Scalable Event Matching for Overlapping Subscriptions in
Pub/Sub Systems

Zhen Liu, Srinivasan Parthasarthy, Anand Ranganathan, Hao Yang
IBM T. J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532

{zhenl,spartha,arangana,haoyang}@us.ibm.com

ABSTRACT

Content-based publish/subscribe systems allow matching the
content of events with predicates in the subscriptions. How-
ever, most existing systems only allow a limited set of op-
erators, such as comparison on primitive data types (string,
integer, etc). In this paper, we consider a publish/subscribe
system that supports more flexible events/subscriptions with
the use of advanced, yet potentially expensive, matching op-
erators. Examples of such operators are pattern recognizers
on multimedia data and spatial operators on location data.
We study a critical problem in these publish/subscribe sys-
tems, namely how to optimize the matching process for a
large number of subscriptions. This is achieved by exploit-
ing the overlap in the subscriptions and sharing the operator
evaluation results whenever possible. We formulate the opti-
mal subscription evaluation problem and show that it is NP-
Hard. We propose an efficient d-approximation algorithm,
where d is the maximum number of operators in one sub-
scription, as well as a heuristic algorithm that can further
improve the system performance in practice. Our experi-
ment results show that the proposed algorithms can reduce
the matching cost by up to 80%, as compared to a naive
strategy that evaluates the subscriptions independently.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems— Distributed Applications

Keywords

Publish/subscribe, Semantic, Event matching, Optimization

1. INTRODUCTION

Publish/subscribe systems have become increasingly pop-
ular in event-based systems by interconnecting information
providers and consumers in a distributed environment. In
these systems, the information providers publish informa-
tion in the form of events; the information consumers sub-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DEBS ’07, June 20-22, 2007, Toronto, Ontario, Canada.

Copyright 2007 ACM 978-1-59593-665-3/07/03 ...$5.00.

250

scribe to events that satisfy certain conditions; and the sys-
tem ensures timely delivery of published events to all inter-
ested subscribers. Publish/subscribe systems are often clas-
sified as topic-based (or group-based) and content-based. In
topic-based systems, publishers label each event with a topic
name, and consumers subscribe to all events in a particu-
lar topic. In content-based systems, subscribers can choose
filtering criteria along multiple dimensions. These filtering
criteria are often expressed using attribute-value pairs (e.g.
[6], [1]), XML-based tree structures (e.g. [2], [7]), or graph
structures ([21]). While these systems each has it own mer-
its, they allow only a limited set of operators in the match-
ing process, e.g., comparisons on primitive data types like
string, integer and timestamp.

In this work, we consider a general content-based pub-
lish/subscribe system in which the subscriptions may need
to be evaluated using advanced and potentially expensive
operators. Such systems are very useful to support emerg-
ing applications that have rich semantics, such as detecting
patterns in multimedia data, performing logical reasoning,
and evaluating various spatial or temporal relationship.

As an illustrative example, consider the case where the
law enforcement department monitors a city through a num-
ber of cameras mounted on UAVs or unmanned aerial vehi-
cles (e.g., balloons or drones). These cameras continuously
publish events, each of which contains a snapshot image,
the GPS location, speed and altitude of the UAV, and a
timestamp. Depending on their roles, the users subscribe
to events that satisfy different kinds of conditions. For ex-
ample, one user may subscribe to images that are captured
in the Bronx area of NYC and indicate a police car chasing
another car on a highway. Another subscription may be for
images in Bronx that show a mob forming. Evaluating such
subscriptions requires the use of spatial operators, which
can determine whether the GPS coordinates of an UAV fall
within the Bronx area, and image pattern recognition algo-
rithms for detecting car chasing or mobs.

While the support for such general operators is desirable
for many applications, it also has negative impact on the
performance of the publish/subscribe system, because these
operators are generally much more expensive than the prim-
itive ones (e.g., integer comparison, string matching). As
such, it is critical to design an efficient matching algorithm
that can minimize the evaluation overhead of expensive op-
erators, especially when there are a large number of sub-
scriptions in the system.

In this paper, we optimize the subscription evaluation
process, in the presence of expensive filters, based on two

observations. First, the subscriptions often share common
predicates. For example, the two subscriptions described
above share the same predicate that the location of the UAV
should be in Bronx. We can exploit such overlap between
subscriptions and reuse the same operators to evaluate mul-
tiple subscriptions. Second, an event satisfies a subscription
only if it satisfies all predicates in the subscription. As such,
when any predicate in a subscription is evaluated to false, we
do not need to evaluate the remaining predicates. Further-
more, if this predicate is shared by many subscriptions, all
remaining predicates in these subscriptions can be ignored,
which can significantly reduce the evaluation overhead.

Given that the evaluation of one predicate may result
in the elimination of some other predicates, the evaluation
overhead is largely decided by the order in which the pred-
icates are evaluated. Several factors come into play when
deciding the optimal evaluation order. One is the selectivity
of the predicates, i.e., the probability that an event satisfies
a given predicate. Intuitively, it is beneficial to first evaluate
the predicates with low selectivity, because they have large
chances to eliminate other predicates. However, the optimal
order also depends on another factor, the popularity of the
predicates, which is the number of subscriptions containing
a given predicate. It is also beneficial to evaluate the popu-
lar predicates early, because if they happen to be false (even
with some probability), a large number of subscriptions can
immediately be resolved.

We formulate the optimal subscription evaluation prob-
lem as finding the optimal order for the predicates, such
that the expected cost of predicate evaluation in runtime is
minimized. We show that this problem is NP-hard, based
on a reduction to the classic set cover problem. We then
propose an efficient d-approximation algorithm for this prob-
lem, where d is the maximum number of predicates in a sub-
scription. While this algorithm provides worst-case perfor-
mance guarantee (its evaluation cost is at most d times the
optimal one), we further propose a heuristic to improve the
practical average-case performance. The heuristic algorithm
uses a novel linked-chains data structure to manage overlap-
ping subscriptions, and provides an analytical model for the
cost differences resulting from different evaluation orders.
These two algorithms can effectively exploit the overlap in
the subscriptions and the selectivity of different predicates,
and they significantly reduce the expected evaluation cost
when an event arrives.

We have implemented a prototype system and evaluated
the performance of our proposed algorithms using synthe-
sized workloads. The experimental results show that our
system can match the events to the subscriptions very ef-
ficiently, with an average evaluation cost sublinear to the
number of subscriptions. Compared to a naive strategy that
evaluates the subscriptions independently, our algorithms
can reduce the evaluation cost by a factor of up to 80%.

In summary, the key contributions of this work are:

e We propose a generalized model for content-based pub-
lish /subscribe systems using potentially expensive op-
erators.

e We formulate the optimal subscription evaluation prob-
lem and prove its NP-Hardness.

e We propose an d-approximation algorithm for evaluat-
ing the subscriptions, where d is the maximum number
of predicates in a subscription.

251

Subscriber

E l Publisher
Subscriber e E] l
l . "
Notification
_D/ Event =
= Match Server
) p
Subscription \ \ /

Event Matching

Subscription
Maintenance

Bipartite Operators

Subscription Graph
Ll
« g d

RS

Figure 1: Architecture of a publish/subscribe system
with generic operators.

e We propose a heuristic algorithm that improves upon
the approximation algorithm with an analytical model
of evaluation cost.

