter, third step (zipf3 ) 0.8
Duration constant (t) 20

Table 2: Parameters (default values)
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described in Section 2.1,Si refers to an appropriately re-
named occurrence ofS in the algebraic expression.

LinearStat queries define simple sequential patterns
of three consecutive events, expressed as

σθ3(σθ2(σθ1(S1); S2); S3)

in our algebra. Essentially, this query looks at any three
consecutive events in the stream, and outputs the concate-
nated event if it satisfiesθ1 ∧ θ2 ∧ θ3. For example, if such
a template where applied to our stock stream example, then
our template might generate the following query.

Query 8. Notify me when there are three consecutive
stock quotes representing IBM below$10, followed by IBM
above$15, and finally IBM below$15.

As our input stream is not the stock stream, but a syn-
thetic stream of eight attributes, theθi are conjuncts of four
staticatomic predicates: two equality predicates on two of
the discrete attributes, and two inequality predicates on two
of the continuous attributes. One of the discrete attributes,
ATT, is designated as theprimary attributeof the query.
This attribute is guaranteed to appear in all three of theθi,
and to select exactly the same value for each formula. The
name attribute in Query 8 is an example of such an at-
tribute, as it is assigned to IBM in each case. As all of
the formula select the same value, we refer to the predicate
ATT = CONSTas theprimary predicateof the query.

Attributes and their values are selected independently,
usingzipf1 to select attributes andzipfi to select the value
for θi. This setup is motivated by practical scenarios where
user preferences typically follow a skewed (often Zipf) dis-
tribution. By adjusting the Zipf parameter, we can control
the similarity of the different subscriptions.

To test the overhead of evaluatingparameterizedpredi-
cates in Cayuga, we designed theLinearDyn template

σθ3(σθ2(σθ1(S1); S2); S3)

The difference between this template andLinearStat
is that θ2 and θ3 now have an additionalparameterized
atomic predicate. An example of such a predicate from our
stock stream would be the requirement that the stock price
from the second quote is 1% above the price of the original
quote.

We measure the overhead of evaluating filter predicates
with theFilter template

σθ3(σθ2(σθ1(S1) ;
θ4

S2) ;
θ5

S3)

In this template,θ1, θ2, θ3 are all selected in the same
way as forLinearStat . On the other hand,θ4 is a fil-
ter formula of the formDUR ≤ t ∧ S2.ATT = CONST,
wheret is as shown in Table 2 andS2.ATT = CONST is
the primary predicate of the query inLinearStat . θ4

relaxes the selectivity of the originalLinearStat query
by allowing intermediate non-matching events to be filtered
out. To illustrate this idea with our stock stream example,

suppose we took Query 8 and madeθ4 the filer predicate
DUR ≤ 10min ∧ S2.name = IBM. In this case, stock
quotes of other companies that arrive between the first two
IBM quotes would not lead to a failure of the pattern, as
long as consecutive IBM quotes arrive within 10 minutes
of each other. The second filter formulaθ5 is similar toθ4;
we merely replaceS2.ATT with S3.ATT.

The effect of non-determinism in our automata is mea-
sured by theNonDeterministic template

σθ3 ◦ µID,θ5(σθ2 ◦ µID,θ4(σθ1(S1), S2), S3)

where ID is the identity unary operation. This query is
much more powerful than the previous ones. An analogy
using our example Query 8 would be a query that not only
searches for patterns ofconsecutiveIBM stock quotes, but
one that can findany 3-tupleof IBM stock quotes that satis-
fies the duration constraints and selection criteria, ignoring
all stock quotes (including other quotes for IBM) in be-
tween. Hence the output of this query will be a superset of
theFilter query with exactly the same formulasθi.

Finally, templateNonDeterministicAgg imple-
ments aggregation. It extendsNonDeterministic by
computing the sum of the values of the continuous at-
tributes, for the three events that satisfy the query pattern.

