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ABSTRACT
Large-scale sensor network applications require in-network
processing and data fusion to compute useful summaries of
the sensed measurements. Statistical inference has often
been regarded as a particularly appropriate fit due to its
ability to handle data uncertainty. In this paper we inves-
tigate the use of distributed message-passing algorithms for
performing inference, in which neighboring nodes in the net-
work convey statistical summaries of local information rel-
evant to a global computation. We focus on the class of
reweighted belief propagation algorithms, which includes as
special cases the standard sum-product and max-product
algorithms for general networks with cycles. The family of
reweighted belief propagation (RBP) algorithms provide an
approximate but practical solution to in-network inference.
In contrast to the standard sum- and max-product algo-
rithms, certain RBP algorithms have a number of attractive
theoretical guarantees, including uniqueness of fixed points,
convergence, and robustness.

We further design and implement a practical and modu-
lar architecture for implementing RBP algorithms in real
networks and show that they are an ideal fit for sensor
networks due to their distributed nature, requiring only lo-
cal knowledge and coordination, and little requirements on
other services such as reliable transmission. Our simulation
and Mica2 mote deployment indicate that the proposed al-
gorithms achieve accurate results despite real-world prob-
lems such as dying motes, dead and asymmetric links, and
dropped messages. Finally, we also show how intelligent
scheduling of RBP messages can be used to minimize com-
munication between motes and prolong the lifetime of the
network.

1. INTRODUCTION
Recent advances in hardware and software are leading to

sensor network applications with increasingly large numbers
of motes. In such large-scale deployments, the straightfor-
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ward approach of routing all data to a common base sta-
tion may no longer be feasible. Moreover, such an aggrega-
tion strategy—even when feasible—can be wasteful, since it
ignores which aspects of the data are relevant (or irrelevant)
to addressing a given query. Consequently, an important re-
search challenge is the development and practical implemen-
tation of distributed algorithms for performing data fusion
in an in-network manner, thereby leading to useful statisti-
cal summaries of sensed measurements [20, 1].

The theory of statistical inference [5] provides the appro-
priate framework for formalizing problems of this nature. In
particular, this framework subsumes a broad range of tasks
that arise in sensor network applications, ranging from esti-
mation and regression (e.g., predicting a “smoothed” version
of a temperature gradient) to hypothesis testing (e.g., deter-
mining whether or not a fire has occurred). Past work on
sensor networks [2, 1, 3, 9, 12, 13] has established the utility
of formulating such inference problems in terms of Markov
random fields, a type of graphical model in which vertices
represent variables of interest and edges correspond to cor-
relations between them. Moreover, given such a graphical
model, it is possible to define simple message-passing algo-
rithms for performing inference, in which any given node
passes “messages” to its neighbors that represent statistical
summaries of local information relevant to a global compu-
tation. In a sensor network scenario, each mote is assigned
a subset of variables of the Markov random field and we
use the distributed wireless network of motes to execute the
message-passing algorithm. The fact that message passing
algorithms for graphical models require no global coordina-
tion translates to very simple and robust message passing
algorithms for the sensor motes. The mapping of the graph-
ical model to sensor motes and related issues are discussed
in subsequent sections.

1.1 Related work and our contributions
It is well known that statistical inference for graphical

models is NP-hard in general, but can be performed in ex-
ponential time using the junction tree algorithm. Paskin
et al. [13] developed and implemented a robust architec-
ture for the junction tree algorithm, suitable for performing
exact inference in sensor networks. However, for realistic
networks (like grids or grid-like topologies) that have multi-
ple cycles, the complexity of the junction tree method scales
exponentially in the number of nodes, so that exact infer-
ence quickly becomes intractable. In such settings where
exact inference is computationally intractable, an alterna-
tive approach is provided by the belief propagation (BP)
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Figure 1: Graph of error versus iteration number
for message-passing on a 9×9 nearest-neighbor grid.
Standard belief propagation (BP, blue curve) vs.
reweighted belief propagation (RBP, red curve).

algorithm, and variants thereof.1 The BP algorithm per-
forms exact inference for trees, but also provides reasonable
approximations when applied to many networks with cycles,
and has been suggested by numerous researchers [3, 12, 9]
for sensor network applications. The recent survey paper
by Cetin et al. [1] (and references therein) provides further
discussion of the issues that arise with graphical models and
message-passing in sensor networks.

In contrast to previous work, this paper focuses on the
class of reweighted belief propagation (RBP) algorithms, a
larger family of algorithms which includes as special cases
the standard BP and max-product algorithms for general
networks with cycles. Based on previous work [17, 15, 16, 6,
19], this class of algorithms is attractive from the theoretical
perspective: in particular, certain RBP algorithms (different
algorithms from standard BP) have guarantees of fixed point
uniqueness, convergence, and robustness to message errors
(for reweighted belief propagation), and correctness guaran-
tees (for reweighted max-product). These properties are not
shared by the standard BP algorithm for general networks;
as illustrated in Figure 1, for certain network structures, the
standard BP algorithm can yield highly inaccurate and un-
stable solutions to inference problems. In contrast to this
instability, appropriately designed RBP algorithms are the-
oretically guaranteed to be robust to both message errors,
and model mis-specification. A central thrust of this paper
is that such issues of stability and robustness are of para-
mount importance in sensor network applications.