The rest of this paper is organized as follows. Section 2
formally defines the the publish/subscribe model that uses
expensive operators. Section 3 formulates the optimal sub-
scription evaluation problem and proves its NP-Hardness.
Section 4 presents our two proposed matching algorithms in
detail. Section 5 describes our system implementation and
evaluates its performance using extensive experiments, and
Section 6 compares to the related work. Finally, Section 7
concludes the paper with future work.

2. ARCHITECTURE AND MODELS

The architecture of our publish/subscribe system is shown
in Figure 1. The system consists of multiple subscribers and
publishers, as well as an event match server. The server con-
tains all the existing subscriptions and matches the incoming
events against them. The subscriptions can be represented
internally by a bipartite graph that connects different sub-
scriptions to the predicates they contain. The match server
also has a set of operators that it can call for evaluating pred-
icates in the subscriptions. These operators are in the form
of libraries with well-defined interfaces. In what follows, we
first describe our model for events and subscriptions, as well
as its practical applications, and then define the matching
process under this model.

2.1 Event and Subscription Model

We use a generic model for representing subscriptions and
events in a content-based publish/subscribe system, which
is useful for a variety of application domains. In this model,
the events are simply application-specific objects that flow
into the system. A subscription, on the other hand, consists
of a set of predicates on these objects. Each predicate can
have zero or more arguments. A predicate is, in general, of
the form p(a1, az, ...a;), where any subset of these arguments
may be variables. In addition, a subscription can include a
set of value constraints, which are boolean-valued functions
on variables.

When a new event is published, a predicate in a subscrip-
tion is evaluated by applying an operator with its arguments
on the object contained in the event. The operator returns

either true or false, indicating whether the event satisfies
the predicate. If any of the arguments of the predicate are
variables, the operator also returns a set of feasible bindings
of the variables, if the predicate evaluates to true.

Again, consider the scenario of monitoring a metropoli-
tan area using unmanned aerial vehicles. In this case, the
events are the images and auxiliary information (e.g., GPS
location) received from these UAVs. Below are some exem-
plary subscriptions that can be represented in our model:

S1={locIn(Bronx), chasePattern(policeCar,anyCar)}
S2={locIn(Bronx), mobPattern(?people), (?people>50)}
S3={locWithin(TimesSquare,5000m) ,
trafficPattern(congestion),
pedestrianCount (7ped), 7ped>250)}
S4={locIn(Bronx), trafficPattern(congestion),
trafficPattern(accident), policeCarCount(?pol),
(7pol<2)}
S5={distanceFrom(StatueOfLiberty,?x), (?x<1000m),
tourBoatCount(?y), coastGuardBoatCount(?z),
(7y>2%7z) }

The predicates in the subscription (e.g., locIn, distance-
From, chasePattern, trafficPattern) are each associated with
certain operators and evaluated by applying these operators
on an incoming event. The value constraints (e.g., ?people >
50) are evaluated after receiving variable bindings from the
operators for any given event. We assume the cost of evalu-
ating the value constraints to be negligible as compared to
the expensive operators. Note that it is possible for variables
to shared across different predicates in a subscription.

We define that an event matches a subscription if and only
if all the predicates and value constraints can be satisfied by
a joint substitution of all variables used in the predicates.
Formally, a subscription, S, is the union of a set of predicates
and a set of value constraints, denoted by S(P, VC) where P
is the predicate set and V'C' is the value constraint set. An
event, E, matches a subscription, S(P,V (), if and only if
there exists a variable substitution function, 6, that maps all
variables used in P to specific values, such that the following
conditions hold:

e For every predicate t € P, 0(t) is true, where 6(t) is the
predicate obtained after substituting all the variable
arguments in ¢t. If ¢ has no variables, then 6(t) =
t. The truth value of 0(t) is obtained by calling an
operator associated with ¢ with the arguments of 0(t).

e For every value constraint ¢ € VC, 0(c) is true, where
0(c) is the boolean-valued expression obtained by sub-
stitution of the variables in c.

Note that an evaluation process need not proceed by find-
ing all possible substitutions of the variable arguments of a
predicate and evaluating their truth value. We assume that
the operators can return all possible satisfying variable bind-
ings when it is given a predicate with variable arguments.

Note that our subscription model bears a close resem-
blance to queries in logic programming languages, e.g., Pro-
log. However, one difference from pure logic programming
models is that the predicates are not necessarily evaluated
using a logical derivation process, but may be evaluated by
invoking arbitrary operators written in any programming
language. This model of subscription is very flexible and

252

can be easily used in a variety of scenarios. We now describe
three example applications where our model of subscriptions
and events can be readily employed.

2.1.1 Predicates involving Pattern Recognition

Our event and subscription models are well-suited for op-
erators that process multimedia data to determine if they
satisfy certain conditions. We have already seen an example
where predicates express conditions on images. Many other
application scenarios can use similar forms of subscriptions,
such as monitoring surveillance video cameras, monitoring
voice calls, examining real-time text data generated as logs
or traces by different systems, monitoring new web pages or
blogs, etc. In all these cases, the actual processing of the
multimedia content (image, text, video, audio) is expensive.
Some of the operators for processing multimedia data return
either true or false, depending on whether a specific pattern
exists in the incoming data. Other operators can return val-
ues such as the number of people detected in an image. Both
kinds of operators can be supported by our framework.

2.1.2 Predicates involving Complex Operators

Another application domain for our subscription model is
in cases where the subscription evaluation involves complex
operations, with possible queries or lookups to a database.
An example of such complex operators is spatial operator,
such as determining whether a point is located within a re-
gion or calculating the distance between a point and a re-
gion. These spatial operators often require expensive pro-
cessing for looking up a database to get the coordinates of
a symbolic location like a street name, or for converting be-
tween locations expressed in different coordinate systems.

2.1.3 Predicates involving Logical Reasoning

Our predicate-based model of subscriptions can be easily
employed in cases where the truth value of a predicate is
determined by posing a query to a logical reasoner. For
example, a publish/subscribe system may use a rule-based
reasoner like Datalog or Prolog in the case where policies or
other such knowledge are represented as rules. Alternatively,
it may employ a Description Logic [4] reasoner such as Pellet
in the case of systems that describe data using Semantic Web
representation languages like OWL.

It is worth noting some related work in the area of se-
mantic publish/subscribe systems. Several existing systems,
such as G-TOPSS [21] and OPS [22] use a semantic model
of subscriptions based on RDF [5]. RDF can be viewed as
describing data using binary predicates, i.e., predicates with
two arguments. At a high level, the subscriptions model in
these systems is similar to ours. However, a key difference
is that in these existing systems, subscriptions expressed in
RDF are matched against events that are also expressed
in RDF. The matching process neither relies on the use of
expensive operators nor uses complex description logic rea-
soning beyond subclass inferences. In our system, predicates
are associated with operators, which may be in the form of
queries to a Description Logic reasoner. Therefore, the eval-
uation of these operators may be very expensive, and our
system seeks to reduce the subscription evaluation overhead
through optimal ordering of operator evaluations.

2.2 Matching One Event to One Subscription

With the previously described event and subscription model,

the process of matching one event to one subscription is more
complicated than simple value comparison or string lookup.
It involves invoking the necessary operators and finding one
assignment for variables in the subscription such that all
predicates and value constraints are satisfied. This is done
by first finding possible variable bindings for each predicate,
and then joining the variable bindings obtained from differ-
ent predicates. At the end, if there is at least one set of
variable bindings that satisfy all value constraints, then the
event matches the subscription. We assume the number of
possible variable bindings for a given event is small. Hence
the cost of performing joins and value constraint checks is
small. The major cost comes from evaluating the opera-
tors for determining the truth values (i.e., true or false) and
variable bindings of predicates.