In processing these queries, events were generated by
uniformly selecting values for each of the eight attributes
of the stream schema. We also examined skewed event dis-
tributions, but observed the same trends. Different distribu-
tions only affect results by changing the selectivity of the
edge predicates. The same effect is achieved by adjusting
the query constants, and so we did not investigate this fur-
ther.

5.1.1 Results

Figure 16 illustrates the results of various throughput ex-
periments. Figure 16(a) shows how the system through-
put changes with the number of subscriptions. Even for
400K concurrently active queries, throughput is well above
1000 events per second. As expected, the more complex
the query workload, the lower the throughput, except for
LinearStat andLinearDyn , which are almost identi-
cal because the cost of checking parameterized predicates
is negligible compared to the other matching costs and the
cost of maintaining the index structures.

Cayuga’s high throughput is achieved despite a chal-
lenging workload. Each event on average matches about
100 static predicates in the pub/sub engine. Furthermore,
at any time, an average of 6000 to 16,000 nodes are active
in the State Machine Manager, indicating that events sat-
isfied a high percentage of the edge predicates. The high
throughput was achieved because the index structures en-
sured that only about 40 to 120 of these active nodes had
to be accessed per incoming event. Overall theFilter
workload generated between 41 (100K queries) and 171
(400K queries) sequence matches,NonDeterministic
andNonDeterministicAgg had a few more matches,
and the linear workloads generated virtually no matches.
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Figure 16: Throughput Measurements

This outcome is not surprising. Even though each single
edge predicate by itself is not very selective, the overall
pattern is very restrictive; the automata frequently advance
to the first state, but only rarely reach the second or last
state.

Note also that, despite the skewed query distribution,
the merged query DAG is very large. For instance, before
merging states the DAG for 100K queries would have 300K
nodes and edges. Our merged DAG still has about 215K
nodes: 48K at level 1, 71K at level 2, and 96K at level
3. In the next result we show that a more skewed (hence
more homogeneous) query workload can greatly improve
throughput.

In Figure 16(b), we compare the effect of parameter
zipf1 on system performance. Lower skewness makes the
subscriptions less similar, hence reduces the possibilities
for multi-query optimization. This can be observed in the
graphs. Most of the performance difference is caused by
the number of level 1 nodes in the query DAG, because that
is where most activity takes place. For Zipf parameter 0.8,
there are 101K nodes, while for Zipf parameter 1.4, there
are 36K nodes. The overall number of matched queries is
virtually unaffected by the Zipf parameter, because there is
no correlation between event values and query constants.

Finally, we examined the effect of edge predicate se-
lectivity on the performance. Figure 16(c) shows how the
throughput decreases when the inequality predicates on the
continuous attributes select more values. Notice that the
curve’s slope is inverse quadratic, which is to be expected,
as we are varying the selectivity of two predicates simulta-
neously.

5.2 Comparison to Other Approaches

To justify our approach, we compare the performance of
Cayuga to two other systems. In the first case, we compare
Cayuga to a similar system without the multi-query opti-
mization of Section 4, in order to understand the benefit of
that optimization. In the second case, we compare Cayuga
to STREAM, a substantially more expressive system, in or-
der to demonstrate the performance benefits of our weaker
language.
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Figure 17: Effect of multi-query optimization

5.2.1 Naive Extension of Pub/Sub

In order to see the benefits of our multi-query optimization,
we compare Cayuga with a naive extension of a pub/sub
engine. This system uses a simple value-based pub/sub en-
gine to filter incoming events. Users then post-process the
output of the engine to recognize complex patterns. This
post-processing can be treated as a black box, but for the
sake of comparison, we use our automaton model to im-
plement this black box. Hence the difference between this
implementation and Cayuga is that, as each user runs her
own individual automaton, it cannot have any multi-query
optimization.

To simulate this setting, we take Cayuga and turn off
state merging, as well as any indices that span multiple au-
tomata other than the FR-index (see Section 4). The FR-
index is retained as its functionality could be provided in
the naive extension by an external centralized pub/sub pro-
cess where all users register their static predicates.