While a number of researchers [3, 12, 9] have studied the
use of standard BP for sensor networks at both the theo-
retical and simulation level, the work described here is (to

1Belief propagation, when executed on graphs with cycles is
often called the “loopy” belief propagation algorithm. There
are different variants of belief propagation, including the
sum-product updates for approximate marginalization, and
the max-product updates for approximate maximiation. As
discussed at more depth in Section 2, the collective fam-
ily of algorithms are jointly referred to as message-passing
algorithms.

the best of our knowledge) the first to actually implement a
class of loopy message-passing algorithms—including BP as
one exemplar—for sensor motes. More specifically, we de-
sign and implement an architecture for implementing RBP
algorithms in real sensor networks. Our design does not rely
on infrastructure such as reliable messaging, time synchro-
nization and routing, which dramatically simplifies imple-
mentation compared to other algorithms such as junction
tree, while providing substantially better results compared
to other message passing approaches. We present simulation
results evaluating algorithm performance under the real-
world problems of failing motes and communication prob-
lems of failing links, asymmetric links, and dropped mes-
sages. We also show that intelligent scheduling, with greater
communication between nodes on the same mote than nodes
across motes, can make the algorithms converge with much
less communication. We present experimental results from
a prototype implementation using Mica2 motes. Our nesC
implementation is modular and can be easily adapted for
any message passing algorithm and scheduling policy, which
as we show, is useful for numerous applications.

2. BACKGROUND
We begin by providing background on graphical models,

and then turn to discuss of message-passing algorithms, in-
cluding the standard and reweighted sum- and max-product
algorithms.

2.1 Graphical models
We focus here on Markov random field (MRF) models,

which are defined in terms of an undirected graph G, with
vertex set V = {1, . . . , n} and edge set E. Associated with
each node s ∈ V is a random variable Xs, representing (for
our purposes) some type of sensor measurement or a quan-
tity of interest, such as temperature in a particular location,
which takes values either in some continuous space (e.g.,
X = R) or a discrete space (e.g., X = {0, 1, . . . ,m − 1}).
The structure of the graph G constrains the nature of the
statistical interactions among the collection of random vari-
ables ~X = (X1, . . . , Xn); in particular, we associate with
each vertex s a function ψs : X → R+ (called single-site
compatibility function), and with each edge (s, t) a function
ψst : X ×X → R+ (called edgewise compatibility function).

Under the MRF asssumption, the joint distribution of ~X
factorizes as

p(~x) =
1

Z

Y
s∈V

ψs(Xs)
Y

(s,t)∈E

ψst(xs, xt), (1)

where Z =
P

~x∈Xn

hQ
s∈V ψs(Xs)

Q
(s,t)∈E ψst(xs, xt)

i
is a

normalization factor. Although it can be convenient to also
define compatibility functions on larger subsets |S| > 2 of
nodes, there is no loss of generality in making the pairwise
assumption (1).

2.2 Statistical inference in MRFs
Given an MRF of the form (1), it is frequently of interest

to solve one (or more) of the following inference problems:

(a) computing the mode or maximum a posteriori (MAP)
assignment, ~x∗ ∈ arg max~x∈Xn p(~x), corresponding to
the configuration with highest probability under the
model. For example, MAP estimation can determine
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the most likely temperature field given a set of noisy
measurements.

(b) computing the normalization constant Z defined fol-
lowing equation (1). Knowledge of Z is necessary for
many inference problems, for example testing a hy-
pothesis about the state of the network based on data.

(c) computing marginal probabilities at a particular node
(or over some subset of nodes). As with computation
of Z, such a marginalization problem involves sum-
ming over (subsets of) configurations, to determine for
example, the marginal probability distribution of the
temperature at some location given (possibly noisy)
measurements at other locations.

All three problems are computationally challenging because
the size of the search space (problem (a)) or summation
(problems (b) and (c)) grows exponentially in the size of
the network (more specifically, we have |Xn| = mn for a dis-
crete MRF). Indeed, all three of these problems are compu-
tationally intractable (NP-hard (a), or #P complete (b) and
(c)) for general MRFs. For graphs with special structure—
in particular, trees and more generally graphs of bounded
treewidth2—all of these problems can be solved exactly with
the junction tree algorithm [7], albeit with exponential com-
plexity in treewidth. Many graphs commonly used to model
sensor networks, including grid-based graphs and random
geometric graphs, have unbounded treewidth, so that ap-
proximate algorithms are needed in practice.

In this paper, we focus on the problem of computing mar-
ginal probabilities (marginals).