Specifically, let the set of predicates in the subscription be
{t:,i = 1...1}. For each predicate ¢;, we invoke an operator
to determine its truth value, and to find a candidate solu-
tion set (i.e., the feasible variable substitutions), denoted by
{0;,;}. Each solution 6; ; maps the variables in ¢; to values.
If any predicate evaluates to false, then we can immediately
stop the evaluation.

We obtain up to [sets of candidate solutions, one for each
predicate (note that predicates with no variables will not
contribute any candidate solutions). Next we construct a set
of combined candidate solutions by taking the join of indi-
vidual candidate solutions. Each combined solution maps all
the variables in the subscription and satisfies every predicate
in the subscription. Finally, we test the combined candidate
solutions against the value constraints in the subscription.
If there exists one combined candidate solution that satisfies
all the value constraints, then it becomes the final solution,
and the original event matches the subscription. Otherwise,
the event does not match the subscription.

The above process describes how we can match one event
to one subscription. When there are multiple subscriptions
in the system, a straightforward approach is to evaluate the
subscriptions one by one. However, it is inefficient when the
number of subscriptions is high. Therefore, we are motivated
to tackle one critical issue in such systems, that is, how can
we efficiently match one event against a large number of
subscriptions. In the following sections, we formulate this
optimization problem and propose algorithms for solving it.

3. PROBLEM FORMULATION AND PROOF
OF NP-HARDNESS

In order to optimize the matching process for many con-
current subscriptions, we make two important observations
as follows. First, the users often share common interests,
thus their subscriptions tend to share some predicates. In
such cases, we only need to evaluate these common predi-
cates once, and reuse the evaluation results (i.e. the truth
value and bindings of variables, if any) across different sub-
scriptions. Note that two predicates in different subscrip-
tions are considered to be the same if they have the same
non-variable arguments and all their variable arguments can
be unified. For example, p(?x1, ?yl) is the same as p(7x3,
7y4), but it is not equivalent to p(?x7, ?x7) since the last
predicate requires two arguments to be same.

Our second observation is that a subscription does not
match the event as long as any of its predicates cannot be
satisfied. Thus, whenever we find one unsatisfied predicate,

253

we can immediately discard all associated subscriptions, and
their remaining predicates do not need to be evaluated. In
other words, for a given event, we may only need to evaluate
a subset of the predicates.

Clearly, the number of predicates that are actually evalu-
ated depends on the order in which the predicates are eval-
uated. The optimal schedule should consider both the sub-
scription structure and the predicate selectivity. Intuitively,
a good strategy is to first evaluate those predicates that are
shared by many subscriptions or very unlikely to be satis-
fied, so that we can discard as many predicates as possible.
Here we assume the selectivity of predicates is known or can
be learned online through the past matching history.

We now formulate the optimal subscription evaluation

problem and prove its NP-Hardness. To simplify the dis-
cussions, we consider the cases where all operators for eval-
uating predicates have the same cost. Later, we shall show
how we can extend our model and algorithms for the cases
where operators have different costs.
Subscription Evaluation Problem: Let @) be the set of
subscriptions on a server, and T be the set of unique pred-
icates in (). Each subscription ¢ € @) subscribes to a set of
predicates, denoted by T, C T'. Each predicate ¢t € T" has a
selectivity of p; € [0, 1], which is the probability with which
an event satisfies t. An event matches a subscription ¢ if it
satisfies every predicate in Tj,.! Given an event, we need to
evaluate the predicates in certain order, until all subscrip-
tions are classified as either “relevant” (i.e., matching the
event) or “isrrelevant” (i.e., not matching the event). At
this time, the set of predicates that have been evaluated is
denoted by U. To ensure the correctness, (i) for every rele-
vant subscription g, V' must cover all predicates in T; and
(ii) for every irrelevant subscription ¢’, V must cover at least
one predicate in T,/ that is not satisfied. The goal is to find
an optimal evaluation schedule that minimizes the expected
size of V, i.e., the predicates that are actually evaluated.

Some remarks on the above problem are in order. First,
observe that our model specifies a probability distribution
over the set of predicates satisfied by an event (and hence,
the set of subscriptions relevant to it). As such, the optimal
number of predicates that need to be evaluated to satisfy (i)
and (ii) is not fixed but also follows some probability distri-
bution. Therefore, it makes sense to minimize the expected
number of predicates evaluated for each event. Second, note
that we can easily extend the problem formulation for the
cases where predicates (or operators) have different costs by
minimizing the sum of the costs of predicates in the set V.
Third, we assume that the predicates are uncorrelated, i.e.,
whether an event satisfies one predicate is independent of
the other predicates.

THEOREM 1. The subscription evaluation problem is NP-
Hard. Moreover, it has no polynomial time approximation
algorithm with an approzimation ratio better than Q(logn),
where n is the number of subscriptions, unless P = NP.

'More exactly, the event should also provide at least one
common variable substitution for 7, and also satisfy the
different value constraints (Section 2). Here we simplify the
description and ignore the join of different variable bindings
obtained from different predicates and checking the value
constraints, which is orthogonal to the evaluation schedule.
In addition, the join and the value constraint check opera-
tions are much less expensive than the predicate evaluation.

Proor. We prove the theorem by showing that the clas-
sical set-cover problem is a special case of the subscription
evaluation problem.

Consider a set cover instance which consists of n elements
in a ground set G (i.e., these are the set of elements which
need to be covered), and a collection L of m subsets of G
(these are the sets we will use to cover the elements in the
ground set). Recall that the goal in the set cover problem is
to choose as few subsets in L as possible in order to cover all
the elements in G. This problem can be cast as an instance
of the subscription evaluation problem as follows. We create
n subscriptions q1, q2, . . ., ¢, corresponding to each element
e1,ez,..., ey in G; we also create m predicates t1,t2,...,tm
corresponding to each subset si,s2,...,8m, in L. The sub-
scription g; contains each predicate t; such that the set s;
includes the element e;. Further, we set the satisfaction
probability of every predicate to zero. Thus, it is enough to
evaluate a single predicate in each subscription ¢; in order
to decide whether g; is relevant to an event. It is now easy
to verify that we can convert a feasible solution for the sub-
scription evaluation problem where we evaluate ¢ predicates
into a feasible solution for the set-cover problem where the
set cover has exactly ¢ sets, and vice-versa.

It is well-known that the set-cover problem is NP-Hard,
and no polynomial time approximation algorithm exists for
it with an approximation ratio better than Q(logn), unless
P = NP [3]. This completes our proof. []

4. OPTIMAL SUBSCRIPTION EVALUATION

In this section, we present two efficient algorithms for
the subscription evaluation problem. The first algorithm
sequentially evaluates different subscriptions and has an ap-
proximation ratio of d, where d is the maximum number
of predicates in one subscription. The second algorithm re-
duces the expected number of predicate evaluations by ana-
lyzing the expected cost differences when subscriptions are
evaluated in different orders.

4.1 Sequential Evaluation Algorithm

We now describe the sequential subscription evaluation
algorithm. In this algorithm, we maintain a set U of unde-
cided subscriptions and a set E of predicates that have cur-
rently been evaluated. Initially the set U = @) and includes
all subscriptions, and the set E is empty. While there are
undecided subscriptions (i.e., U is not empty), we arbitrarily
pick an undecided subscription ¢ and mark this subscription.
Recall that Ty is the set of predicates in g; some of these
predicates have already been evaluated at this point, while
the rest of the predicates are yet-to-be evaluated. Let Y, de-
note the latter set of predicates. We consider the predicates
in Y, in an arbitrary order; the predicate under considera-
tion is evaluated if there exists some undecided subscription
which subscribes to this predicate. As soon as a predicate is
evaluated, it might result in a new set of subscriptions being
decided; we remove such subscriptions immediately from the
set U. An example of the evaluation is shown in Figure 2.