Figure 17 shows the performance of Cayuga compared
to the two systems described above on our technical bench-
mark. To keep the runtime of the naive system manage-
able, we reduced the number of concurrently active queries
to 10K-40K, compared to 100K-400K in our other experi-
ments. The throughput measurements in Figure 17 are for
theFilter workload. The curve “Filter, MQO” denotes
the performance of Cayuga, while the “No MQO” curve
represents the throughput of the naive extension. Note that
the y-axis is alog scale; hence with multi-query optimiza-
tion the system is faster by a factor of 100.
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Figure 18: Double-Top pattern for Dell quotes

In order to explore the effectiveness of different multi-
query optimization techniques, we also explored a Cayuga
system where state merging was turned off, but in which
the automaton indices worked properly. The performance
of this system is the “No State Merging” curve in Figure 17.
It is clear from this curve that most of the performance gain
comes the indexing of active node, and not from merging
automata states. In particular, this indexing dramatically
reduces the cost of “joining” the pub/sub engine’s result
with the set of active automata edges.

5.2.2 Comparison to STREAM

The CESAR algebra used by Cayuga is not as expressive as
many of the more traditional languages. We chose to intro-
duce a less expressive language in order that we may im-
plement it more efficiently. In order to illustrate this trade-
off, we compare Cayuga to the Stanford STREAM system.
STREAM is a general stream processing system with a rel-
atively mature implementation, capable of processing the
queries used in our experiments. Furthermore several of its
operators are very similar to the ones used in Cayuga.

Since multi-query optimization has not been fully
integrated into STREAM, we restrict the compar-
ison to a single query at a time. We report re-
sults for a variant of the well-known Double-Top
(or M-Top) pattern used for stock analysis (see
for instance http://www.stockcharts.com/
education/ChartAnalysis/doubleTop.html ).
The original Double-Top pattern is easy to express in
Cayuga and can be processed efficiently, but it would
be expensive for a system that was not optimized for
non-deterministic matching.

We use a modified Double-Top pattern that consists of
five consecutive local extrema of stock prices, starting with
a minimum at priceA, rising monotonically to reach a max-
imum priceB, such thatB ≥ 1.2A, then falling monoton-
ically to reach a minimumC, which is within 10% of the
starting priceA. Afterwards the stock rises monotonically
to reach a new high ofD, which is within 10% of the previ-
ous highB. Finally the stock falls monotonically to a new
minimumE belowA. Figure 18 shows an example of the
pattern, found in a real sequence of stock closing prices.

The Double-Top query is naturally expressed in our al-
gebra as alinear-plus expressionwith five µ operators (one

for each monotonic sequence). It is essentially an exten-
sion to theNonDeterministic template in our techni-
cal benchmark, which contains only twoµ operators.

It is possible to express Double-Top in our algebra with-
out theµ operator. While the resulting query is not linear-
plus, we can implement it using the idea of resubscription
from Section 3.5. To see how, first we create the following
expression for detecting local maxima.

σθ1(σθ2(S1 ;
θ3

S2) ;
θ4

S3)

Hereθ1 is (S2.price > S3.price ), θ2 is (S2.price >
S1.price ), θ3 is (S2.name = S1.name), and θ4 is
(S3.name = S1.name). Note that local minima can be de-
tected similarly. We then define streamE to be the union of
all local minima generated by the above expression. Given
this streamE of local minima, we now use resubscription
to express Double-Top as an expression linear-plus in E.
The expression is

σθ1(σθ2(σθ3(σθ4(E1 ;
θ5

E2) ;
θ6

E3) ;
θ7

E4) ;
θ8

E5)

where the selection formula are as follows:

θ1 ≡ (E5.price ≤ E1.price)
θ2 ≡ (0.9E2.price ≤ E4.price ≤ 1.1E2.price )
θ3 ≡ (0.9E1.price ≤ E3.price ≤ 1.1E1.price )
θ4 ≡ (E2.price ≥ 1.2 ∗ E1.price )
θ5 ≡ (E2.name = E1.name)
θ6 ≡ (E3.name = E1.name)
θ7 ≡ (E4.name = E1.name)
θ8 ≡ (E5.name = E1.name)