2.3 Message-passing algorithms
In message-passing algorithms for graphical models, each

node s in the MRF performs a local computation, and then
transmits a summary to each of its graph neighbors. The
message from node s to its neighbor t ∈ N(s) is a vector
Mst(xt), representing information that node t requires to
perform the next round of computation. The sum-product
form of message-passing is designed to solve inference prob-
lems (b) and (c), whereas the max-product algorithm applies
to the MAP problem (a). For tree-structured graphs (and
with modifications for junction trees), both forms of these
message-passing algorithms are guaranteed to be exact. The
same updates are widely applied to general graphs with cy-
cles, in which case they provide approximate solutions to
inference problems.

Here we first describe the family of reweighted belief prop-
agation (RBP) algorithms, and then illustrate how a par-
ticular choice of edge weights yields the standard updates.
Various researchers have studied and used such reweighted
algorithms for the sum-product updates [8, 17, 15], general-
ized sum-product [18], and max-product updates [16, 6, 11,
19]. Each algorithm in this family is specified by a vector
~ρ = {ρ, (s, t) ∈ E} of edge weights. The choice ρst = 1 for
all edges (s, t) ∈ E corresponds to the standard updates;
different choices of ~ρ yield distinct algorithms with conver-
gence, uniqueness, and correctness guarantees [17, 16]. For
any fixed set of edge weights ~ρ, the associated reweighted BP
algorithm begins by initializing all of the messages Mst to

2In loose terms, a graph of bounded treewidth is one which
consists of a tree over clusters of nodes; see the paper [7] for
further details.

constant vectors; the algorithm then operates by updating
the message along each edge according to the recursion

Mst(xt)←
X
xs

ψs(xs) [ψst(xs, xt)]
1

ρst

Q
u∈N(s)\t

[Mus(xs)]
ρus

[Mts(xs)]
1−ρst

.

(2)
These updates are repeated until the vector of messages
~M = {Mst,Mts | (s, t) ∈ E} converge to some fixed vec-

tor ~M∗. The order in which the messages are updated is a
design parameter, and various schedules (e.g., parallel, tree-
based updates, etc.) exist. Upon convergence, the message

fixed point ~M∗ can be used to compute approximations to
the marginal distributions at each node and edge (inference
problem (c)) via

qs(xs) ∝ ψs(xs)
Y

t∈N(s)

[Mts(xs)]
ρst , (3)

and also to generate an approximation to the normalization
constant (inference problem (b)). The update (2) corre-
sponds to the sum-product algorithm; replacing the summa-
tion

P
xs

by the maximization maxxs yields the reweighted
form of the max-product algorithm.

2.4 Theoretical guarantees for reweighted BP
The standard sum-product algorithm is a special case of

the updates (2), which correspond to setting the weights
ρst = 1 for all edges (s, t). For this choice, there are in gen-
eral many fixed point solutions for the updates (2), and the
final solution can depend heavily on the initialization. For
suitable settings of the weights [17] different from ρst = 1,
in contrast, the updates are guaranteed to have a unique
fixed point for any network topology and choice of compat-
ibility functions. Moreover, such reweighted BP algorithms
are known to be globally Lipschitz stable in the following
sense [15]. Suppose that q(ψ) denotes the approximate mar-
ginals when a RBP algorithm is used for approximate infer-
ence with data (compatibility functions) ψ. Then there is
a global constant L, depending only on the MRF topology,
such that ‖q(ψ) − q(ψ′)‖ ≤ L‖ψ − ψ′‖, where ‖ · ‖ denotes
any norm. In loose terms, this condition guarantees that
bounded changes to input yield bounded output changes,
which is clearly desirable when applying an algorithm to
statistical data. Again, note that standard BP does not sat-
isfy such a stability condition, due to the presence of phase
transitions [14, 4].

3. PROPOSED ARCHITECTURE
In the following section, we present StatSense, an archi-

tecture for implementing RBP algorithms in sensor net-
works. Our primary focus is the challenges that arise in im-
plementing message-passing algorithms over unreliable net-
works with severe communication and coordination constraints.

3.1 Mapping from graphical models to motes
As described in Section 2, any Markov random field (MRF)

consists of a collection of nodes, each representing some type
of random variable, joined by edges that represent statisti-
cal correlations among these random variables. A sensor
network can also be associated with a type of graph, in gen-
eral different from the MRF graph, in which each vertex
represents a mote and the links between motes represent
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Figure 2: Illustration of the two layers of the graphi-
cal model (left-hand subplot) and motes (right-hand
subplot) used for simulation. Each node in the
graphical model is mapped to exactly one mote,
whereas each mote contains some number (typically
more than one) of nodes. The red angle-slashed dots
denote observation nodes (i.e., locations with sensor
readings).

communication links. As we discuss here, there are various
issues associated with the mapping between the MRF graph
and the sensor network graph [1].

For sensor network applications, some of MRF random
variables will be associated with measurements, whereas
other variables might be hidden random variables (e.g., tem-
perature at a room location without any sensor, or an indi-
cator variables for the event “Room is on fire”). Any observ-
able node may be associated with multiple measurements,
which can be summarized in the form of a histogram rep-
resenting a probability distribution over the data. In this
context, the role of message-passing is to incorporate this
partial information in order to make inferences about hid-
den variables.