At first glance, this algorithm seems very simple and does
not employ any optimization. However, for the special case
where every subscription has at most a fixed number of pred-
icates, we prove the surprising fact in Theorem 2 that the
sequential algorithm can achieve an d-approximation guar-
antee, i.e., constant-factor worst-case performance guarantee
w.r.t. the optimal algorithm.

254

Algorithm 1 Sequential Evaluation Algorithm
1: procedure SEQUENTIAL(T, Q) >
The subset of predicates in T" which must be evaluated
to decide subscriptions @

2: U—Q > U is the current set of undecided
subscriptions

3: E «— ® p F is the set of predicates evaluated so far

4: while U # & do > some subscriptions are still
undecided

5: Select any subscription g € U

6: S «— the set of predicates subscribed by ¢ which
have currently not been evaluated

7 while S # ¢ do

8: t «— any predicate in S

9: if ¢ is subscribed by some subscription in U
then

10: evaluate t

11: for all subscription ¢ € U which is now
decided do

12: U=U\{q}

13: end for

14: end if

15: E = EJ{t}

16: S=S5\{t}

17: end while

18: end while

19: return £ > the set of evaluated predicates

20: end procedure

THEOREM 2. Let I be an instance of the subscription eval-
uation problem such that every subscription is subscribed to
at most d predicates. Let OPT(I) denote the optimal num-
ber of predicates which need to be evaluated for deciding all
subscriptions in instance I. The sequential algorithm eval-
uates at most d - OPT(I) predicates.

ProOOF. Let A denote the set of subscriptions that are
marked by the sequential algorithm. We make the following
three claims.

e Claim (i): for any two distinct subscriptions ¢i and g2
in A, the sets Yy, and Yy, are disjoint from each other.
This is a simple consequence of the definition of the
set Yy. By definition, Y, is the set of yet-to-be evalu-
ated predicates which are subscribed by subscription g
at the point when subscription ¢ was marked by the
algorithm. Since one of the two subscriptions ¢; and
q2 was marked prior to the other, one of the sets of
predicates Yy, or Yy, was evaluated prior to the other
and the claim follows.

e Claim (i1): for any subscription ¢ in A, the set Y, con-
tains at most d predicates. This claim simply follows
due to the fact that each subscription subscribes to at
most d predicates, as assumed by the theorem.

e Claim (i): consider any subscription q € A; any sub-
scription evaluation algorithm must evaluate at least
one predicate in the set Y;. To see why this claim
holds, we first observe that T} \ Y; is the set of pred-
icates which are subscribed by g and which have al-
ready been evaluated at the point when ¢ was marked.
Crucially, each predicate in the set T, \ S; must have

S: Sz S3

Subscriptions:

Predicates:
P1 P2 P3 Pa
After evaluating predicates of
subscription S; and determining
that P is false and P3 is true
S, = false S,= false S3
Subscriptions:
Predicates: [] [] []
P, P, Ps Py
(don’t need to
evaluate) (false) (true)

Figure 2: An example with 3 subscriptions that collec-
tively have 4 predicates. The Sequential algorithm arbi-
trarily picks subscription Sz, evaluates the predicates in
it and determines P, is false and Pj3 is true. This imme-
diately results in both S; and S2 not matching the event.
S3 is still unresolved.

evaluated to true otherwise, ¢ would not have been
marked at any point in the algorithm. Hence, in order
to decide ¢, every subscription evaluation algorithm
needs to evaluate at least one predicate in the set S, .

It follows from claims (i) and (iii) that the optimal num-
ber of predicates needed to decide all subscriptions in the
instance is at least |A|. It also follows from claims (i) and
(ii) that the number of predicates evaluated by the sequen-
tial algorithm is at most d - |A|. This concludes the proof of
the theorem. [

Note that the sequential algorithm only returns the set of
subscriptions whose predicates are all satisfied individually.
For each such subscription, we then join the variable bind-
ings from all its predicates and check the value constraints to
determine whether this subscription is completely satisfied.

4.2 Sub-Order Algorithm

While the sequential algorithm provides desirable worst-
case performance guarantees, we can further improve its av-
erage performance by picking subscriptions in an intelligent
manner, as opposed to arbitrarily picking one from the un-
decided subscriptions. In order to reduce the expected eval-
uation cost, the Sub-Order algorithm decides an evaluation
order for the subscriptions by analyzing the cost differences
when subscriptions are evaluated in different orders.

The analysis of the evaluation cost is carried out by in-
serting the subscriptions into a linked-chains data structure.
The linked-chains structure is in the form of several paral-
lel chains of nodes, where each node represents a predicate,
and each chain represents a subscription. For each subscrip-
tion chain, the nodes are arranged in an increasing order
of selectivity (where selectivity is the probability that an
event satisfies the predicate). This is because such an order
can minimize the expected number of nodes that need to
be evaluated to resolve this subscription, if it is evaluated
independently from other subscriptions. On top of the sub-
scription chains, we connect two nodes on different chains if

255

Subscription 1 Subscription 2 Subscription 3 Subscription 4
chasePattern(mobPattern(" trafficPattern(% _ trafficPattern(
policeCar, anyCar) 2people) congestion) /| accident)
I | |
. o |
locationWithin(L trafficPattern(

:-.:I'ImesSquare,SOOOm)j

congestion)

Figure 3: An example of linked chains structure for
representing subscriptions. The dashed lines represent
equivalence links between nodes.

their predicates are equivalent. As we shall see shortly, such
equivalence links across chains help in explicitly representing
the sharing of predicates. An example of the linked-chains
structure is shown in Figure 3.

The main purpose of this structure is to perform the eval-
uation of any given predicate just once across all subscrip-
tions, because the result of this evaluation can be shared by
other subscriptions that have equivalence links to this predi-
cate node. Note that the links can be across different chains
or even between different nodes in the same chain.

4.2.1 Maintenance of Linked Chains

The linked-chains structure needs to be maintained when-
ever a new subscription is added or an existing subscription
is deleted. Specifically, when a new subscription arrives,
we first create a chain representing the new subscription,
where the nodes are ordered from top to bottom in decreas-
ing order of selectivity. For each node in the new chain, we
find equivalent predicates across all existing chains and cre-
ate links accordingly. This can be done efficiently by main-
taining a hash-table of all existing predicates (that hashes
variables appropriately). Finally, we use the chain ordering
algorithm, which will be described in Section 4.2.5, to decide
where the new chain should be inserted in the linked chains.
On the other hand, it is fairly simple to delete an existing
subscription, as we can simply remove the corresponding
chain and all associated links.

4.2.2 Event Matching Over Linked Chains

With linked-chains structure, when an event arrives, the
subscriptions are evaluated one by one from left to right in
the following manner. For each subscription,

1. Evaluate the predicate nodes in this chain from top to
bottom. For each predicate node,

(a) If the node is marked as ”resovled”, then skip it.
Otherwise, call the associated operator to evalu-
ate the predicate and derive all possible variable
bindings.

(b) If the predicate is evaluated to false, then stop

evaluating the current subscription and proceed

to the next one. In addition, remove all remaining
subscriptions that are linked to this node.

