
23 Planar Graphs

Although we commonly draw a graph in the plane, us-
ing tiny circles for the vertices and curves for the edges, a
graph is a perfectly abstract concept. We now talk about
constraints on graphs necessary to be able to draw a graph
in the plane without crossings between the curves. This
question forms a bridge between the abstract and the geo-
metric study of graphs.

Drawings and embeddings. Let G = (V, E) be a
simple, undirected graph and letR2 denote the two-
dimensional real plane. Adrawing maps every vertex
u ∈ V to a pointε(u) in R

2, and it maps every edge
uv ∈ E to a curve with endpointsε(u) andε(v); see Fig-
ure 33. The drawing is anembedding if

1. vertices are mapped to distinct points;

2. edge are mapped to curves without self-intersections;

3. a curve does not pass through a point, unless the cor-
responding edge and vertex are incident, in which
case the point is an endpoint of the curve;

4. two curves are disjoint, unless the corresponding
edges are incident to a common vertex, in which case
the curves share a common endpoint.

Not every graph can be drawn without crossings between
the curves. The graphG is planar if it has an embedding
in the plane.

Figure 33: Three drawings ofK4. From left to right a drawing
that is not an embedding, an embedding with one curved edge,
and a straight-line embedding.

Euler’s Formula. Think of the plane as an infinite piece
of paper which you cut along the curves with a pair of scis-
sors. Each piece of the paper that remains connected after
the cutting is called aface of the embedding. We write
n = |V |, m = |E|, andℓ for the number of faces. Euler’s
Formula is a linear relation between the three numbers.

EULER’ S FORMULA . For an embedding of a connected
graph we haven − m + ℓ = 2.

PROOF. Choose a spanning tree(V, T ) of (V, E). It has
n vertices,|T | = n − 1 edges, and one face. We have
n − (n − 1) + 1 = 2, which proves the formula ifG
is a tree. Otherwise, draw the remaining edges, one at a
time. Each edge decomposes one face into two. The num-
ber of vertices does not change,m increases by one, andℓ
increases by one. Since the graph satisfies the claimed lin-
ear relation before drawing the edge it satisfies the relation
also after drawing the edge.

We get bounds on the number of edges and faces, in
terms of the number of vertices, by consideringmaximally
connected graphs for which adding any other edge would
violate planarity. Every face of a maximally connected
planar graph with three or more vertices is necessarily a
triangle, for if there is a face with more than three edges
we can add an edge without crossing any other edge. Let
n ≥ 3 be the number of vertices, as before. Since every
face has three edges and every edge belong to two trian-
gles, we have3ℓ = 2m. We use this relation to rewrite
Euler’s Formula:n − m + 2m

3
= 2 andn − 3ℓ

2
+ ℓ = 2

and thereforem = 3n − 6 andℓ = 2n − 4. Every planar
graph can be completed to a maximally connected planar
graph, which implies that it has at most these numbers of
edges and faces.

Note that the sum of vertex degrees is twice the number
of edges, and therefore

∑
u deg(u) ≤ 6n − 12. It fol-

lows that every planar graph has a vertex of degree less
than six. We will see uses of this observation in coloring
planar graphs and in proving that they have straight-line
embeddings.

Non-planarity. We can use the consequences of Euler’s
Formula to prove that the complete graph of five vertices
and the complete bipartite graph of three plus three ver-
tices are not planar. Consider firstK5, which is drawn in
Figure 34, left. It hasn = 5 vertices andm = 10 edges,

Figure 34:K5 on the left andK3,3 on the right.

contradicting the upper bound of at most3n−6 = 9 edges
for maximally connected planar graphs. Consider second
K3,3, which is drawn in Figure 34, right. It hasn = 6
vertices andm = 9 edges. Each cycle has even length,
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which implies that each face has four or more edges. We
get 4ℓ ≤ 2m andm ≤ 2n − 4 = 8 after plugging the
inequality into Euler’s Formula, again a contradiction.

