6 Euclid’sAlgorithm that after a finite number of iterations the algorithm halts
with » = 0. In other words, the algorithm terminates after

In this section, we present Euclid’s algorithm for the great & finite number of steps, which is something one should
est common divisor of two integers. An extended version always check, in particular for recursive algorithms.
of this algorithm will furnish the one implication that is

missing in Figure 5. Last implication. We modify the algorithm so it also

returns the integersandy for whichged(j, k) = jx+ky.

Reduction. An important insight is Euclid’s Division  1his provides the missing implication in Figure 5.
Theorem stated in Section 4. We use it to prove a relation-

ship between the greatest common divisors of numpers  D’. If gcd(a, n) = 1thenthe linear equationz +ny =
andk when we replacé by its remainder modulg. 1 has a solution.

LEMMA. Let j.k.q.r > O with k = jq + r. Then This flnall_y yenﬁes_that the.gcd is a test forthe_emstence
oL ! of a multiplicative inverse in modular arithmetic. More
ged(g, k) = ged(r, j). - . e O .
specifically,z mod n is the multiplicative inverse ofi in
Z,,. Do you see why? We can thus update the relationship
between the statements I, 11, I, 1V listed at the beginning
of Section 5; see Figure 6.

PROOFE We begin by showing that every common factor
of j andk is also a factor of-. Lettingd = ged(j, k) and
writing j = Jd andk = Kd, we get

ro= k—jq = (K- Jg)d OB
We see that- can be written as a multiple of, sod is N b, b
indeed a factor of. Next, we show that every common A @ <= @
factor ofr andj is also a factor ok. Lettingd = ged(r, j) /7
and writingr = Rd andj = Jd, we get B

®

Figure 6: Equivalences between the statements listed dtethe
ginning of Section 5.

k = jg+r = (Jg+ R)d.

Henced is indeed a factor of. But this implies thatl is
a common factor of and# iff it is a common factor of-
andj.

. ) Extended gcd algorithm. If » = 0 then the above algo-
Euclid’sged algorithm.  We use the Lemmato compute  ithm returns; as the ged. In the extended algorithm, we

the greatest common divisor of positive integgmnd k. also returnz = 1 andy = 0. Now suppose > 0. In this
The algorithm is recursive and reduces the integers until case, we recurse and get
the remainder vanishes. It is convenient to assume that
both integers; andk, are positive and that < k. ged(r,j) = ra' 45y

. GCD(. k) = (k—joz' +jy’

I nt eger j YA / /

} ) = —qx ) + ka'.

g=k div j, r=k—jq Iy =)

ifr=0thenreturny We thus returry = ged(r, j) as wellast = y' — ¢z’ and
el sereturn GCD(r,j) y = 2. As before, we assunme < j < k when we call

endi f. the algorithm.

If we call the algorithm forj > £ then the first recursive i nt eger® XxGCD(j, k)

call is for k andy, that is, it reverses the order of the two g=Fk div j;, r=k—jq

integers and keeps them ordered as assumed from then on. ifr=0thenreturn(j,1,0)

Note also that- < j. In words, the first parametey, el se (g,2',y") = xGCD(r, j);

shrinks in each iterations. There are only a finite num- return(g,y —qa’,2')

ber of non-negative integers smaller thawhich implies endi f .

18



To illustrate the algorithm, we run it foj = 14 and to different pairs of remainders. The generalization of thi
k = 24. The values ofj, k,q,r,g = ged(j, k), z,y at insight to relative prime numbers andn is known as the
the various levels of recursion are given in Table 2.

151 2]1| (i 16| g ;g y3 CHINESE REMAINDER THEOREM. Let m,n > 0 be
10 141 al2 '3 > relative prime. Then for every € Z,, andb € Z,, the
) system of two linear equations
4 1002 2|2 2 1 y inear equat
2 412 0|12 1 o0 zmodm = a
Table 2: Running the extended gcd algorithmjor= 14 and zmodn = b

k=24 ) o
has a unique solution iA,,,,,.

o ) ) There is a further generalization to more then two moduli
Computinginverses. We have established that the inte- it are pairwise relative prime. The proof of this theorem

gera has a multiplicative inverse ifi,, iff ged(a,n) = 1. works as suggested by the example, namely by showing
Assumingn = p is a prime number, this is the case when- that f : Zywm — Zm X Zn, defined by

evera < p is positive.
f(x) = (z modm,z modn)
COROLLARY. If pis prime then every non-zeroc Z,

has a multiplicative inverse is injective. Since bot#.,,,,, andZ,, x Z,, have sizenn,

this implies thatf is a bijection. Hencga, b) € Z,,, X Z,,

It is straightforward to compute the multiplicative invers has a unique preimage, the solution of the two equations.

using the extended gcd algorithm. As before, we assume  To use this result, we would take two large integers,

pis a prime numberand < a < p. andy, and represent them as paifs,mod m, x mod n)
and (x mod m,z mod n). Arithmetic operations can
i nt eger INVERSEa, p) then be done on the remainders. For exampléimes
(9,,y) = XGCD(a, p); y would be represented by the pair
assert g=1; returnx mod p.
zymodm = [(x mod m)(y mod m)] mod m;
The assert statement makes sure thandp are indeed zymodn = [(zmod n)(y mod n)] mod n.

relative prime, for else the multiplicative inverse would ,
not exist. We have seen thatcan be negative so it is V& would choosen andn small enough so that multi-

necessary to take modulop before we report it as the plying two remainders can be done using conventional,
multiplicative inverse single-word integer multiplication.

Multiple moduli. Sometimes, we deal with large inte- Summary. We discussed El_“?"d,s algorl_thm for com-
gers, larger then the ones that fit into a single computer PUting the greatestcommon divisor of two integers, and its
word (usually32 or 64 bits). In this situation, we have to €Xtended version which provides the missing implication
find a representation that spreads the integer over several Figure 5. We have also learned the Chinese Remainder
words. For example, we may represent an integhy its .Theor.em v_vhlch can be used to decompose large integers
remainders moduld and modulds, as shown in Table 3. Nt digestible junks.

We see that the first5 non-negative integers correspond

T || 0O 1 2 3 4 13 14 15
zmod3| 0 1 2 0 1 ... 1 2 0
zmodb5| 0 1 2 3 4 3 4 0

Table 3: Mapping the integers frodrto 15 to pairs of remainders
after dividing with3 and with5.
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