STREAM’s CQL query language lacks theµ operator.
To efficiently find this pattern in CQL, the query is decom-
posed into manipulations on several levels of views (see
Figure 19(a)).1 Hence this implementation is is similar to
the algebra expression with resubscription in our system.
The STREAM implementation first computes a stream of
“up” and “down” trends between consecutive quotes of the
same stock. Then it detects local extrema in that stream.
Finally, every sequence of five consecutive extrema is ex-
amined to determine whether the constraints on the price
attribute are satisfied. Note that, while nicely optimized,
this query had to created manually, and it requires consid-
erable expertise to craft the query in this way.

A more direct way to formulate this query in CQL, de-
noted as CQL2, is to use self-joins. This approach is shown
in Figure 19(b). First a 3-way self-join is used to discover
local extrema. Then, on the resulting stream of extrema, we
find the actual pattern using a 5-way self-join. In order to
properly quantify the performance degradation caused by a
singlen-way self-join, in CQL2 we express the first part of
the query in the standard 3-way self-join fashion, but use

1We would like to thank Arvind Arasu for crafting this CQL query
formulation for us.
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seq integer);

# Stock stream
table : register stream Stock (time integer, name integer, price float);

# Add difference to previous stock price to each tuple
vquery : Rstream (Select S.time, S.name, S.price, (S.price ! P.price) From Stock [Now] as S,

vtable : register stream StockDiff (time integer, name integer, price float, pdiff float);

# Generate stream of extrema

vtable : register relation ExtremaCounter (name integer, seqNo integer);

# Attach sequence numbers to extrema
vquery : Rstream (Select E.name, E.price, E.pdiff, C.seqNo, C.seqNo ! 1

vtable : register relation stateA (name integer, price float, seq integer);

# State B: maximum, B > 1.2 A

vtable : register relation stateB (name integer, bprice float, aprice float, seq integer);

# State C: minimum, 0.9 A < C < 1.1 A

vquery : Select name, count(*) from Extrema Group By name;
# Assign unique sequence numbers to extrema points

vtable : register stream Extrema (time integer, name integer, price float, pdiff float);

vquery : Rstream (Select P.time, P.name, P.price, P.pdiff From StockDiff [Now] as S,

Stock [Partition By P.name Rows 2] as P Where S.name = P.name and S.time > P.time);

StockDiff [Partition By P.name Rows 2] as P
Where S.name = P.name and (S.pdiff * P.pdiff) < 0.0);

From Extrema [Now] as E, ExtremaCounter as C Where E.name = C.name);

vquery : Select name, price, seq from ExtremaSeq Where pdiff < 0.0;
# State A: minimum

seq integer, prevSeq integer);
vtable : register stream ExtremaSeq (name integer, price float, pdiff float,

vquery : Rstream (Select E.name, E.price, A.price, E.seq From ExtremaSeq [Now] as E,
stateA as A Where E.name = A.name and E.prevSeq = A.seq and E.price > (A.price*1.2));

vquery : Rstream (Select E.name, E.price, B.bprice, B.aprice, E.seq From ExtremaSeq [Now] as E,

# State D: maximum, 0.9 B < C < 1.1 B

vtable : register relation stateC(name integer, cprice float, bprice float, aprice float, seq integer);

stateB as B Where E.name = B.name and E.prevSeq = B.seq and E.price > (B.aprice * 0.9)
and E.price < (B.aprice * 1.1));

vtable : register relation stateD (name integer, dprice float, cprice float, bprice float, aprice float,

vquery : Rstream (Select E.name, E.price, C.cprice, C.bprice, C.aprice, E.seq

and E.price > (C.bprice * 0.9) and E.price < (C.bprice * 1.1));
From ExtremaSeq [Now] as E, stateC as C Where E.name = C.name and E.prevSeq = C.seq

and E.price < D.aprice);
From ExtremaSeq [Now] as E, stateD as D Where E.name = D.name and E.prevSeq = D.seq

query : Rstream (Select E.name, E.price, D.dprice, D.cprice, D.bprice, D.aprice
# The final query: D < A

