
6 Euclid’s Algorithm

In this section, we present Euclid’s algorithm for the great-
est common divisor of two integers. An extended version
of this algorithm will furnish the one implication that is
missing in Figure 5.

Reduction. An important insight is Euclid’s Division
Theorem stated in Section 4. We use it to prove a relation-
ship between the greatest common divisors of numbersj

andk when we replacek by its remainder moduloj.

LEMMA . Let j, k, q, r > 0 with k = jq + r. Then
gcd(j, k) = gcd(r, j).

PROOF. We begin by showing that every common factor
of j andk is also a factor ofr. Lettingd = gcd(j, k) and
writing j = Jd andk = Kd, we get

r = k − jq = (K − Jq)d.

We see thatr can be written as a multiple ofd, so d is
indeed a factor ofr. Next, we show that every common
factor ofr andj is also a factor ofk. Lettingd = gcd(r, j)
and writingr = Rd andj = Jd, we get

k = jq + r = (Jq + R)d.

Hence,d is indeed a factor ofk. But this implies thatd is
a common factor ofj andk iff it is a common factor ofr
andj.

Euclid’s gcd algorithm. We use the Lemma to compute
the greatest common divisor of positive integersj andk.
The algorithm is recursive and reduces the integers until
the remainder vanishes. It is convenient to assume that
both integers,j andk, are positive and thatj ≤ k.

integer GCD(j, k)
q = k div j; r = k − jq;
if r = 0 then return j

else return GCD(r, j)
endif.

If we call the algorithm forj > k then the first recursive
call is for k andj, that is, it reverses the order of the two
integers and keeps them ordered as assumed from then on.
Note also thatr < j. In words, the first parameter,j,
shrinks in each iterations. There are only a finite num-
ber of non-negative integers smaller thanj which implies

that after a finite number of iterations the algorithm halts
with r = 0. In other words, the algorithm terminates after
a finite number of steps, which is something one should
always check, in particular for recursive algorithms.

Last implication. We modify the algorithm so it also
returns the integersx andy for whichgcd(j, k) = jx+ky.
This provides the missing implication in Figure 5.

D’. If gcd(a, n) = 1 then the linear equationax+ny =
1 has a solution.

This finally verifies that the gcd is a test for the existence
of a multiplicative inverse in modular arithmetic. More
specifically,x mod n is the multiplicative inverse ofa in
Zn. Do you see why? We can thus update the relationship
between the statements I, II, III, IV listed at the beginning
of Section 5; see Figure 6.
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Figure 6: Equivalences between the statements listed at thebe-
ginning of Section 5.

Extended gcd algorithm. If r = 0 then the above algo-
rithm returnsj as the gcd. In the extended algorithm, we
also returnx = 1 andy = 0. Now supposer > 0. In this
case, we recurse and get

gcd(r, j) = rx′ + jy′

= (k − jq)x′ + jy′

= j(y′
− qx′) + kx′.

We thus returng = gcd(r, j) as well asx = y′ − qx′ and
y = x′. As before, we assume0 < j ≤ k when we call
the algorithm.

integer3 XGCD(j, k)
q = k div j; r = k − jq;
if r = 0 then return (j, 1, 0)

else (g, x′, y′) = XGCD(r, j);
return (g, y′ − qx′, x′)

endif.
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To illustrate the algorithm, we run it forj = 14 and
k = 24. The values ofj, k, q, r, g = gcd(j, k), x, y at
the various levels of recursion are given in Table 2.

j k q r g x y

14 24 1 10 2 -5 3
10 14 1 4 2 3 -2
4 10 2 2 2 -2 1
2 4 2 0 2 1 0

Table 2: Running the extended gcd algorithm onj = 14 and
k = 24.

Computing inverses. We have established that the inte-
gera has a multiplicative inverse inZn iff gcd(a, n) = 1.
Assumingn = p is a prime number, this is the case when-
evera < p is positive.

COROLLARY. If p is prime then every non-zeroa ∈ Zp

has a multiplicative inverse.

It is straightforward to compute the multiplicative inverse
using the extended gcd algorithm. As before, we assume
p is a prime number and0 < a < p.

integer INVERSE(a, p)
(g, x, y) = XGCD(a, p);
assert g = 1; return x mod p.

The assert statement makes sure thata andp are indeed
relative prime, for else the multiplicative inverse would
not exist. We have seen thatx can be negative so it is
necessary to takex modulop before we report it as the
multiplicative inverse.

Multiple moduli. Sometimes, we deal with large inte-
gers, larger then the ones that fit into a single computer
word (usually32 or 64 bits). In this situation, we have to
find a representation that spreads the integer over several
words. For example, we may represent an integerx by its
remainders modulo3 and modulo5, as shown in Table 3.
We see that the first15 non-negative integers correspond

x 0 1 2 3 4 . . . 13 14 15

x mod 3 0 1 2 0 1 . . . 1 2 0
x mod 5 0 1 2 3 4 . . . 3 4 0

Table 3: Mapping the integers from0 to15 to pairs of remainders
after dividing with3 and with5.

to different pairs of remainders. The generalization of this
insight to relative prime numbersm andn is known as the

CHINESE REMAINDER THEOREM. Let m, n > 0 be
relative prime. Then for everya ∈ Zm andb ∈ Zn, the
system of two linear equations

x mod m = a;

x mod n = b

has a unique solution inZmn.

There is a further generalization to more then two moduli
that are pairwise relative prime. The proof of this theorem
works as suggested by the example, namely by showing
thatf : Zmn → Zm × Zn defined by

f(x) = (x mod m, x mod n)

is injective. Since bothZmn andZm × Zn have sizemn,
this implies thatf is a bijection. Hence,(a, b) ∈ Zm×Zn

has a unique preimage, the solution of the two equations.

To use this result, we would take two large integers,x

andy, and represent them as pairs,(x mod m, x mod n)
and (x mod m, x mod n). Arithmetic operations can
then be done on the remainders. For example,x times
y would be represented by the pair

xy mod m = [(x mod m)(y mod m)] mod m;

xy mod n = [(x mod n)(y mod n)] mod n.

We would choosem andn small enough so that multi-
plying two remainders can be done using conventional,
single-word integer multiplication.

Summary. We discussed Euclid’s algorithm for com-
puting the greatest common divisor of two integers, and its
extended version which provides the missing implication
in Figure 5. We have also learned the Chinese Remainder
Theorem which can be used to decompose large integers
into digestible junks.
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