If the predicate is evaluated to true, then send
the evaluation results (including possible variable
bindings) to any nodes that are linked to this
predicate. In addition, mark all those nodes as
”resolved”, so that we will not evaluate them again.

2. Calculate the join of the variable bindings obtained
from all the predicates and check the value constraints.
If there exists at least one combined variable solution
that satisfies all predicates and value constraints, then
the event matches the subscription.

Note that the correctness of the above matching algorithm
does not depend on how the subscriptions are ordered in the
linked-chains structure. However, the expected evaluation
cost is influenced by the subscription ordering. To determine
an order that reduces the expected cost, in what follows, we
analyze the difference in evaluated costs when subscriptions
are evaluated in different orders.

We first derive an expression for evaluating a single chain.
Next we consider two chains (say A and B) and evaluate the
difference in costs between the two possible orders (i.e., A
before B, or B before A). Note that these two orders have a
cost difference only when there are equivalence links across
these two chains, i.e., when they share common predicates.
In such cases, these equivalence links allow us to reduce
evaluation cost since we can reuse the results. In addition,
if a common predicate is evaluated to false, we can eliminate
the other subscription if it has not been evaluated. Finally,
we combine this pair-wise comparison of cost differences and
calculate an order for all subscription chains.

4.2.3 Cost of evaluating a single chain

Given a single subscription chain, let C' be the expected
cost of evaluating this chain. There are n nodes in the chain,
and p; denotes the probability that an event satisfies the i-th
predicate node.

The first node in the chain must be evaluated in any case.
The probability that this node is satisfied is p1, thus the
probability of the second node being evaluated is p;. Sim-
ilarly, the probability of the third node being evaluated is
p1 X p2. The cost of evaluating a single predicate is constant
(using the hash table based data structure defined earlier).
Without loss of generality, we can assign a normalized cost
of 1 for evaluating each predicate. Hence the total cost of

evaluating a chain is:
n—1

C=1+p1+p1p2+.-.+Hpi

i=1
n—1
-1+ X 0w

i=1 j=1

4.2.4 Cost of evaluating two chains

Let us now consider the expected cost of evaluating two
subscriptions, s1 and s2. Let p1,; and p2,; be the selectivity
of node ¢ in s; and node j in sy respectively. If there are
no equivalence links between nodes in the subscription, then
the cost of evaluating the two subscriptions is simply

n—1 1 m—1 1
C:1+ZHP1,J‘+1+ Z HPZJ
i=1 j=1 i=1 j=1
Let us now assume that there is one equivalence link be-
tween the chains. This link is between node ni,, and ns
where 1 < a <nand 1 <b < m. The order of evaluation
of the chains is important now. Consider the case where s1
is evaluated first. We can reuse the solutions obtained from
equivalent node only if all the nodes above the equivalent
node (n1,1,Mm1,2,...n1,a—1) have solutions. If this happens,
then node n1,, will be evaluated and if there is at least one
possible assignment of variables, the solutions can be sent

256

node nay (after appropriate variable renaming). If there is
no possible assignment of variables, then s2 does not have
to be evaluated at all. Then, the expected cost of evaluating
both subscriptions is:

C1 = (Cost of evaluating all nodes in s1)
+ (Probability of nodes n1,1,n1,2,...n1,a—1 all having solu-
tions) X [(Probability of node mn1,, having solutions) x (
Cost of evaluating s2 without having to evaluate node ns)
+ (Probability of node n1,, not having solutions) x (0)]
+ (Probability of at least one of the nodes n1,1,m1,2, ...n1,a—1
not having a solution) x (Cost of evaluating s2 including
the evaluation of node nao)

n—1
1+ [Ips
i=1,i%b—1j=1,j#b

i=1 j=1
a—1 m—1 1

+ (1 - Hpu) X |1+ Z sz,j:|
i=1 i=1 j=1

Similarly, the expected cost of evaluating so first and then
s1 is:

m—1 i
> I w

a
+ le,i X (14
i=1

S

i=1,ia—1j=1,j#a

n—1 1
1+2Hm4

i=1 j=1

m—1 4
1+ [Ire

b
+Hp2,i>< 1+
i=1 j=1 i=1 [
b1
+ (1 - Hp2,i> X
i=1

Taking into account that pi,, = p2, (since the nodes are
equivalent), we have:

Cy =

b—1 a—2 1
Ci—Ca=(1—-p1,a) % Hp2,i X (1 + Z le,j)
LN T
—(1=p1a) x H P1,i X (1 + Z sz,j)
i=1 i=1j=1

=(1—p1,a) X (Pop X C1,a — Pr,a X Capp)
It is not difficult to see that if @ = 1,b = 1, then there is

no difference between C; and Cs; otherwise, C1 > Cs if and
Py p Py q
Cap > Ci,a

In general, the higher the P/C ratio of a chain, the earlier
it should be evaluated. Intuitively this means that the al-
gorithm should try to get to evaluating the equivalent node
with high probability and low cost. This is true because the
cost savings are achieved only when we evaluate the equiv-
alent node.

Now we proceed to the general case where there are k
equivalence links between the two subscriptions s; and ss.
Similarly, we shall derive an expression for the difference in
cost between evaluating s; first and evaluating so first.

One key observation is that the chains will never cross in
the linked-chains structure. In other words, if there are two
links (n1,q,m2,5) and (n1,¢,n2,4), then a < ¢ implies b < d .
The proof arises from that fact that the links are arranged
in decreasing order of selectivity. Therefore, if a < ¢, then
node ni,, is above ni . and hence p1,, < pi,.. Moreover,
since n1,, is equivalent to no, b, we have pi,q = pa2yp. Sim-
ilarly p1,c = p2,a. Thus we have ps < p2,4, which implies
that nap is above ng 4, or b < d. As such, the equivalence
links never cross each other.

Using a similar approach as before, we can derive an ex-

pression for C; — Cs
k

! /
E (1 _p1,6q1,z)[P2,eq2,z X Cl,eql,z = Pleqi X 02«6112,11
1=1

only if . In this case, we evaluate s2 before s;.

where C;,eqi.z
I'th equivalent node from the top, eq;,;, without considering
any of the previous equivalent nodes eq; ;/,1" = 1...l — 1.

The above derivation assumes that all predicates are in-
dependent, that is, the selectivity of one predicate is condi-
tionally independent of the selectivity of any other predicate.
The formula may be extended for the case when the predi-
cates are conditionally dependent. However, such extensions
are beyond the scope of this paper.

is the cost of evaluating nodes in s; above the

4.2.5 Ordering multiple chains

The previous derivations have provided an analytical model
for the cost difference of evaluating one chain before another.
Consider the general case where there are m subscriptions.
We can analyze the cost differences for each pair of sub-
scriptions using the above model. The next problem is to
determine the optimal ordering of all the chains given the
pair-wise cost differences, such that the overall cost is min-
imized.

This problem can be reduced to the Traveling Salesman
Problem (TSP), which is a NP-complete problem. For the
general TSP problem where the distance between nodes is
not in a metric space (i.e., the distance does not satisfy sym-
metry and triangle inequality), it has been shown that any
k-approximation for this problem is NP-hard. Therefore,
we use a simple greedy approach based on the Kruskal’s
algorithm, which is known to produce good results in prac-
tice. Specifically, we construct a complete graph (V, E) and
a weight function W : E — R as follows. Each vertex in
V' corresponds to a subscription chain, and the weight of an
edge (u,v) is the cost savings of evaluating u before v. After
the graph is constructed, we traverse the nodes and hence
decide their order using the following heuristic algorithm:

1. Sort the edges in an increasing order of their weights.

2. Select with the least-weight edge. Check the remaining
edges one by one and select an additional edge only if

the edge, together with the already selected edges,

(a) does not cause a vertex to have a degree of three
or more;

(b) does not form a cycle, unless the number of se-
lected edges equals the number of vertices in the
graph.