In a sense,K5 and K3,3 are the quintessential non-
planar graphs. Two graphs arehomeomorphic if one can
be obtained from the other by a sequence of operations,
each deleting a degree-2 vertex and merging its two edges
into one or doing the inverse.

KURATOWSKI’ S THEOREM. A graphG is planar iff no
subgraph ofG is homeomorphic toK5 or to K3,3.

The proof of this result is a bit lengthy and omitted. We
now turn to two applications of the structural properties of
planar graphs we have learned.

Vertex coloring. A vertex k-coloring is a mapχ : V →
{1, 2, . . . , k} such thatχ(u) 6= χ(v) wheneveru andv are
adjacent. We callχ(u) thecolor of the vertexu. For pla-
nar graphs, the concept is motivated by coloring countries
in a geographic map. We model the problem by replacing
each country by a vertex and by drawing an edge between
the vertices of neighboring countries. A famous result is
that every planar graph has a4-coloring, but proving this
fills the pages of a thick book. Instead, we give a con-
structive argument for the weaker result that every planar
graph has a5-coloring. If the graph has five or fewer ver-
tices then we color them directly. Else we perform the
following four steps:

Step 1. Remove a vertexu ∈ V with degreek =
deg(u) ≤ 5, together with thek incident edges.

Step 2. If k = 5 then find two neighborsv andw of
the removed vertexu that are not adjacent and merge
them into a single vertex.

Step 3. Recursively construct a5-coloring of the
smaller graph.

Step 4. Add u back into the graph and assign a color
that is different from the colors of its neighbors.

Why do we know that verticesv andw in Step 2 exist? To
see that five colors suffice, we just need to observe that the
at most five neighbors ofu use up at most four colors. The
idea of removing a small-degree vertex, recursing for the
remainder, and adding the vertex back is generally useful.
We show that it can also be used to construct embeddings
with straight edges.

Convexity and star-convexity. We call a regionS in the
planeconvex if for all points x, y ∈ S the line segment
with endpointsx andy is contained inS. Figure 35 shows
examples of regions of either kind. We callS star-convex
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Figure 35: A convex region on the left and a non-convex star-
convex region on the right.

if there is a pointz ∈ S such that for every pointx ∈ S the
line segment connectingx with z is contained inS. The
set of such pointsz is thekernel of S.

It is not too difficult to show that every pentagon is star-
convex: decompose the pentagon using two diagonals and
choosez close to the common endpoint of these diago-
nals, as shown in Figure 36. Note however that not every
hexagon is star-convex.

z

Figure 36: A (necessarily) star-convex pentagon and two non-
star-convex hexagons.

Straight-line embedding. A straight-line embedding
maps every (abstract) edge to the straight line segment
connecting the images of its two vertices. We prove that
every planar graph has a straight-line embedding using the
fact that it has a vertex of degree at most five. To sim-
plify the construction, we assume that the planar graph
G is maximally connected and we fix the ‘outer’ triangle
abc. Furthermore, we observe that ifG has at least four
vertices then it has a vertex of degree at most5 that is dif-
ferent froma, b andc. Indeed, the combined degree of
a, b, c is at least7. The combined degree of the othern−3
vertices is therefore at most6n − 19, which implies the
average is still less than6, as required.

Step 1. Remove a vertexu ∈ V − {a, b, c} with de-
greek = deg(u) ≤ 5, together with thek incident
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edges. Addk−3 edges to make the graph maximally
connected again.

Step 2. Recursively construct a straight-line embed-
ding of the smaller graph.

Step 3. Remove the addedk − 3 edges and mapu to
a pointε(u) inside the kernel of thek-gon. Connect
ε(u) with line segments to the vertices of thek-gon.

Figure 37 illustrates the recursive construction. It would
be fairly straightforward to turn the construction into a re-
cursive algorithm, but the numerical quality of the embed-
dings it gives is not great.
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Figure 37: We fix the outer triangleabc, remove the degree-5
vertexu, recursively construct a straight-line embedding of the
rest, and finally add the vertex back.
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