# Generate stream of extrema

# Stock stream
table : register stream Stock (time integer, name integer, price float);

vtable : register relation ExtremaCounter (name integer, seqNo integer);

# Attach sequence numbers to extrema
vquery : Rstream (Select E.name, E.price, E.pdiff, C.seqNo, C.seqNo ! 1

vtable : register relation stateA (name integer, price float, seq integer);

# State B: maximum, B > 1.2 A

vtable : register relation stateB (name integer, bprice float, aprice float, seq integer);

# State C: minimum, 0.9 A < C < 1.1 A

vquery : Select name, count(*) from Extrema Group By name;
# Assign unique sequence numbers to extrema points

From Extrema [Now] as E, ExtremaCounter as C Where E.name = C.name);

vquery : Select name, price, seq from ExtremaSeq Where pdiff < 0.0;
# State A: minimum

seq integer, prevSeq integer);
vtable : register stream ExtremaSeq (name integer, price float, pdiff float,

vquery : Rstream (Select E.name, E.price, A.price, E.seq From ExtremaSeq [Now] as E,
stateA as A Where E.name = A.name and E.prevSeq = A.seq and E.price > (A.price*1.2));

vquery : Rstream (Select E.name, E.price, B.bprice, B.aprice, E.seq From ExtremaSeq [Now] as E,

# State D: maximum, 0.9 B < C < 1.1 B

vtable : register relation stateC(name integer, cprice float, bprice float, aprice float, seq integer);

stateB as B Where E.name = B.name and E.prevSeq = B.seq and E.price > (B.aprice * 0.9)
and E.price < (B.aprice * 1.1));

vtable : register relation stateD (name integer, dprice float, cprice float, bprice float, aprice float,

vquery : Rstream (Select E.name, E.price, C.cprice, C.bprice, C.aprice, E.seq

and E.price > (C.bprice * 0.9) and E.price < (C.bprice * 1.1));
From ExtremaSeq [Now] as E, stateC as C Where E.name = C.name and E.prevSeq = C.seq

and E.price < D.aprice);
From ExtremaSeq [Now] as E, stateD as D Where E.name = D.name and E.prevSeq = D.seq

query : Rstream (Select E.name, E.price, D.dprice, D.cprice, D.bprice, D.aprice
# The final query: D < A

seq integer);

vquery : Istream (Select S2.time, S2.name, S2.price, (S2.price!S1.price) 
From Stock [Partition By S1.name Rows 3] as S1,

Where S1.name = S2.name and S2.name = S3.name and
      (S2.price!S1.price) * (S3.price!S2.price) < 0.0 and 

     Stock [Partition By S3.name Rows 3] as S3 

      S1.time < S2.time and S2.time < S3.time);
vtable : register stream Extrema (time integer, name integer, price float, pdiff float);

     Stock [Partition By S2.name Rows 3] as S2, 

(a) Formulation in STREAM (CQL1) (b) Formulation in STREAM (CQL2)

Figure 19: Double-Top query formulation

the more efficient state-like expressions of CQL2 for the
latter part.

Figure 20 shows the performance difference between
the two equivalent queries in Cayuga, and the two equiv-
alent queries in STREAM. We run a single instance of the
Double-Top query on a stream of 112,635 real daily closing
stock prices for 24 different companies listed at the NYSE.
The effect of different degrees of smoothing (length of win-
dow for computing a running average) is examined. Note
that stronger smoothing reduces the number of local ex-
trema, and hence benefits the resubscription and STREAM
query formulation.