3. Repeat step 2 until the selected edges cover all vertices.

Together with the matching procedure over linked chains
as described earlier (Section 4.2.2), the above subscription
ordering algorithm completes the description of the Sub-
Order subscription evaluation algorithm.

4.3 Handling Heterogeneous Evaluation Costs

So far, our analysis and algorithms assume that all pred-
icates have the same evaluation cost. However, they can be
easily extended to handle the case where different predicates
have different evaluation results. The Sequential algorithm
can remain the same; however the approximation guaran-
tee increases from d to W, where Cypae and Chnin are
the maximum and minimum costs among the predicates, re-
spectively. The costs of the predicate evaluation can also be
included in the cost analysis for the Sub-Order algorithm.
The only difference is that the probability, p;,; of each node

257

in a chain is now multiplied by the cost of the predicate in
the cost difference expressions. The rest of the analysis and
the algorithm remains the same.

S. IMPLEMENTATION AND EVALUATION

We have implemented a prototype system based on our
proposed algorithms and evaluated its performance using
extensive experiments. The results show that our system
can efficiently match an event with a large number of sub-
scriptions using expensive operators. In this section, we first
describe our implementation and evaluation methodology,
then present the experimental results in detail.

5.1 Prototype Implementation

Our prototype publish/subcribe system is based on Java
and includes several modules for subscribers, publishers and
servers respectively. The API that the system provides to a
subscriber has three functions: subscribe, unsubscribe, and
renew. Each subscription has a validity period, after which it
is removed from the system. The validity period is specified
by the subscriber (the default value is one day). However,
a subscriber can renew or cancel her previous subscriptions
at any time. For security reasons, the renew or cancela-
tion requests must be authenticated, which is enforced by
a ticket mechanism. Specifically, when the server receives a
subscription, it generates a ticket which is the MD5 digest
of the subscription content together with a random number.
This ticket is returned to the subscriber in the acknowl-
edge message, and serves as the proof of the subscriber’s
identity. To be accepted, the renew or cancelation requests
must carry the original ticket generated by the server. The
API that the system provides to a publisher is fairly simple,
which has only one function of publish, thus the events can
be published in an anonymous manner.

At the core of the system is a Match Server that stores
the subscriptions and evaluates them against a newly pub-
lished event. The operators used in such evaluation are
application-specific and can be easily plugged into our sys-
tem. To expedite the matching process, we store the sub-
scription graph internally using two hash tables. The first
hash table keeps track of the unresolved subscriptions. It is
indexed by the subscription id and stores a list of remain-
ing predicates in each subscription. The second hash table
maintains a queue of predicates that need to be evaluated. It
is indexed by the predicate id and stores a list of unresolved
subscriptions for each predicate. As such, the subscription
graph is stored twice, one in each table. The benefit of such
redundancy is that the primitive operations of subscription
and predicate lookup/update can both be achieved in con-
stant time.

5.2 Evaluation Methodology

We evaluate the performance of our system on a Linux
machine with Xeon 3.4GHz CPU and 2 GB memory. The
metric of interest is subscription evaluation cost (in short,
evaluation cost), which is the average number of predicates
that the system evaluates in matching an event to the sub-
scriptions. Note that this is only a rough estimation of the
absolute time that the matching process may take, because
different evaluation operators may have different complexity
and even the same operator may take different time when
invoked with different parameters. However, in a long-term
average sense, we believe the number of evaluated predicates

parameter | description value
N number of subscriptions 2K ~ 80K
Ny, number of predicates 1K ~ 40K
model popularity distribution of the predicate Uniform or Zipf
Ming minimum number of predicates in a subscription 3
maxs; maximum number of predicates in a subscription 5~ 11
N, number of events 1000
ratiOmateh, | ratio of matched subscriptions among all subscriptions 0.2%

Table 1: Workload parameters in the experiments.

can well reflect the efficiency of the evaluation process.

We conduct the experiments using a synthetic workload
(i-e., the set of subscriptions and events) so that we can care-
fully examine various aspects of our system. The parameters
used in synthesizing the workload are listed in Table. In each
experiment, we first generate a set of N, unique predicates
and associate with each of them a popularity weight based
on a given popularity model (either uniformly distributed
in [0,1] or following the Zipf distribution). We then gener-
ate a set of INs subscriptions as follows. For each subscrip-
tion S;, the number of predicates in it, denoted by [;, is
uniformly distributed between [ming, mazg], and I; predi-
cates are chosen from the entire set of N, predicates with a
probability proportional to their popularity weights. Finally
we generate N. random events and on average each event
matches to ratiomatch * Ns subscriptions. We feed these
events into the system and evaluate the performance of dif-
ferent algorithms. For each parameter setting, we repeat the
experiments for multiple times and the results reported in
the paper are based on the average over these runs.

To better gauge how well our proposed algorithms per-
form, we also implement a baseline algorithm, called naive,
that evaluates the subscriptions independently. Specifically,
the naive algorithm evaluates the subscriptions one by one
and, for each subscription, evaluates its predicates until ei-
ther one of them becomes false or all of them are evaluated.
The naive algorithm also keeps the history of previously
evaluated predicates and directly re-uses the old evaluation
result if the current predicate has been evaluated before.

5.3 Experimental Results

Now we present our experimental results and compare our
proposed algorithm to the naive one. We start with their
performance as the numbers of subscriptions and predicates
increase, and then study the impact of various parameters,
such as the predicate distribution model and the number of
predicates in each subscription.

5.3.1 Efficiency and Scalability

Our first set of experiments are conducted to understand
how efficient our proposed Sequential and Sub-Order algo-
rithms are and how their performance change as the number
of subscriptions increases. During these experiments, we fix
the number of predicates as 40K and vary the number of
subscriptions, N, from 2K to 80K. The predicate popu-
larity is uniformly distributed, and each subscription has at
most 5 predicates (i.e., Slmaz = 5).

The experimental results of evaluation cost for different al-
gorithms are plotted in Figure 4. We can make two observa-
tions from this figure. First, both Sequential and Sub-Order
algorithms perform much better than the naive algorithm in

258

all scenarios. For example, with 80K subscriptions, the Se-
quential and Sub-Order algorithms evaluate only 7761 and
7037 predicates respectively, thus reducing the evaluation
cost by almost 80% as compared to naive algorithm. Sec-
ondly, the evaluation cost of naive algorithm increases lin-
early as the number of subscriptions grows, while the evalu-
ation cost of Sequential and Sub-Order algorithms increases
much slower. These results show that the common feature
in these two algorithms, i.e., actively sharing the predicate
evaluation across subscriptions, is very effective in reducing
the overall evaluation cost.

While the Sequential algorithm has a nice d-approximation
guarantee, we can see from Figure 4 that the Sub-Order al-
gorithms perform consistently better in practice. This is be-
cause at each step, the Sequential algorithm blindly chooses
one resolved subscription to evaluate, while the Sub-Order
algorithms takes into account the cost differences due to the
order in which the subscriptions are evaluated.

