Cache Memory

Computer Science 104

cps 104 memory.1 ©GK & ARL

Administrivia

¢ Midterm Il next Monday
° Homework #4
° Project Due Date: Wed April 22 in class

Reading
° Chapter 5

cps 104 memory.z ©GK & ARL

o

o

o

o

o

o

o

Outline of Today’s Lecture

Review

The Memory Hierarchy
Direct-mapped Cache

Two-Way Set Associative Cache
Fully Associative cache

Replacement Policies

Write Strategies

cps 104 memory.3

° The Five Classic Components of a Computer

The Big Picture: Where are We Now?

Processor

Control

Datapath

Memory

Input

Output

° Today’s Topic: Cache Memory

cps 104 memory.4

Issues for Memory Systems

° Capacity/Size

° Cost
* What technology is cheap?

° Performance
* What technology is fast?

° Ease of Use

* How much do programmers have to worry about
it?

cps 104 memory.s ©GK & ARL

Cache

° What is a cache?
° What is the motivation for a cache?
° Why do caches work?

° How do caches work?

cps 104 memory.e ©GK & ARL

The Motivation for Caches

° Motivation:

Memory System

Processor Cache

DRAM

* Large memories (DRAM) are slow
* Small memories (SRAM) are fast

° Make the average access time small by:

» Servicing most accesses from a small, fast memory.

° Reduce the bandwidth required of the large memory

cps 104 memory.7

©GK & ARL
Levels of the Memory Hierarchy
Capacity Upper Level
Access Time Staging
Cost Xfer Unit faster
CPU Registers | .
100s Bytes Reglstersl
<10sns Instr. Operands prog./compiler
' 1-8 bytes
Cache
K Bytes
10-100 ns Cache
~$.0005/bit cache controller
Blocks 8-128 bytes
Main Memory
M Bytes Memory
100ns-1us
~$.00001/bit 0s
Pages 512-4K bytes
Disk
G Bytes

ms,
10-3-10"&ents

Disk/Network

. user/operator

Files Mbytes
Tape Larger
infinite
secamin Tape/DVD/Network Lower Level
10

cps 104 memory.s

©GK & ARL

The Principle of Locality

Probability
of reference

N

0 Address Space 2"

° The Principle of Locality:

* Program access a relatively small portion of the address space at
any instant of time.

+ Example: 90% of time in 10% of the code

° Two Different Types of Locality:

* Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon.

» Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.

cps 104 memory.g ©GK & ARL

Memory Hierarchy: Principles of Operation

° At any given time, data is copied between only 2 adjacent levels:
* Upper Level (Cache) : the one closer to the processor
- Smaller, faster, and uses more expensive technology
* Lower Level (Memory): the one further away from the processor
- Bigger, slower, and uses less expensive technology

° Block:

* The minimum unit of information that can either be present or not
present in the two level hierarchy

Lower Level
To Processor | Upper Level (Memory)
(Cache)
Blk X
From Processor - BIkY

cps 104 memory.1 0 ©GK & ARL

Memory Hierarchy: Terminology

° Hit: data appears in some block in the upper level (example: Block X)
« Hit Rate: the fraction of memory access found in the upper level
« Hit Time: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss

° Miss: data needs to be retrieved from a lower level (Block Y)
* Miss Rate =1 - (Hit Rate)
* Miss Penalty = Time to replace a block in the upper level +
Time to deliver the block the processor

° Hit Time << Miss Penalty

Lower Level
To Processor Upper Level (Memory)
(Cache)
Blk X
From Processor - BIkY
cps 104 memory.1 1 ©GK & ARL

Direct Mapped Cache

* Direct Mapped cache: array of fixed size frames.

» Each frame holds consecutive bytes of main memory data (block).

* The Tag Array holds the Block Memory Address.

+ A valid bit associated with each cache block tells if the data is valid.

» Cache Index: The location of a block (and it’s tag) in
the cache.
* Block Offset: The byte location in the cache block.

Cache-Index = (<Address> Mod (Cache_Size))/ Block_Size
Block-Offset = <Address> Mod (Block_Size)
Tag = <Address> / (Cache_Size)

cps 104 memory.1 2 ©GK & ARL

The Simplest Cache: Direct Mapped Cache

Memory Address Memory

0 — 4 Byte Direct Mapped Cache with 1-byte blocks
1
2 Cache Index
0
3
1
4]
2
5
3
6
; ° Location 0 can be occupied by data from:
0 * Memory location 0, 4, 8, ... etc.
A * In general: any memory location
B whose 2 LSBs of the address are 0s
c * Address<1:0> => cache index
D ° Which one should we place in the cache?
E
F ° How can we tell which one is in the cache?
cps 104 memory.13 ©GK & ARL

Direct Mapped Cache (Cont.)

For a Cache of 2" bytes with block size of 2- bytes
* There are 2" cache blocks,
* Lowest L bits of the address are Block-Offset bits
* Next (M - L) bits are the Cache-Index.
* The last (32 - M) bits are the Tag bits.