The “Mu Formulation” in Cayuga corresponds to the
natural linear-plus expression. This formulation clearly
outperforms the equivalent “Resubscription” formulation
in Cayuga, as well as the two CQL formulations in
STREAM. This result supports our focus on linear-plus
expressions in Section 3. It is important to note that the
Cayuga resubscription formulation and CQL1 perform al-
most identically; this should not be too surprising as their
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formulation is essentially identical. However, CQL1 is
essentially a hand-optimized version of the Double-Top
query. The more natural formulation of CQL2 had less
than half of the throughput of CQL1, and a fourth of the
throughput of theµ formulation. Hence there is potential
for some synergy between Cayuga and STREAM, where
we can use our algebra to optimize such pattern-search
queries.

6 Related Work

To date, interest in building a DSMS has concentrated
principally at the extremes of the expressiveness spec-
trum. At the low end of the spectrum lie pub/sub sys-
tems [ASS+99, YSG03, FJL+01]. These systems sacrifice
expressiveness to achieve high performance. For example,
Le Subscribe [FJL+01] is a very high-performance scal-
able pub/sub system that performs aggressive multi-query
optimization. Work in this area includes scalable trigger
mechanisms [HCH+99, SPAM91, TLP03].

Somewhat higher in the expressiveness spectrum is
work from the Active Database community [WC96] on
languages for specifying more complex event-condition-
action rules. The composite event definition languages of
SNOOP [CKAK94, AC03] and ODE [GJS92] are impor-
tant representatives of this class. Both systems describe
composite events in a formalism related to regular expres-
sions, allowing events to be recognized using a nondeter-
ministic finite automaton model. The automaton construc-
tion of [GJS92] supports a limited form of parameterized
composite events defined by equality constraints between
attributes of primitive events.

Our own work can be viewed as extending this style
of system with full support for parameterized compos-
ite events and support for aggregate queries. Despite the
significant added expressiveness, our queries can still be
evaluated by nondeterministic finite automata amenable
to multi-query optimization using a combination of state
merging and indexing techniques.

Still higher in the spectrum, several groups have de-
scribed or are building systems with very expressive query
languages [CcC+02, MWA+03, CCD+03, AAB+05].
Sistla and Wolfson [SW95] describe an event defini-
tion and aggregation language based on Past Temporal
Logic. The TREPLE language [MZ97b] is a Datalog-
based system with a precise formal specification; it ex-
tends the parameterized composite event specification lan-
guage of EPL [MZ97a] with a powerful aggregation mech-
anism that is capable of explicit recursion. Perhaps the
most powerful formal approach is STREAM’s CQL query
language [MWA+03], which extends SQL with support
for window queries. Like SQL itself, CQL is declara-
tive and admits of a formal specification [ABW03]; and
there are some initial results characterizing a sub-class
of queries that can be computed with bounded mem-
ory [SW04, ABB+02]. The STREAM system is quite
mature, though it lacks multi-query optimization. A sim-
ilarly powerful approach is represented by Aurora and Bo-

realis [CcC+02, AAB+05]. These two systems, how-
ever, use a procedural boxes-and-arrows paradigm which
is much less amenable to formal specification in our style.
In [LWZ04] it is shown that SQL lacks expressive power
for continuous queries on data streams, and Wang et al.
extend SQL with features to support data mining and data
streams [WZL03].

In general, the semantics of some of the more expressive
event languages is not well-defined [GA02, ZU99], and it is
not clear how the different languages compare to each other
in terms of expressiveness. In addition, the performance of
event processing systems with very expressive query lan-
guages has not been explored in depth, especially in terms
of scalability with the number of continuous queries.

Efficient filtering and dissemination of information is
a very active and diverse field of research. Due to lack
of space, we only list selected approaches without claim-
ing completeness. IR-style approaches to document fil-
tering [cFG00, FD92, YGM99] typically rely on similar-
ity measures between incoming documents and stored user
profiles, but otherwise are conceptually similar to what we
refer to as simple attribute-value pub/sub in this paper. Our
use of a pub/sub engine to implement selection is similar
to the idea of context-based subscriptions, although our
algebra is much more expressive than the languages pro-
posed in previous work [ASS+99, YSG03]. There have
been several systems for large-scale filtering of stream-
ing XML documents [AF00, DAF+03, NACP01, CFGR02,
GS03, GMOS03, BGKS03]. Their query languages usu-
ally are fragments of XPath, which is more expressive than
pub/sub, but not as powerful as STREAM’s CQL. Specifi-
cally, XML filtering systems do not address parameteriza-
tion.