Next we repeat the above experiments with the same pa-
rameter settings, except that the predicate popularity fol-
lows the Zipf distribution (with exponent o = 1) rather
than the uniform distribution. The experiment results are
plotted in Figure 5, which exhibits exactly the same trend
as in Figure 4. However, by comparing these two figures, we
can notice that the Sequential and Sub-Order algorithms
perform even better in the Zipf-distribution cases, as com-
pared to the uniform-distribution case. We will revisit this
issue in Section 5.3.4.

5.3.2 Impact of Number of Predicates

Note that the size of the subscription graph is determined
by not only the number of subscriptions, but also the number
of predicates. Thus, we also conduct experiments to evaluate
the the system performance as the number of predicates
increases. During these experiments, we fix the number of
subscriptions as 20K and vary the number of predicates, Np,
from 2K to 30K. Each subscription has at most 5 predicates
(i.e., Slmaz = 5).

Figure 6 shows the evaluation cost of different algorithms
in these experiments, where the predicate popularity follows
the Zipf distribution (o = 1). We also experimented with
the uniform distribution and the results are similar. Figure 6
clearly shows that as more predicates appear in the system,
the evaluation cost of our Sequential and Sub-Order algo-
rithms increases much slower than the naive algorithm. For
example, with 30K predicates in the subscriptions, on aver-
age the naive algorithm needs to evaluate 16251 predicates
for each event, while the Sequential and Sub-Order algo-
rithms evaluate only 3267 and 1977 predicates respectively.
Again, these result confirm the scalability of our proposed
algorithms.

45000

40000 4‘ —4— Naive —8— Sequential

Sub-Order }—
/'

35000

D
0 30000
o /
c
5 25000
T 20000
3 /'
g
S 15000
m
10000
5000 //"/’I/"-"
0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Number of subscriptions

Figure 4: Evaluation cost vs. Number of subscriptions
(Uniform predicate popularity)

18000

16000

4+Na‘ive —#— Sequential Sub-Orderl

14000

12000

10000

8000

6000

Evaluation cost

4000

2000

0 5000 10000 15000 20000 25000 30000 35000

Number of predicates

Figure 6: Evaluation cost vs. Number of predicates

5.3.3 Impact of Subscription Length

Given that the Sequential algorithm is a d-approximation
algorithm (recall that d is the maximum number of predi-
cates in a subscription), one may think that its performance
degrades rapidly as the subscriptions become longer. In or-
der to verify whether this is the case, we conduct several
experiments and study the impact of subscription length.
During these experiments, we fix 20K subscriptions and
5K unique predicates, while varying the maximum subscrip-
tion length (i.e., d) between 5 predicates and 11 predicates.
The minimum subscription length is fixed as 3 predicates,
and the predicate popularity follows the Zipf distribution
(a=1).

The evaluation costs with subscriptions of different lengths
are plotted in Figure 6. Surprisingly, the performance of Se-
quential is not sensitive to the subscription length. For ex-
ample, when d increases from 5 to 11, the evaluation cost of
Sequential increases only from 1593 to 1784, and such an in-
crease is mainly due to the fact that more edges exist in the
subscription graph. These results, by no means, contradict
with the d-approximation guarantee, which sheds insights
on the algorithm’s worst-case performance; however, they
indeed show that in practice, the Sequential algorithm can

40000

J —4—Naive —#— Sequential Sub-Order ‘

35000

30000

25000

20000

15000

Evaluation cost

10000

5000

.

0 10000 20000 30000 40000 50000 60000 70000 80000

90000
Number of subscriptions

Figure 5: Evaluation cost vs. Number of subscriptions
(Zipf predicate popularity)

6000

—4— Naive —#— Sequential Sub-Order

5000 —— 4 —— 4
-
0 4000
o
(8]
9 000
%
El
g

2
I 000 .7’4.7/./.

1000

0 T T T T T T T

10 1 12

Max no. of predicates in a subscription

Figure 7: Evaluation cost vs. Maximum query length

259

perform much better than its theoretical guarantee.

In Figure 6, the performance of naive also seems insensi-
tive to the subscription length. However, this is because it
almost evaluates all unique predicates (i.e., the cost is close
to Np = 5000) in all cases. In other words, it consistently
performs poorly in these experiments. It is also interesting
to note that the performance gap between Sequential and
Sub-Order shrinks as the subscriptions become longer. The
reason is because Sub-Order only considers pairwise cost
comparison between subscriptions. However, the order of
two subscriptions also depends on other subscriptions that
share at least one predicate with both of them. Therefore,
with longer subscriptions, the pairwise cost comparison be-
come less accurate.

5.3.4 Impact of Predicate Popularity Distribution

Finally we study the impact of the predicate popularity
distribution, which implicitly controls the degree of predi-
cate sharing across subscriptions. For this purpose, we ex-
periment with both uniform distribution and Zipf distribu-
tion, which is well known as a good fit for keyword popular-
ity in text-based searches. For Zipf distribution, we also ex-
periment with different exponent parameters with a = 0.8,

1, 1.2, respectively. During these experiments, we fix the
number of subscriptions and predicates as 20K and 5K re-
spectively, and the maximum subscription length is 5 pred-
icates.

The results of these experiments are shown Figure 8. We
can see that our Sequential and Sub-Order algorithms per-
forms much better in the Zipf-distribution cases than in the
uniform-distribution case. This is because with Zipf distri-
bution, there are a few predicates that are extremely popu-
lar. In our algorithms, it is very likely that these predicates
are evaluated early and, if they becomes false, eliminate
many subscriptions early. However, the naive algorithm
cannot benefit from such opportunities because it does not
take into account the predicate sharing. Not surprisingly,
with an increasing « in the Zipf distribution, the predicate
popularity becomes more unbalanced, thus the the perfor-
mance of Sequential and Sub-Order continues to improve.

6. RELATED WORK

Many content-based publish/subscribe systems have been
built in the past few years. However, most of them do not
consider the use of generic, expensive operators in evaluat-
ing subscriptions. For example, SIENA [6], Gryphon [1] and
JEDI [13] represent events using attribute-value pairs, and
subscriptions using conjunctions of predicates. These pred-
icates can be evaluated relatively quickly by examining the
event, which typically contains structured data and is small
in size. Some systems, like XFilter[2], XTrie[7] and Web-
Filter[19], represent events using XML documents and sub-
scriptions using XPath expressions or its variations. Again,
these XPath expressions can be evaluated quickly by exam-
ining the event. Since the predicates (or XPath expressions)
in these systems are not expensive to evaluate, the order of
predicate evaluation is less important than in our model.

Several publish/subscribe systems that use semantic match-
ing have recently been proposed. The CREAM system [12]
annotates events with a concept and semantic context. The
Ontology-based publish/subscribe system (OPS) [22] uses
RDF graphs and graph patterns to represent subscriptions
and events. Chirita et al. also present a publish-subscribe
system [11] based on RDF. However, these systems do not
seek to optimize the matching process for a large number of
subscriptions. Moreover, the S-ToPSS system [20] uses syn-
onyms and concept hierarchies to improve matching. The
G-ToPSS system [21] uses RDF to describe events and sub-
scriptions and proposes a scalable matching algorithm for
dealing with large number of subscriptions. It also uses
RDFS class taxonomies to aid matching. While many of
these systems use a predicate-based model (more precisely,
binary predicates in RDF triples), their matching process
do not require the use of expensive operators, because RDF
predicates can be matched by directly comparing the argu-
ments (i.e. subject and object) with the event. In contrary,
our system focuses on the cases where predicates are ex-
pensive to evaluate and hence it is critical to minimize the
number of predicate evaluation.

