
cps 104 memory.1 ©GK & ARL

Cache Memory

Computer Science 104

cps 104 memory.2 ©GK & ARL

Administrivia

°  Midterm II next Monday

°  Homework #4

°  Project Due Date: Wed April 22 in class

Reading

°  Chapter 5

cps 104 memory.3 ©GK & ARL

Outline of Today’s Lecture

°  Review

°  The Memory Hierarchy

°  Direct-mapped Cache

°  Two-Way Set Associative Cache

°  Fully Associative cache

°  Replacement Policies

°  Write Strategies

cps 104 memory.4 ©GK & ARL

The Big Picture: Where are We Now?

°  The Five Classic Components of a Computer

°  Today’s Topic: Cache Memory

Control

Datapath

Memory

Processor
Input

Output

cps 104 memory.5 ©GK & ARL

Issues for Memory Systems

° Capacity/Size

° Cost
• What technology is cheap?

° Performance
• What technology is fast?

° Ease of Use
• How much do programmers have to worry about

 it?

cps 104 memory.6 ©GK & ARL

Cache

° What is a cache?

° What is the motivation for a cache?

° Why do caches work?

° How do caches work?

cps 104 memory.7 ©GK & ARL

The Motivation for Caches

°  Motivation:
•  Large memories (DRAM) are slow
•  Small memories (SRAM) are fast

°  Make the average access time small by:
•  Servicing most accesses from a small, fast memory.

°  Reduce the bandwidth required of the large memory

Processor

Memory System

Cache DRAM

cps 104 memory.8 ©GK & ARL

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
~$.0005/bit

Main Memory
M Bytes
100ns-1us
~$.00001/bit

Disk
G Bytes
ms
10 - 10 cents -3 -4

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -6

Registers

Cache

Memory

Disk/Network

Tape/DVD/Network

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache controller
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

cps 104 memory.9 ©GK & ARL

The Principle of Locality

°  The Principle of Locality:
•  Program access a relatively small portion of the address space at

 any instant of time.
•  Example: 90% of time in 10% of the code

°  Two Different Types of Locality:
•  Temporal Locality (Locality in Time): If an item is referenced, it will

 tend to be referenced again soon.
•  Spatial Locality (Locality in Space): If an item is referenced, items

 whose addresses are close by tend to be referenced soon.

Address Space 0 2n

Probability
of reference

cps 104 memory.10 ©GK & ARL

Memory Hierarchy: Principles of Operation

°  At any given time, data is copied between only 2 adjacent levels:
•  Upper Level (Cache) : the one closer to the processor

-  Smaller, faster, and uses more expensive technology
•  Lower Level (Memory): the one further away from the processor

-  Bigger, slower, and uses less expensive technology

°  Block:
•  The minimum unit of information that can either be present or not

 present in the two level hierarchy

Lower Level
(Memory) Upper Level

(Cache)
To Processor

From Processor
Blk X

Blk Y

cps 104 memory.11 ©GK & ARL

Memory Hierarchy: Terminology

°  Hit: data appears in some block in the upper level (example: Block X)
•  Hit Rate: the fraction of memory access found in the upper level
•  Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

°  Miss: data needs to be retrieved from a lower level (Block Y)
•  Miss Rate = 1 - (Hit Rate)
•  Miss Penalty = Time to replace a block in the upper level +

Time to deliver the block the processor

°  Hit Time << Miss Penalty

Lower Level
(Memory) Upper Level

(Cache)
To Processor

From Processor
Blk X

Blk Y

cps 104 memory.12 ©GK & ARL

•  Direct Mapped cache: array of fixed size frames.
•  Each frame holds consecutive bytes of main memory data (block).
•  The Tag Array holds the Block Memory Address.
•  A valid bit associated with each cache block tells if the data is valid.

Direct Mapped Cache

Cache-Index = (<Address> Mod (Cache_Size))/ Block_Size
Block-Offset = <Address> Mod (Block_Size)
Tag = <Address> / (Cache_Size)

•  Cache Index: The location of a block (and it’s tag) in
 the cache.
•  Block Offset: The byte location in the cache block.

cps 104 memory.13 ©GK & ARL

The Simplest Cache: Direct Mapped Cache

Memory

4 Byte Direct Mapped Cache with 1-byte blocks

Memory Address
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache Index
0
1
2
3

°  Location 0 can be occupied by data from:
•  Memory location 0, 4, 8, ... etc.
•  In general: any memory location

whose 2 LSBs of the address are 0s
•  Address<1:0> => cache index

°  Which one should we place in the cache?

