
14 Solving Recurrence Relations

Solving recurrence relations is a difficult business and
there is no catch all method. However, many relations aris-
ing in practice are simple and can be solved with moderate
effort.

A few functions. A solution to a recurrence relation
is generally given in terms of a function, eg.f(n) =
n log2 n, or a class of similar functions, eg.T (n) =
O(n log2 n). It is therefore useful to get a feeling for some
of the most common functions that occur. By plotting the
graphs, as in Figure 13, we get an initial picture. Here we
see a sequence of progressively faster growing functions:
constant, logarithmic, linear, and exponential. However,
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Figure 13: The graphs of a small set of functions,f(x) = 1,
f(x) = log

2
x, f(x) = x, f(x) = 2x.

such plots can be confusing because they depend on the
scale. For example, the exponential function,f(x) = 2x,
grows a lot faster than the quadratic function,f(x) = x2,
but this would not be obvious if we only look at a small
portion of the plane like in Figure 13.

Three regimes. In a recurrence relation, we distinguish
between thehomogeneous part, the recursive terms, and
the inhomogeneous part, the work that occurs. The solu-
tion of depends on the relative size of the two, exhibiting
qualitatively different behavior if one dominates the other
or the two are in balance. Recurrence relations that exhibit
this three-regime behavior are so common that it seems
worthwhile to study this behavior in more detail. We sum-
marize the findings.

MASTER THEOREM. Let a ≥ 1 andb > 1 be integers
andc ≥ 0 andd > 0 real numbers. LetT (n) be defined
for integers that are powers ofb by

T (n) =

{

aT (n

b
) + nc if n > 1
d if n = 1.

Then we have the following:

• T (n) = Θ(nc) if logb a < c;

• T (n) = Θ(nc log n) if logb a = c;

• T (n) = Θ(nlog
b

a) if logb a > c.

This behavior can be explained by recalling the formula
for a geometric series,(r0 + . . .+ rn−1)A = 1−r

n

1−r
A, and

focusing on the magnitude of the constant factor,r. For
0 < r < 1, the sum is roughlyA, the first term, forr = 1,
the sum isn, the number of terms, and forr > 1, the sum
is roughlyrn−1A, the last term.

Let us consider again the recursion tree and, in partic-
ular, the total work at itsi-th level, starting withi = 0 at
the root. There areai nodes and the work at each node is
( n

bi )
c. The work at thei-th level is therefore

ai

( n

bi

)c

= nc
ai

bic
.

There are1 + logb n levels, and the total work is the sum
over the levels. This sum is a geometric series, with factor
r = a

bc . It is therefore dominated by the first term ifr < 1,
all terms are the same ifr = 0, and it is dominated by
the last term ifr > 1. To distinguish between the three
cases, we take the logarithm ofr, which is negative, zero,
positive ifr < 1, r = 1, r > 1. It is convenient to take the
logarithm to the basisb. This way we get

logb

a

bc
= logb a − logb bc

= logb a − c.

We haver < 1 iff log
b
a < c, In which case the dom-

inating term in the series isnc. We haver = 1 iff
log

b
a = c, in which case the total work isnc log

b
n. We

haver > 1 iff logb a > c, in which case the dominating
term isd · alog

b
n = d · nlog

b
a. This explains the three

cases in the theorem.

There are extensions of this result that discuss the cases
in whichn is not a lower ofb, we have floors and ceilings
in the relation,a andb are not integers, etc. The general
behavior of the solution remains the same.
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Using induction. Once we know (or feel) what the solu-
tion to a recurrence relation is, we can often use induction
to verify. Here is a particular relation defined for integers
that are powers of4:

T (n) =

{

T (n

2
) + T (n

4
) + n if n > 1

1 if n = 1.

To get a feeling for the solution, we group nodes with
equal work together. We getn once, n

2
once, n

4
twice,

n

8
three times,n

16
five times, etc. These are the Fibonacci

numbers, which grow exponentially, with basis equal to
the golden ratio, which is roughly1.6. On the other hand,
the work shrinks exponentially, with basis2. Hence, we
have a geometric series with factor roughly0.8, which is
less than one. The dominating term is therefore the first,
and we would guess that the solution is some constant
timesn. We can prove this by induction.

CLAIM . There exists a positive constantc such that
T (n) ≤ cn.

PROOF. For n = 1, we haveT (1) = 1. Hence, the
claimed inequality is true providedc ≥ 1. Using the
strong form of Mathematical Induction, we get

T (n) = T
(n

2

)

+ T
(n

4

)

+ n

= c
n

2
+ c

n

4
+ n

=

(

3c

4
+ 1

)

n.

This is at mostcn provided 3c

4
+ 1 ≤ c or, equivalently,

c ≥ 4.

The inductive proof not only verified what we thought
might be the case, but it also gave us the smallest constant,
c = 4, for whichT (n) ≤ cn is true.

Finding the median. Similar recurrence relations arise
in practice. A classic example is an algorithm for finding
thek-smallest of an unsorted set ofn items. We assume
the items are all different. A particularly interesting case
is the middle item, which is called themedian. For odd
n, this is thek-smallest withk = n+1

2
. For evenn, we

setk equal to either the floor or the ceiling ofn+1
2

. The
algorithm takes four steps to find thek-smallest item.

STEP 1. Partition the set into groups of size5 and find the
median in each group.

STEP 2. Find the median of the medians.

STEP 3. Split the set intoS, the items smaller than the
median of the medians, andL, the items larger than
the median of the medians.

STEP 4. Lets = |S|. If s < k−1 then return the(k−s)-
smallest item inL. If s = k − 1 then return the
median of the medians. ifs > k − 1 then return the
k-smallest item inS.

The algorithm is recursive, computing the median of
roughly n

5
medians in Step 2, and then computing an item

either inL or in S. To prove that the algorithm terminates,
we need to show that the sets considered recursively get
strictly smaller. This is easy as long asn is large but tricky
for smalln. We ignore these difficulties.

Figure 14: The upper left shaded region consists of items smaller
than the median of the medians. Symmetrically, the lower right
shaded region consists of items larger than the median of the
medians. Both contain about three tenth of all items.

To get a handle on the running time, we need to estimate
how much smaller thann the setsS andL are. Consider
Figure 14. In one iteration of the algorithm, we eliminate
either all items smaller or all items larger than the median
of the medians. The number of such items is at least the
number in one of the two shaded regions, each containing
roughly 3n

10
items. Hence, the recurrence relation describ-

ing the running time of the algorithm is

T (n) =

{

T (7n

10
) + T (n

5
) + n if n > n0

n0 if n ≤ n0,

for some large enough constantn0. Since 7
10

+ 1
5

is strictly
less than one, we guess that the solution to this recurrence
relation is againO(n). This can be verified by induction.
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