Each node s in the MRF is mapped to a unique mote Γ(s)
in the sensor network; conversely, each mote A is assigned
some subset Λ(A) of MRF nodes. For any node s ∈ Λ(A),
the mote A is responsible for handling all of its computation
and communication with other nodes t in the MRF neigh-
borhood N(s). Each node t ∈ N(s) might be mapped either
to a different mote (requiring communication across motes)
or to the same mote (requiring no communcation). Figure 2
illustrates one example assignment for a sensor network with
81 motes, and an MRF with 729 nodes. For instance, in
this example, mote A is assigned nodes 1,2,3,26,27,28, 55,
56 and 57, so that Λ(A) = {1, 2, 3, 26, 27, 28, 55, 56, 57}, and
Γ(1) = A etc. The sensor associated with each mote corre-
sponds to an evidence node in the MRF; for instance, {1,
4, . . . , 82, . . . , 673} are evidence nodes in this example and
we represent them as hashed nodes in Figure 2. Similar to
previous work [10, 13], we assume a semi-static topology in
creating the mote communication graph, so that we place
an edge in this graph if there is a high-quality wireless com-
munication link between these two motes.

Note that the assignment of MRF nodes to motes may
have a substantial impact on communication costs, since
only the messages between nodes assigned to different motes
need be transmitted. There is an additional issue associated
with the node-mote assignment: in particular, the following
property is necessary to preserve the distributed nature of

message-passing when implemented on the sensor network
link graph: for any pair (s, t) of nodes joined by the edge in
the MRF, we require that the associated motes Γ(s) and Γ(t)
are either the same (Γ(s) = Γ(t)), or are joined by an edge in
the mote communication graph. We refer to this as the no-
routing property, since it guarantees that message-passing
on the MRF can be implemented in motes with only nearest-
neighbor mote communication, and hence no routing. Thus,
for a given MRF and mote communciation graph, a question
of interest is whether the no-routing property holds, or can
be made to hold. It is straightforward to construct MRFs
and mote graphs for which it fails. However, the following
result guarantees that it is always possible to modify the
MRF so that this property holds:

Proposition 1. Given any MRF model and connected
mote communication graph, it is always possible to define
an extended MRF, which when mapped onto the same mote
communication graph, satisfies the no-routing property, and
that message-passing on the mote communication graph yields
equivalent inference solutions to the original problem.

Proof. Our proof is constructive in nature, based on a
sequence of additions of nodes to the MRF model such that:

(a) the final extended model satisfies the no-routing prop-
erty, and

(b) running message-passing on the mote communication
graph yields identical inferences to message-passing
with routing in the original model.

Throughout the proof, the set of motes A,B,C, . . . and the
associated mote communication graph remains fixed. The
number of nodes and compatibility functions in the MRF as
well as the mapping from nodes to motes are quantities that
vary. Given any MRF model with variables (X1, . . . , Xn)
and mote assignments (Γ(1), . . . ,Γ(n)), suppose that the
no-routing property fails for some pair (s, t), meaning that
pair of motes Γ(s) and Γ(t) are distinct, and not joined di-
rectly by an edge in the mote link graph. Since the mote
communication graph is connected, we can find some path
P = {Γ(s), A2, . . . , Ap−1,Γ(t)} in the mote communication
graph that joins Γ(s) and Γ(t). Now for each mote Ai, i =
2, . . . (p− 1), we add a new random variable Yi to the orig-
inal MRF; each random variable Yi is mapped to mote Ai

(i.e., Γ(Yi) = Ai)). Moreover, let us remove from the MRF
factorization (1) the compatibility function ψst(xs, xt), and
add to it the following compatibility functions

eψs 2(xs, y2) = I [xs = y2]eψ(p−1) t(yp−1, xt) = ψst(yp−1, xt).

Here the function I(a, b) is an indicator for the event that
{a = b}. The intuition underlying this construction is that
the variables (Y2, . . . , Yp−2) represent duplicated copies of
Xs that are used to set up a communication route between
node s and t. By construction, the communication associ-

ated with each of the new compatibility functions eψ can be
carried out in the mote graph without routing. Moreover,
the new MRF has no factor ψst(xs, xt) that directly couples
Xs toXt, so that edge (s, t) no longer violates the no-routing
property. To complete the proof, we need to verify that when
message-passing is applied in the mote graph associated with
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the new MRF, we obtain the same inferences upon conver-
gence (for the relevant variables (X1, . . . , Xn)) as the origi-
nal model. This can be established by noting that the indi-
cator functions I collapse under summation/maximization
operations, so that the set of message-fixed points for the
new model are equivalent to those of the original model.

Thus, we have shown that an edge (s, t) which fails the
no-routing property can be disposed of, without introducing
any additional links. The proof is completed by applying
this procedure recursively to each troublesome MRF pair
(s, t).

3.2 Message updating
As mentioned previously, the message update scheme is

a design parameter. The most common message update
scheme is one in which all nodes update and communicate
their messages at every time step according to (2), and pro-
ceed synchronously to new iterations. We term this scheme
SyncAllTalk.