32-M bits Tag | M-L bits Cache Index | L bits block offset

Data Address

cps 104 memory.1 4 ©GK & ARL

Example: 1-KB Cache with 32B blocks:

Cache Index = (<Address> Mod (1024))/ 32
Block-Offset = <Address> Mod (32)

Tag = <Address> / (1024)

| 22 bits Tag | 5 bits Cache Index | 5 bits block offset

Address
Cache Tag Direct Mapped Cache Data
Valid bit 22 bits 32-byte block
Byte 31| Byte 30 Byte 1 Byte 0 32
cache
blocks
1K =210=1024
25=32

cps 104 memory.1 5 ©GK & ARL

Example: 1KB Direct Mapped Cache with 32B Blocks

° For a 1024 (2'°) byte cache with 32-byte blocks:
* The uppermost 22 = (32 - 10) address bits are the Cache Tag
* The lowest 5 address bits are the Byte Select (Block Size = 2°)
* The next 5 address bits (bit5 - bit9) are the Cache Index

31 9 4 0
I Cache Tag Example: 0x50 I Cache Index I Byte Select I
Ex: 0x01 Exq0x00
Stored as part
of the cache “state”
Valid Bit _ Cache Tag Cache Data
| Byte 31 °° | Byte 1 | Byte 0
|| 0x50 Byte 63| °° | Byte 33| Byte 32

W N= D

Byte 1023 °° Byte 99231

Byte Select
cps 104 memory.1 6 ©GK & ARL

Example: 1K Direct Mapped Cache

31 Cache Tag 9 Cache Index 4 Byte Select 0
[0x0002fe [0x00 | ox00 |

Valid Bit __ Cache Tag Cache Data
0 [OXXXXXXX Byte31] °° |Bytel |Byte0 | 0
1| 0x000050 Byte 63| °° | Byte 33| Byte 32| 1
1| 0x004440 2
|| 3
|| Byte 1023 °* Byte992] 31

- Byte Select
- Cache Miss
cps 104 memory.1 7 ©GK & ARL

Example: 1K Direct Mapped Cache

31 Cache Tag 9 Cache Index 4 Byte Select 0
[0x0002fe [0x00 | 0x00 |

Valid Bit _ Cache Tag Cache Data
1 0x0002fe Neyv Blokk of dala 0
1] 0x000050 Byte 63| ** | Byte 33| Byte 32 1
1] 0x004440 2
] 3
|] Byte 1023 s Byte992] 31

Byte Select

cps 104 memory.1 8

©GK & ARL

Example: 1K Direct Mapped Cache

31 Cache Tag 9 Cache Index 4 Byte Select 0
| 0x000050 | 0x01 | oxo8 |
Valid Bit __ Cache Tag Cache Data
1| 0x0002fe Byte31] °° |Bytel |Byte0 | 0
1 [0x000050 Byte 63| °° | Byte 33| Byte 32| 1
1| 0x004440 2
3

Byte 1023 °* Byte 99231

- Byte Select
i Cache Hit
cps 104 memory.1 9 ©GK & ARL
Example: 1K Direct Mapped Cache
31 Cache Tag 9 Cache Index 4 BYyte Select(
[0x002450 [0x02 | ox04 |
Valid Bit _ Cache Tag Cache Data
1 | 0x0002fe Byte31] °° |Bytel |Byte0 | 0
1 | 0x000050 Byte 63| °° | Byte 33| Byte 32| 1
1] 0x004440 2
3

Byte 1023 °° __ Byte 992] 31

Byte Select

Cache Miss

cps 104 memory.zo ©GK & ARL

Example: 1K Direct Mapped Cache

31 Cache Tag 9 Cache Index 4 Byte Select(
| 0x002450 [0x02 | ox04 |
Valid Bit __ Cache Tag Cache Data
1| 0x0002fe Byte31] °° |Bytel |Byte0 | 0
1 [0x000050 Byte 63| °° | Byte 33| Byte 32| 1
1| 0x002450 New Block of data 2
3

Byte 1023 °* Byte 99231

Byte Select

cps 104 memory.21 ©GK & ARL

Block Size Tradeoff

° In general, larger block size take advantage of spatial locality BUT:
* Larger block size means larger miss penalty:
- Takes longer time to fill up the block
« If block size is too big relative to cache size, miss rate will go up
- Too few cache blocks

° In general, Average Access Time:
* Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Average
Miss Miss A_Iczicr:::s
Penalty Rate Exploits Spatial Locality
Fewer blocks: Increased Miss Penalty
compromises & Miss Rate
temporal locality \
Block Size Block Size Block Size

cps 104 memory.22 ©GK & ARL

A N-way Set Associative Cache

° N-way set associative: N entries for each Cache Index
* N direct mapped caches operating in parallel

° Example: Two-way set associative cache
* Cache Index selects a “set” from the cache '

* The two tags in the set are compared in parallel
» Data is selected based on the tag resulit

Cache Index
Cache Data

Cache Tag Valid

Valid Cache Tag Cache Data
Cache Block 0 Cache Block 0

__ -

Cache Block

cps 104 memory.23

©GK & ARL

Advantages of Set associative cache

° Higher Hit rate for the same cache size.