°  How can we tell which one is in the cache?

cps 104 memory.14 ©GK & ARL

Direct Mapped Cache (Cont.)

For a Cache of 2M bytes with block size of 2L bytes

•  There are 2M-L cache blocks,

•  Lowest L bits of the address are Block-Offset bits

•  Next (M - L) bits are the Cache-Index.

•  The last (32 - M) bits are the Tag bits.

L bits block offset M-L bits Cache Index 32-M bits Tag

Data Address

cps 104 memory.15 ©GK & ARL

Example: 1-KB Cache with 32B blocks:

Cache Index = (<Address> Mod (1024))/ 32

Block-Offset = <Address> Mod (32)

Tag = <Address> / (1024)

1K = 210 = 1024
 25 = 32

Direct Mapped Cache Data

Byte 0 Byte 1 Byte 30 Byte 31

Cache Tag
Valid bit

. . . .
32-byte block 22 bits

32
cache
blocks

5 bits block offset 5 bits Cache Index 22 bits Tag

Address

cps 104 memory.16 ©GK & ARL

Example: 1KB Direct Mapped Cache with 32B Blocks
°  For a 1024 (210) byte cache with 32-byte blocks:

•  The uppermost 22 = (32 - 10) address bits are the Cache Tag
•  The lowest 5 address bits are the Byte Select (Block Size = 25)
•  The next 5 address bits (bit5 - bit9) are the Cache Index

0 4 31 9
Cache Index

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

0
1
2
3

:

 Cache Data
Byte 0

31

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Byte 992 Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

Byte Select

cps 104 memory.17 ©GK & ARL

Example: 1K Direct Mapped Cache

0 4 31 9 Cache Index

:

Cache Tag

0x0002fe 0x00

0x000050

Valid Bit

:

0
1
2
3

:

 Cache Data
Byte 0

31

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Byte 992 Byte 1023 :

 Cache Tag

Byte Select

 0x00

Byte Select =
Cache Miss

1
0

1

0xxxxxxx

0x004440

cps 104 memory.18 ©GK & ARL

Example: 1K Direct Mapped Cache

0 4 31 9 Cache Index

:

Cache Tag

0x0002fe 0x00

0x000050

Valid Bit

:

0
1
2
3

:

 Cache Data

31

Byte 32 Byte 33 Byte 63 :

Byte 992 Byte 1023 :

 Cache Tag

Byte Select
 0x00

Byte Select =

1
1

1

0x0002fe

0x004440

New Block of data

cps 104 memory.19 ©GK & ARL

Example: 1K Direct Mapped Cache

0 4 31 9 Cache Index

:

Cache Tag

0x000050 0x01

0x000050

Valid Bit

:

0
1
2
3

:

 Cache Data
Byte 0

31

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Byte 992 Byte 1023 :

 Cache Tag

Byte Select
 0x08

Byte Select =
Cache Hit

1
1

1

0x0002fe

0x004440

cps 104 memory.20 ©GK & ARL

Example: 1K Direct Mapped Cache

0 4 31 9 Cache Index

:

Cache Tag

0x002450 0x02

0x000050

Valid Bit

:

0
1
2
3

:

 Cache Data
Byte 0

31

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Byte 992 Byte 1023 :

 Cache Tag

Byte Select

 0x04

Byte Select =
Cache Miss

1
1

1

0x0002fe

0x004440

cps 104 memory.21 ©GK & ARL

Example: 1K Direct Mapped Cache

0 4 31 9 Cache Index

:

Cache Tag

0x002450 0x02

0x000050

Valid Bit

:

0
1
2
3

:

 Cache Data
Byte 0

31

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Byte 992 Byte 1023 :

 Cache Tag

Byte Select

 0x04

Byte Select =

1
1

1

0x0002fe

0x002450 New Block of data

cps 104 memory.22 ©GK & ARL

Block Size Tradeoff

°  In general, larger block size take advantage of spatial locality BUT:
•  Larger block size means larger miss penalty:

-  Takes longer time to fill up the block
•  If block size is too big relative to cache size, miss rate will go up

-  Too few cache blocks

°  In general, Average Access Time:
•  Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

cps 104 memory.23 ©GK & ARL

A N-way Set Associative Cache

°  N-way set associative: N entries for each Cache Index
•  N direct mapped caches operating in parallel

°  Example: Two-way set associative cache
•  Cache Index selects a “set” from the cache
•  The two tags in the set are compared in parallel
•  Data is selected based on the tag result

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Index

Mux 0 1 SEL1 SEL0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

cps 104 memory.24 ©GK & ARL

Advantages of Set associative cache

° Higher Hit rate for the same cache size.