Unfortunately, several factors discourage the direct ap-
plication of SyncAllTalk to sensor networks. First, radio
transmission and reception on embedded hardware devices
consume nontrivial amounts of energy. Passing messages
inter-mote is expensive and may overburden the already
resource-constrained network. On the other hand, passing
messages intra-mote incurs no significant energy cost be-
cause it is entirely local. This dichotomy indicates that we
should limit messaging across motes when possible.

Second SyncAllTalk relies on synchronous message pass-
ing that inherently exhibits “bursty” communication pat-
terns. For shared communication channels such as wireless,
burstiness results in issues such as the hidden terminal prob-
lem, which further exacerbates the cost of radio transmission
and reception.

Lastly, for many situations, we expect sensor informative-
ness to vary greatly. For example, in a building monitoring
scenario, the first sensor to detect a fire will generate much
more informative messages than other sensors. Other sce-
narios have also resulted in similar observations [13]. Thus,
evidence nodes, which often correspond directly to sensors,
vary greatly in informativeness. We would like to favor more
informative messages and thereby accelerate the rate of con-
vergence.

We have investigated a number of schemes which take
advantage of these factors. The first scheme, SyncConst-
Prob, exchanges all intra-mote messages at each time step
as before, but only exchanges each inter-mote message with
probability p at each time step. This means there is a direct
decrease in the average period of inter-mote message trans-
mission from once every time step to once every 1/p time
steps. This scheme can trade convergence time for commu-
nication overhead. Probabilistic sending also reduces the
burstiness that causes the hidden terminal problem.

We can further decrease burstiness by relaxing the global
time constraint. Instead, each mote proceeds at its own
local start time and clock rate. As an additional benefit, this
scheme does not rely on any time synchronization service.
This scheme is AsyncConstProb.

Our last scheme, AyncPropProb, makes the message trans-
mission probability proportional to the informativenss of the
message. Rather than reference a global constant probabil-
ity of sending, p, each host sends with probability propor-
tional to the total variation distance raised to a power. For

messages between discrete random variables, this is

psend(M ′
st) =

 
1

2

X
xt

|M ′
st(xt)−Mst(xt)|

!η

(4)

where M ′
st denotes a new message that we may want to send

from node s to node t, Mst denotes the previously sent mes-
sage from node s to node t and η is a tunable “politeness”
factor.

All of the message passing schemes we investigate are ex-
tremely simple to implement, requiring no additional service
infrastructure and operating exclusively with local compu-
tation. The traditional BP literature has proposed more
sophisticated schemes in which all nodes exchange messages
along graph overlays in organized sequence e.g. from the
root of the overlay breadth-first. Unfortunately, these schemes
typically require global coordination and are thus not as
readily applicable in a sensor network context.

3.3 Handling communication failure
In general, when adapting algorithms to run on sensor-

nets, one must deal with network problems such as unreli-
able or asymmetric network links and mote failure. In the
case of RBP, however, little adaptation is required. When a
mote fails, the resulting computation is equivalent to solving
the inferrence problem on a reduced graphical model with
all the nodes that belonged to that mote removed. In ad-
dition, the resulting increase in error is localized near the
removed nodes. If a network link fails, the resulting com-
putation is equivalent to removing the corresponding edges
from the graphical model, and the error is, again, localized.
No such argument holds for asymmetric links; however, as
we see in our evaluation (see Section 5), they also cause only
limited error.

4. IMPLEMENTATION
In order to provide a robust and easily extensible sys-

tem for performing RBP on sensornets, we implemented a
general belief propagation framework in TinyOS/nesC. A
diagram of our system is shown in Figure 3.

Application

Sensor SchedulerInference Scheduler

Inference

Engine

Network Interface Sensor 1 Sensor N……

get marginal

run iteration

get marginal

send/receive

inference message

get sensor

reading

populate

evidence

nodes

refresh

graphical

model

config

node-to-

mote

config

Figure 3: The StatSense architecture as imple-
mented in nesC.

The core component of our design is the inference mod-
ule. It receives incoming messages from other motes via the
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network interface module, new sensor readings via the sen-
sor scheduler module, and instructions on when to compute
new messages from the inference scheduler module. When
instructed to, it uses the incoming messages and sensor data
to compute its outgoing messages and sends any inter-mote
message to their destination via the network interface mod-
ule. It handles intra-mote communication via loopback.

The network module provides very simple networks ser-
vices such as buffering, marshalling and unmarshalling for
incoming and outgoing messages. As a result of the robust-
ness of RBP, we do not need any reliabile delivery. It is
also the natural place to extend to more advanced network
services such as data-centric multi-hop routing for cases of
sophisticated node-to-mote mappings.

The sensor scheduler determines how often sensor read-
ings are taken. Likewise, the inference scheduler determines
when the inference module computes new messages accord-
ing to one of the scheduling scheme detailed in Section 3.2.
The inference scheduler also provides marginals of the graph-
ical model, wrapping the functionality of the inference mod-
ule.