° Fewer Conflict Misses.

smaller

cps 104 memory.24

° Can can have a larger cache but keep the index

©GK & ARL

Disadvantage of Set Associative Cache

° N-way Set Associative Cache versus Direct Mapped Cache:
* N comparators vs. 1
» Extra MUX delay for the data
» Data comes AFTER Hit/Miss decision and set selection

° In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:
» Possible to assume a hit and continue. Recover later if miss.

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid

Cache Block 0 Cache Block 0

Cache Block

cps 104 memory.25 ©GK & ARL

And yet Another Extreme Example:
Fully Associative cache
° Fully Associative Cache -- push the set associative idea to its limit!
* Forget about the Cache Index

+ Compare the Cache Tags of all cache entries in parallel
+ Example: Block Size = 32B blocks, we need N 27-bit comparators

° By definition: Conflict Miss = 0 for a fully associative cache

31 4 0
I Cache Tag (27 bits long) I Byte Select I
Ex: 0x01
Cache Tag Valid Bit _Cache Data

Byte 31 °° | Byte 1 | Byte 0
Byte 63| °° | Byte 33| Byte 32

ki

©®© |
]

cps 104 memory.26 ©GK & ARL

Sources of Cache Misses

o

Compulsory (cold start or process migration, first reference): first
access to a block

» “Cold” fact of life: not a whole lot you can do about it

o

Conflict (collision):

* Multiple memory locations mapped to the same cache
location

» Solution 1: increase cache size
» Solution 2: increase associativity

¢ Capacity:
» Cache cannot contain all blocks access by the program
» Solution: increase cache size

o

Invalidation: other process (e.g., I/0) updates memory

cps 104 memory.27 ©GK & ARL

Sources of Cache Misses

Direct Mapped N-way Set Associative Fully Associative
Cache Size Big Medium Small
Compulsory Miss Same Same Same
Conflict Miss High Medium Zero
Capacity Miss Low(er) Medium High
Invalidation Miss Same Same Same
Note:

If you are going to run “billions” of instruction, Compulsory Misses are insignificant.

cps 104 memory.28 ©GK & ARL

The Need to Make a Decision!

« Each memory location can only map to 1 cache location
* No need to make any decision
- Current item replaces the previous item in that cache location

* For each memory location have a choice of N cache locations

+ Each memory location can be placed in ANY cache location

° Cache miss in a N-way Set Associative or Fully Associative Cache:
* Bring in new block from memory
* Throw out a cache block to make room for the new block
* We need to make a decision on

cps 104 memory.zg ©GK & ARL

Cache Block Replacement Policy

* Hardware randomly selects a cache item and throw it out

+ Hardware keeps track of the access history
* Replace the entry that has not been used for the longest time.

* For cache one needs for LRU
replacement.

° Example of a Simple Implementation
(Not Most Recently Used):

* Assume 64 Fully Associative Entries
* Hardware replacement pointer points to one cache entry
* Whenever an access is made to the entry the pointer points to:

- Move the pointer to the next entry Entry 0
* Otherwise: do not move the pointer . placement Entry 1
Pointer :
Entry 63

cps 104 memory.30 ©GK & ARL

Cache Write Policy: Write Through versus Write Back

° Cache read is much easier to handle than cache write:
* Instruction cache is much easier to design than data cache

¢ Cache write:
* How do we keep data in the cache and memory consistent?

° Two options (decision time again :-)

* Write Back: write to cache only. Write the cache block to memory
when that cache block is being replaced on a cache miss.

- Need a “dirty bit” for each cache block
- Greatly reduce the memory bandwidth requirement
- Control can be complex
= Write Through: write to cache and memory at the same time.
- What!!! How can this be? Isn’t memory too slow for this?

cps 104 memory.31 ©GK & ARL

Four Questions for Memory Hierarchy Designers

°Q1: Where can a block be placed in the upper level?
(Block placement)

°Q2: How is a block found if it is in the upper level?
(Block identification)

° Q3: Which block should be replaced on a miss?
(Block replacement)

° Q4: What happens on a write?
(Write strategy)

cps 104 memory.32 ©GK & ARL

Summary

° Caches provide cost effective memory system
° Work by exploiting locality (temporal & spatial)
° Associativity, Blocksize, Capacity (ABCs of caches)

° Know how a cache works
» Break address into tag,index, block offset

° Know how to draw a block diagram of a cache
Next Time

° Cache Performance and Programming

cps 104 memory.33 ©GK & ARL