Related to our implementation, Sellis [Sel88] is one
of the first to address general multi-query optimization in
databases. Traditionally this is performed by sharing op-
erators and query results [BBD+02, CcC+02, CCD+03,
KFHJ04, MSHR02, CDTW00, LPT99]. Our multi-query
optimization is fundamentally different and aggressively
exploits the relationship of our stream query algebra to au-
tomata.

7 Conclusions and Future Work

We presented CESAR, a novel algebra for processing data
streams, and Cayuga a prototype implementation of this al-
gebra. CESAR extends previous work on event processing
in several directions. It adds built-in support for parame-
terization, aggregates, selection over infinite domains, and
support for arbitrary streams of events, including simul-
taneous events and events with non-trivial duration. We
developed a new automaton model for implementing alge-
bra expressions efficiently. We discussed the challenges of
implementing this automaton model, together with several
strategies multi-query optimization. Finally, we presented
several initial performance results showing the efficacy of
our approach. We plan to extend this work by developing a
complete optimization framework, including query rewrite
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rules and more effective MQO strategies.
Apart from CESAR-specific optimizations, we see our

work as a step towards understanding the fundamental
tradeoffs involved in data stream processing. More pre-
cisely, how much scalability do we trade off for increasing
expressiveness? CESAR is very different from Aurora’s
boxes-and-arrows approach and SQL-based languages like
STREAM’s CQL [ABW03]. It will be interesting to for-
mally compare the expressiveness of the different lan-
guages by mapping them to a common powerful calculus,
and to see how much expressiveness (i.e., new operators)
we can add to CESAR, while still maintaining scalabil-
ity. Notice that CESAR’s operators and implementation
are closer in spirit to XML filtering than to the above men-
tioned DSMSs. An interesting direction of future research
therefore would be to explore the commonalities between
event processing, stream processing, and XML filtering,
and to determine how to combine the strengths of each of
them.
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U. Çetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. B. Zdonik. The de-
sign of the borealis stream processing engine.
In Proc. CIDR, pages 277–289, 2005.

[ABB+02] A. Arasu, B. Babcock, S. Babu, J. McAl-
ister, and J. Widom. Characterizing mem-
ory requirements for queries over continuous
data streams. InProc. PODS, pages 221–232,
2002.

[ABW03] A. Arasu, S. Babu, and J. Widom. The CQL
continuous query language: Semantic foun-
dations and query execution. Technical report,
Stanford University, 2003.

[AC03] R. Adaikkalavan and S. Chakravarthy.
Snoopib: Interval-based event specification
and detection for active databases. InProc.
ADBIS, pages 190–204, 2003.

[AF00] M. Altinel and M. J. Franklin. Efficient filter-
ing of XML documents for selective dissemi-
nation of information. InProc. VLDB, pages
53–64, 2000.

[ASS+99] M. K. Aguilera, R. E. Strom, D. C. Stur-
man, M. Astley, and T. D. Chandra. Matching
events in a content-based subscription system.
In Proc. PODC, pages 53–61, 1999.

[BBD+02] B. Babcock, S. Babu, M. Datar, R. Motwani,
and J. Widom. Models and issues in data
stream systems. InProc. PODS, pages 1–16,
2002.

[BGKS03] N. Bruno, L. Gravano, N. Koudas, and D. Sri-
vastava. Navigation- vs. index-based XML
multi-query processing. InProc. ICDE, pages
139–150, 2003.

[CcC+02] D. Carney, U. Çetintemel, M. Cherniack,
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