We permit the user to input graphical models via con-
figuration files. We created a pre-processor that converts
this file into a nesC header file that contains all the data
that the inference module needs to perform inference such
as the compatability functions and node to mote mappings.
Thus, it is straightforward for any StatSense user to build
new graphical models and to use the outputs (marginals) of
this model in her application.

We also architected the system in a modular fashion such
that users are free to design new functional pieces indepen-
dently. For example, the inference module, which currently
supports BP, is easy to swap out for different message pass-
ing algorithms such as Max-Product, Min-Sum, etc. This
allows those with a backgrounds in graphical modeling to
test new algorithms without familiarity with sensornet sys-
tems issues. Likewise, it is easy to explore different schedul-
ing schemes by replacing the inference scheduler and sensor
scheduler.

5. EVALUATION
In this section, we evaluate the performance of StatSense

and RBP, the main message-passing algorithm investigated
in the StatSense framework. We are primarily interested in
understanding: (1) the impact of sensor noise on inference
results; (2) the resilience of inference in the face of chang-
ing network conditions; and (3) inference convergence under
different scheduling schemes.

We used both simulation and a Mica2 mote testbed for
our experimental platform. We define error to be the aver-
age over all nodes of the difference between the ground-truth
reading and the mean of the distribution described by the
corresponding random variable. In all places where appro-
priate, we use a confidence interval of 95%.

As a summary of our evaluation, we highlight:

1. StatSense with RBP shows resiliency to many types
of network failures. As failures increase, error grows
linearly with no sharp increases, and maintains a low
absolute value.

2. Improved scheduling schemes offer substantial, and in
some cases, up to 50% benefit over naive scheduling
schemes.

3. Online inference in our testbed deployments exhibit
accurate estimates of actual ground truth.

5.1 The Temperature Estimation Problem
In order to evaluate our system, we examine RBP’s appli-

cation to temperature monitoring. In simulation, we model
the room as a 27x27 grid, similar to Figure 2. For each of
the 100 training and 10 test runs, we randomly choose a
“hot” and “cold” source placed as a 2x2 cell on this grid.
We use the standard discretized heat diffusion process to
calculate realistic steady-state temperatures which act as
ground-truth. Since temperature has strong spatial corre-
lations, our graphical model is a lattice, where each of the
discrete locations in the room has a corresponding node in
the graphical model. The edges in the model connect each
node to its four nearest neighbors in a grid pattern. We dis-
cretize the temperature which ranges from 0 to 100 degrees
into an eight bucket histogram.

Denote the ith observed temperature reading at location s

to be y
(i)
s . Then, givenM i.i.d. samples y(i) = {y(i)

1 , . . . , y
(i)
M },

we determine the compatibility functions empirically accord-
ing to the standard equations:

µ̄st(xs, xt) =
1

M

MX
i=1

δ(xs = y(i)
s )δ(xt = y

(i)
t ) (5)

bψs(xs) =
1

M

MX
i=1

δ(xs = y(i)
s ) (6)

bψst(xs, xt) =
µ̄st(xs, xt)bψs(xs) bψt(xt)

(7)

We also arrange our motes in a 9x9 grid-pattern, and per-
form a straightforward mapping of each 3x3 subgraph of the
graphical model onto the corresponding motes. Each mote
is physically located at the top left of its subgraph and is
responsible for computation of messages for the the other
eight nodes assigned to it (as in Figure 2).

5.2 Resilience to Sensor Error
We begin our tests by evaluating how sensor reading error

affects inference performance. We induce unbiased gaussian
error to the temperature reading, with increasing standard
deviation. We observe in Figure 4 that the algorithm per-
forms well as error increases linearly, exhibiting no sharp
threshold of breakdown. This is because RBP fuses data
using correlation across many sensor readings, producing
more robust results.

5.3 Resilience to Systematic Communication
Failure

In order to test our algorithms resilience to various types
of failure, we ran several experiments where we systemat-
ically increase the number of such failures. We ran three
different experiments: Host Failure, Bidrectional Link Fail-
ure, and Unidrectional Link Failure. In all experiments, the
we added gaussian error with a standard deviation of 20
degrees to each sensor reading.

In the Mote Failure experiment, we increase the number of
motes that are unable to communicate with all other motes.
This removes all nodes in the graphical model owned by
any ”dead” hosts. We limit our error computation to nodes
that are on live hosts. The results for the Mote Failure
experiment are shown in Figure 5. The figure illustrates
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Figure 4: Average error as the gaussian error applied
to the sensor observations increases.
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Figure 5: Average error as the number of dead motes
increases.
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Figure 6: Average error as the number of dead sym-
metric links increases.
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Figure 7: Average error as the number of dead asym-
metric links increases.

that while error grows gradually as hosts die, the standard
deviation of error increases dramatically. As more motes
die, they become much more reliant on their own readings,
and thus are more susceptible to unreliable readings.

In the Bidirectional Link Failure experiment, we gradually
sever an increasing number of links in the network connec-
tivity graph. We currently restrict an edge in the graphical
model to require a link in the network connectivity graph.
Potentially, multicast routing and dynamic detection of link
failures could overcome these errors, at the cost of more mes-
sages. Instead, severing a link between two hosts removes all
edges in the graphical model for nodes on the first host that
are connected to nodes to the other host, and vice versa.
We show the results for this experiment in Figure 6, which
shows that the error increases linearly as we sever links.