Our work is also related to the area of continuous queries
on data streams. Continuously Adaptive Continuous Queries
(CACQ [17]) seeks to optimize the evaluation of continuous
queries by sharing relational operators (selections and join
state) across queries. It also adapts to the changes in op-
erator costs and selectivities over time. NiagaraC(Q and it’s
extensions [10, 9] propose different grouping mechanisms for

260

6000

O Naive B Sequential O Sub-Order

5000

4000

3000 4

2000 +—

Evaluation cost

1000

: - mi

Zipf (a=0.8) Zipf (a=1) Zipf (0=1.2)
Popularity model for predicates

Uniform

Figure 8: Evaluation cost under different predicate pop-
ularity distributions

continuous queries in order optimize a large number of con-
tinuous queries in the Internet. Our work differs from these
designs in that we consider arbitrary operators in subscrip-
tions, as opposed to a limited set of relational operators.
As a result, many of these techniques proposed for optimiz-
ing continuous relational queries are not applicable in our
scenario.

The problem of multi-query optimization has been a sub-
ject of study in relational databases for a long time [18, 14].
Again, these works focus on relational operators, while we
consider a more general case with arbitrary expensive oper-
ators. Optimization of a single query with expensive filters
has been considered in [8, 16]. Etzioni et al [15] consider
a similar problem of finding an optimal schedule of query-
ing different information sources to answer a given query.
All these works consider only the optimization for a single
query, while our work optimizes the evaluation of multiple
queries by exploiting their overlaps.

7. CONCLUSION

In this paper, we have presented a publish-subscribe sys-
tem that supports flexible subscription and event description
through the use of generic, expensive filters. In order to sup-
port a large number of concurrent subscriptions, a key issue
in such systems is the efficiency of the matching process. To
this end, we have formulated the optimal subscription eval-
uation problem, proved its NP-Hardness, and proposed an
d-approximation algorithm as well as a heuristic algorithm
for this problem. Both algorithms can exploit the overlaps
between the subscriptions to enable high degree of reuse for
the predicate evaluation, thus reducing the processing over-
head for event matching. We have implemented a proto-
type system and demonstrated its scalability and efficiency
through extensive experiments.

Our current system is based on a centralized matching
server that stores all subscriptions. In the future, we would
like to extend our system to a distributed environment with
multiple event brokers, where subscriptions and/or predi-
cates can be evaluated in parallel. In such an environment,
how to split the subscriptions among the available brokers,
preferably with load balancing constraints, and how to effi-
ciently route the events become very challenging problems.

Our proposed subscription evaluation algorithms should be
adapted to take into account these new system models and
requirements.

8.
1]

2]

[5]

[6]

[9]

[11]

[12]

REFERENCES

M. K. Aguilera, R. E. Strom, D. C. Sturman,

M. Astley, and T. D. Chandra. Matching events in a
content-based subscription system. In PODC' ’99:
Proceedings of the 18th ACM Symposium on
Principles of Distributed Computing, pages 53—61,
Atlanta, Georgia, USA, 1999.

M. Altinel and M. J. Franklin. Efficient filtering of
XML documents for selective dissemination of
information. In VLDB ’00: Proceedings of the 26th
International Conference on Very Large Data Bases,
pages 53—-64, Cairo, Egypt, 2000.

S. Arora and M. Sudan. Improved low-degree testing
and its applications. In STOC ’97: Proceedings of the
29th ACM Symposium on Theory of Computing, pages
485-495, El Paso, Texas, USA, 1997.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,
and P. F. Patel-Schneider, editors. The Description
Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

D. Beckett. RDF /XML syntax specification.
http://www.wS.org/ TR /rdf-syntaz-grammar.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer
Systems, 19(3):332-383, 2001.

C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi.
Efficient filtering of XML documents with XPath
expressions. The VLDB Journal, 11(4):354-379, 2002.
S. Chaudhuri and K. Shim. Optimization of queries
with user-defined predicates. ACM Transactions on
Database Systems, 24(2):177-228, 1999.

J. Chen, D. DeWitt, and J. Naughton. Design and
evaluation of alternative selection placement strategies
in optimizing continuous queries. In ICDE ’02:
Proceedings of the 18th International Conference on
Data Engineering, pages 345-356, San Jose,
California, USA, 2002.

J. Chen, D. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A scalable continuous query system for
internet databases. In SIGMOD ’00: Proceedings of
the ACM SIGMOD International Conference on
Management of Data, pages 379-390, Dallas, Texas,
USA, 2000.

P. A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl.
Publish/subscribe for RDF-based P2P networks. In
ESWS °04: Proceedings of the 1st European Semantic
Web Symposium, pages 182197, Heraklion, Greece,
2004.

M. Cilia, C. Bornhoevd, and A. P. Buchmann.
CREAM: An infrastructure for distributed,
heterogeneous event-based applications. In Proceedings
of the International Conference on Cooperative
Information Systems, pages 482-502, 2003.

G. Cugola, E. D. Nitto, and A. Fuggetta. Exploiting
an event-based infrastructure to develop complex
distributed systems. In ICSE ’98: Proceedings of the
20th International Conference on Software

261

(14]

(15]

(16]

(17]

(18]

20]

(21]

(22]

Engineering, pages 261-270, Kyoto, Japan, 1998.

N. Dalvi, S. Sanghai, P. Roy, and S. Sudarshan.
Pipelining in multi-query optimization. In PODS "01:
Proceedings of the 20th ACM Symposium on
Principles of Database Systems, pages 59-70, Santa
Barbara, California, USA, 2001.

O. Etzioni, S. Hanks, T. Jiangx, R. M. Karp,

O. Madani, and O. Waarts. Efficient information
gathering on the Internet. In FOCS ’96: Proceedings
of the 37th Annual Symposium on Foundations of
Computer Science, pages 234—243, Burlington,
Vermont, USA, 1996.

J. Hellerstein and M. Stonebraker. Predicate
migration: Optimizing queries with expensive
predicates. In SIGMOD ’93: Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 267-276, Washington, D.C, USA, 1993.

S. Madden, M. Shah, J. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over
streams. In SIGMOD ’02: Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 49-60, Madison, Wisconsin, USA, 2002.
H. Mistry, P. Roy, S. Sudarshan, and

K. Ramamritham. Materialized view selection and
maintenance using multi-query optimization. In
SIGMOD ’01: Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 307-318, Santa Barbara, California, USA, 2001.
J. Pereira, F. Fabret, H.-A. Jacobsen, F. Llirbat, and
D. Shasha. WebFilter: A high-throughput XML-based
publish and subscribe system. In VLDB ’01:
Proceedings of the 27th International Conference on
Very Large Data Bases, pages 723-724, Roma, Italy,
2001.

M. Petrovic, I. Burcea, and H.-A. Jacobsen. S-ToPSS:
Semantic Toronto publish/subscribe system. In VLDB
’03: Proceedings of 29th International Conference on
Very Large Data Bases, pages 1101-1104, Berlin,
Germany, 2003.

M. Petrovic, H. Liu, and H.-A. Jacobsen. G-ToPSS:
Fast filtering of graph-based metadata. In WWW “05:
Proceedings of the 14th International Conference on
World Wide Web, pages 539547, Chiba, Japan, 2005.
J. Wang, B. Jin, and J. Li. An ontology-based

publish /subscribe system. In Middleware 04:
Proceedings of the 5th ACM/IFIP/USENIX
International Conference on Middleware, pages
232-253, Toronto, Canada, 2004.