° Fewer Conflict Misses.

° Can can have a larger cache but keep the index
 smaller

cps 104 memory.25 ©GK & ARL

Disadvantage of Set Associative Cache

°  N-way Set Associative Cache versus Direct Mapped Cache:
•  N comparators vs. 1
•  Extra MUX delay for the data
•  Data comes AFTER Hit/Miss decision and set selection

°  In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:
•  Possible to assume a hit and continue. Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Index

Mux 0 1 SEL1 SEL0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

cps 104 memory.26 ©GK & ARL

And yet Another Extreme Example:
 Fully Associative cache

°  Fully Associative Cache -- push the set associative idea to its limit!
•  Forget about the Cache Index
•  Compare the Cache Tags of all cache entries in parallel
•  Example: Block Size = 32B blocks, we need N 27-bit comparators

°  By definition: Conflict Miss = 0 for a fully associative cache

:

 Cache Data
Byte 0

0 4 31

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

 Cache Tag

Byte Select
Ex: 0x01

X

X
X

X

X

cps 104 memory.27 ©GK & ARL

 Sources of Cache Misses
°  Compulsory (cold start or process migration, first reference): first

 access to a block
•  “Cold” fact of life: not a whole lot you can do about it

°  Conflict (collision):
•  Multiple memory locations mapped to the same cache

 location
•  Solution 1: increase cache size
•  Solution 2: increase associativity

°  Capacity:
•  Cache cannot contain all blocks access by the program
•  Solution: increase cache size

°  Invalidation: other process (e.g., I/O) updates memory

cps 104 memory.28 ©GK & ARL

Sources of Cache Misses

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity Miss

Invalidation Miss

Big Medium Small

Note:
If you are going to run “billions” of instruction, Compulsory Misses are insignificant.

Same Same Same

Conflict Miss High Medium Zero

Low(er) Medium High

Same Same Same

cps 104 memory.29 ©GK & ARL

The Need to Make a Decision!

°  Direct Mapped Cache:
•  Each memory location can only map to 1 cache location
•  No need to make any decision

-  Current item replaces the previous item in that cache location

°  N-way Set Associative Cache:
•  For each memory location have a choice of N cache locations

°  Fully Associative Cache:
•  Each memory location can be placed in ANY cache location

°  Cache miss in a N-way Set Associative or Fully Associative Cache:
•  Bring in new block from memory
•  Throw out a cache block to make room for the new block
•  We need to make a decision on which block to throw out!

cps 104 memory.30 ©GK & ARL

Cache Block Replacement Policy

°  Random Replacement:
•  Hardware randomly selects a cache item and throw it out

°  Least Recently Used:
•  Hardware keeps track of the access history
•  Replace the entry that has not been used for the longest time.
•  For two way set associative cache one needs one bit for LRU

 replacement.

°  Example of a Simple “Pseudo” Least Recently Used Implementation
 (Not Most Recently Used):

•  Assume 64 Fully Associative Entries
•  Hardware replacement pointer points to one cache entry
•  Whenever an access is made to the entry the pointer points to:

-  Move the pointer to the next entry
•  Otherwise: do not move the pointer

:

Entry 0
Entry 1

Entry 63

Replacement
Pointer

cps 104 memory.31 ©GK & ARL

Cache Write Policy: Write Through versus Write Back

°  Cache read is much easier to handle than cache write:
•  Instruction cache is much easier to design than data cache

°  Cache write:
•  How do we keep data in the cache and memory consistent?

°  Two options (decision time again :-)
•  Write Back: write to cache only. Write the cache block to memory

 when that cache block is being replaced on a cache miss.
-  Need a “dirty bit” for each cache block
-  Greatly reduce the memory bandwidth requirement
-  Control can be complex

•  Write Through: write to cache and memory at the same time.
-  What!!! How can this be? Isn’t memory too slow for this?

cps 104 memory.32 ©GK & ARL

Four Questions for Memory Hierarchy Designers

° Q1: Where can a block be placed in the upper level?
 (Block placement)

° Q2: How is a block found if it is in the upper level?
 (Block identification)

° Q3: Which block should be replaced on a miss?
(Block replacement)

° Q4: What happens on a write?
(Write strategy)

cps 104 memory.33 ©GK & ARL

Summary

° Caches provide cost effective memory system

° Work by exploiting locality (temporal & spatial)

° Associativity, Blocksize, Capacity (ABCs of caches)

° Know how a cache works
• Break address into tag,index, block offset

° Know how to draw a block diagram of a cache

Next Time

° Cache Performance and Programming