In the Unidrectional Link Failure experiment, we grad-
ually cause more links in the network graph to only allow
communication in one direction. This reflects asymmetric
communication problems which are experienced in typical
sensor-network deployments. The results in Figure 7 are
nearly identical to those in Figure 6. Therefore, we con-
clude that our algorithm is resiliant to unidirectional link
failure.

5.4 Resilience to Transient Failure

The algorithm is very resilient to transient failures. We in-
duce the equivalent of transient failures in the AsyncConst-
Prob scheduling algorithm, whereby motes randomly do not
transmit at every iteration. The magnitude of transience
will just modify the number of iterations required before
convergence. Thus, the algorithm does not need to rely on
any robust messaging protocols. If a transmission does not
get through, resending later will be sufficient for correctness.

5.5 Scheduling
For scheduling, we experiment with AsyncConstProb and

AyncPropProb, evaluating the average error over all dif-
ferences between the mean of the inferred random variable
and the corresponding value of the diffusion process ground
truth. We also evaluate how these algorithms affect the
number of transmissions required for convergence.

As was previously discussed in the Section 5.4, and as il-
lustrated in Figure 8, the error is not affected by changes
in the probability that inter-mote messages are sent (or get
through). Interestingly, the number of messages sent does
not monotonically increase as the probability of sending in-
creases. For extremely low probabilities, the chance that the
important message, which we need to send to cause conver-
gence, also has a low probability transmission. As a result,
irrelevant messages get sent, increasing overall transmissions

7
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Figure 8: Average error as the probability of sending
in a single iteration for SyncConstProb increases.
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Figure 9: Number of messages sent as the proba-
bility of sending in a single iteration increases for
SyncConstProb.
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Figure 10: Average error as the exponent of the total
variation difference between old and new messages
increases for AyncPropProb.
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Figure 11: Number of messages sent as the exponent
of the total variation difference between old and new
messages increases for AyncPropProb.

without accelerating convergence. For sufficiently low prob-
abilities, these irrelevant messages overwhelm the commu-
nication savings by transmitting less frequently, as can be
observed in Figure 9. This motivates the investigation of
AyncPropProb.

By changing the politeness constant η for AyncPropProb
as described in 4, we control the likelihood of transmission
as a function of how informative the message is, as defined
by the total variation distance. Setting η = 0, causes the al-
gorithm to degenerates to AsyncAllTalk. As we increase η,
we decrease the likelihood that the message will be transmit-
ted for the same difference in messages between the last-sent
and current message. Figure 10 illustrates that the amount
of error incurred is minimal, while Figure 11 shows that we
save approximately 50% of the messages, even compared to
the minimum value of AsyncConstProb. Another interest-
ing property is that the number of messages is monotonically
decreasing, as opposed to simple AsyncConstProb, which is
convex. An advantage of AsyncConstProb is that modify-
ing the politeness constant η directly trades time to conver-
gence for the number of messages sent, while a sufficiently
small choice of the probability p to send in AsyncConstProb
can increase convergence time while also increasing messages

sent.

5.6 Deployment Experiment

Figure 12: This figure illustrates the two layers
of the Graphical Model (left) and Motes (right)
which we used for our in-lab experiment. The red
angle-slashed dots denote observation nodes, ie loca-
tions where we have sensor readings, and the blue-
horizontal nodes denote locations where we logged
unobserved temperature readings to determine er-
ror.

8



Node actual temp mean of marginal
7 36.8◦C 34.7◦C
10 66.0◦C 55.5◦C
21 33.7◦C 35.1◦C

Table 1: Comparison between actual and inferred
temperatures for three nodes in the graphical model

In our testbed, we inferred the temperature of a room
in unobserved locations through RBP. We reduced the size
of our graphical model to be a 6x6 node lattice, with each
2x2 section assigned to a host and the mote’s true location
again corresponding to the top-left node of its section. This
setup yielded a deployment of 9 motes in a 3x3 grid where
each mote was 6 inches apart from its closest neighbors as
we show in Figure 12. To create temperature gradients, we
used two 1500 watt space heaters. To calculate our initial
compatibility functions, we used the same 9 motes, but at a
distance of 3 inches.

Similarly to the simulated experiments, we placed the
heaters in 10 different setups, and used the collected temper-
ature data to determine the compatibility functions accord-
ing to equations (5), (6), and (7). We then ran our test by
placing both space-heaters in the top right corner of our lab,
and running belief propagation to infer the temperatures of
the unobserved nodes. We compare the inferred temper-
atures at unobserved locations with the temperatures de-
termined using 3 additional ”spying” motes which collected
direct measurements while the experiment ran, but were not
involved in any information provided to the 9 belief propa-
gation motes.

We plot the distributions of the three spying motes in
Figures 13 ,14, and 15, which are discretized as histograms.
We can see that the confidence of motes in their unobserved
variables varies greatly, for instance there is very low vari-
ance in Node 7 (Figure 13), while significantly more variance
in Node 10 (Figure 14). The red bar indicates the bucket
in which the ground truth lies. The figures illustrate that
the mean of this distribution well approximates the actual
sensor reading. Interestingly, the distribution for Node 10
is bimodal. This is because when learning the model, the
system never observed adjacent nodes both resolving to a
temperature bucket of three. In this test, one of the read-
ings next to Node 10 was 3, which resulted in the bimodal
distribution.

Table 1 shows the actual and inferred temperatures for
these three nodes. The reason that the error for node 10 is
so large is that the actual temperature is higher than any we
saw during calibration, and therefore, the quantized values
do not have enough dynamic range to reach that high of a
temperature. The other two nodes do not have this problem,
and we can see that the inference is correct to within 2◦C.

Lastly, we ran experiments to validate our simulations.
We ran inference on the mote deployment with the model
we learned from the real temperature readings. We then
ran inference in simulation using the same graphical model
and the sensor readings obtained from the motes. Figure 16
shows the expected value of the temperatures at each grid
location when we ran the inference on the deployment, and
Figure 17 shows the expected value of the temperatures at
each grid location when we ran the inference in the simu-
lation. As we can see, they are almost identical. In fact,

the maximum difference between the two at any location is
3.2◦C and the average difference is 0.8◦C. The small differ-
ences can be explained by differences in message ordering
and packet loss in the real deployment.

6. FUTURE WORK AND CONCLUSIONS
Currently, our architecture does not consider dynamic

models that exploit time-correlations. This extension could
be useful for applications such as tracking and our work can
be extended to exploit such temporal correlations. Address-
ing mote mobility is another issue we plan to explore espe-
cially the implications it might have in the dynamic mapping
of nodes to motes

We presented a general architecture for using message
passing algorithms for inference in sensor networks, using
reweighted belief propagation. We demonstrate that RBP is
robust to communication and node failures and hence consti-
tutes an effective fit for sensor network applications. The ro-
bustness of our architecture is demonstrated in simulations
and real mote deployment. An important feature of the pro-
posed scheme is that it does not rely on a network layer to
provide multi-hop routing and that our architecture provides
meaningful results even under severe noise in measurements
or network partitions. Note that, even though we show the-
oretically that any graphical model can be mapped to motes
without requiring routing, in practice, some long-range cor-
relations might introduce additional variables. This can be
circumvent by simply ignoring the long-range links. In our
temperature experiments, we found that no such long-range
correlation edges existed. We therefore believe that our ar-
chitecture will be useful for many applications that involve
statistical inference or data uncertainty in sensor networks.
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Figure 16: Temperature field for the experiment run
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Figure 17: Temperature field for the experiment run
in simulation

[9] E. C. Liu and J. M. F. Moura. Fusion in sensor
networks: convergence study. In Proceedings of the
International Conference on Acoustic, Speech, and
Signal Processing, volume 3, pages 865–868, May 2004.

[10] A. Meliou, D. Chu, C. Guestrin, J. Hellerstein, and
W. Hong. Data gathering tours in sensor networks. In
Information Processing in Sensor Networks (IPSN),
April 2006.

[11] T. Meltzer, C. Yanover, and Y. Weiss. Globally
optimal solutions for energy minimization in stereo
vision using reweighted belief propagation. In
International Conference on Computer Vision, June
2005.

[12] J. M. F. Moura, J. Lu, and M. Kleiner. Intelligent
sensor fusion: a graphical model approach. In
Proceedings of the International Conference on
Acoustic, Speech, and Signal Processing, April 2003.

[13] M. Paskin, C. Guestrin, and J. McFadden. A robust
architecture for distributed inference in sensor
networks. In Information Processing in Sensor
Networks (IPSN), April 2005.

[14] S. Tatikonda and M. I. Jordan. Loopy belief
propagation and Gibbs measures. In Proc. Uncertainty
in Artificial Intelligence, volume 18, pages 493–500,
August 2002.

[15] M. J. Wainwright. Estimating the “wrong” graphical
model: Benefits in the computation-limited regime.
Journal of Machine Learning Research, pages
1829–1859, September 2006.

[16] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky.
Exact MAP estimates via agreement on (hyper)trees:
Linear programming and message-passing. IEEE
Trans. Information Theory, 51(11):3697–3717,
November 2005.

[17] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky.
A new class of upper bounds on the log partition
function. IEEE Trans. Info. Theory, 51(7):2313–2335,
July 2005.

[18] W. Wiegerinck. Approximations with reweighted
generalized belief propagation. In Workshop on
Artificial Intelligence and Statistics, January 2005.

[19] C. Yanover, T. Meltzer, and Y. Weiss. Linear
programming relaxations and belief propagation: An
empirical study. Journal of Machine Learning
Research, 7:1887–1907, September 2006.

[20] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich.
Collaborative Signal and Information Processing: an
Information-Directed Approach. IEEE Trans.
Commun., 91(8):1199–1209, August 2003.

10


