
Phalanx: Withstanding Multimillion-Node Botnets

Colin Dixon Thomas Anderson
University of Washington

Arvind Krishnamurthy

Abstract
Large-scale distributed denial of service (DoS) attacks
are an unfortunate everyday reality on the Internet. They
are simple to execute and with the growing prevalence
and size of botnets more effective than ever. Although
much progress has been made in developing techniques
to address DoS attacks, no existing solution is unilater-
ally deployable, works with the Internet model of open
access and dynamic routes, and copes with the large
numbers of attackers typical of today’s botnets.

In this paper, we present a novel DoS prevention
scheme to address these issues. Our goal is to define a
system that could be deployed in the next few years to ad-
dress the danger from present-day massive botnets. The
system, called Phalanx, leverages the power of swarms
to combat DoS. Phalanx makes only the modest assump-
tion that the aggregate capacity of the swarm exceeds
that of the botnet. A client communicating with a des-
tination bounces its packets through a random sequence
of end-host mailboxes; because an attacker doesn’t know
the sequence, they can disrupt at most only a fraction of
the traffic, even for end-hosts with low bandwidth access
links. We use PlanetLab to show that this approach can
be both efficient and capable of withstanding attack. We
further explore scalability with a simulator running ex-
periments on top of measured Internet topologies.

1 Introduction
Botnets are very, very large. A recent estimate put the
number of compromised machines participating in bot-
nets at 150 million [6], while more modest estimates put
the number around 6 million [3]. Single botnets regularly
contain tens of thousands of end-hosts and have been
seen as large as 1.5 million hosts [31]. These networks
are the basis of a lucrative and difficult to detect under-
ground economy on the Internet today. They steal iden-
tities and financial information, send most of the world’s
spam, and are used in DoS protection rackets [25]. These
uses and less obvious ones have been extensively covered
in previous work [32, 17]. To make matters worse, the
number of critical operating system vulnerabilities dis-
covered is increasing steadily every year [2] giving bot-
nets an ample supply of new recruits, so the problem is
unlikely to get better on its own.

Our focus in this paper is the impact of massive bot-
nets on proposed solutions to denial of service (DoS) at-
tacks. If compromised nodes are typical of end hosts

participating in other large peer-to-peer systems [18], a
multimillion-node botnet would be able to generate over
a terabit per second of traffic, sourced from virtually ev-
ery routable IP prefix on the planet. This scale of attack
could, at least temporarily, overwhelm any current core
link or router! It is also capable of semi-permanently
disrupting service to all but the best provisioned services
on the Internet today. In May 2006, a sustained attack
against the anti-spam company Blue Security forced the
company to close down its services [20]. The damage is
not just limited to security companies. Starting in April a
sustained attack on government and business websites in
Estonia effectively knocked the country off the web [16].
Even nations are not safe.

While the scale of the attacks may be increasing, the
threat of DoS has been well understood for the past few
years and many solutions have been proposed [23, 7, 9,
40, 19, 5, 39, 38, 33, 37, 30, 13, 35, 24, 26]. We believe
that these solutions have not met with significant success
in the real world because while often elegant, the burden
of effective deployment is too high. The primary focus
of our efforts is to provide a solution that can be effective
when deployed unilaterally by as few parties as possible
even if this means sacrificing some elegance.

It is worth noting that for read-only web sites, mas-
sive replication has proven an effective solution, and is
even available as a commercial service [1]. However,
the concern of this paper is non-replicable services, such
as read/write back-end databases for e-commerce, mod-
ern AJAX applications, e-government, and multiplayer
games, or point-to-point communication services such as
VoIP or IM. For this case, we argue that no existing com-
mercial or research solution is adequate to the scope of
the problem posed by multimillion-node botnets.

In this paper, we propose a DoS prevention sys-
tem, called Phalanx, that is capable of withstanding a
multimillion-node botnet and yet can be reasonably de-
ployed by a single large ISP today. Phalanx combines
ideas from several ideas from prior work; co-designing
the client, server, router support, and overlay software, to
yield an effective yet remarkably simple system. Rather
than being directly delivered, traffic is sent through a
massive swarm of packet forwarders which act as mail-
boxes. Hosts use these mailboxes in a random order,
so that even an attacker with a multimillion-node bot-
net can cause only a fraction of a given flow to be lost.
Lightweight capabilities are then used to ensure that only

requested packets are delivered from the mailboxes to the
destination.

Of course, to be practical, the system must not impose
an undue burden in the absence of attack: we need to de-
sign the system to be cheap and unobtrusive. Ideally, the
mechanisms will never be used—once attacks become
ineffective, they will simply stop.

We expand on these ideas in more detail in the rest of
the paper. Section 2 provides some relevant background
and an overview of our approach. We present the com-
plete architecture in Section 3, while Section 4 evaluates
Phalanx’s performance and effectiveness. We discuss re-
lated work in Section 5, and conclude with Section 6.

2 Phalanx Overview
2.1 Background

While DoS attacks come in many flavors, we focus on
resource exhaustion attacks. These attacks flood some
bottleneck resource with more requests than can be han-
dled ensuring that only a small fraction of the legitimate
requests are serviced. The target resource is typically the
weakest link on the path between the source and the des-
tination, in terms of bandwidth, storage or computation.

Without information about which requests are legiti-
mate and with limited buffer space, the only strategy for
a victim is to serve requests at random. If there are G
legitimate requests and B spurious requests, on average,
O(G

B+G) of the available resources go to legitimate re-
quests. B is often much larger than G, since with a mas-
sive botnet, attackers can pick their target and focus their
fire. Addressing this asymmetry is a main goal of our
work.

Of course, damage can be mitigated if traffic can be
classified into legitimate and attack. We believe such
classification is becoming increasingly difficult as bot-
nets grow because attacks no longer need to spoof ad-
dresses or send abnormally large amounts of traffic per
host in order to be successful. Clever attackers can sim-
ply emulate normal user behavior on each bot. While
our approach is compatible with traffic classification, we
explicitly do not rely upon it.

2.2 Assumptions

In approaching the general DoS problem, we make some
assumptions about the network in which we operate.

• Swarm: We assume access to a large pool of well-
provisioned machines which are geographically and
topologically distributed. In essence, we assume ac-
cess to a botnet of our own to absorb attacks. Our
prototype is built and tested PlanetLab; as future
work, we are exploring modifying a popular BitTor-
rent client to convert the millions of BitTorrent users
into a community-based botnet defense.

• Strong Adversary: Botnets will continue to increase
in size. We assume nodes in the botnet need not send
anomalous amounts or kinds of traffic for attacks to be
effective.

• Minimal Network Support: We assume that simple
modifications to routers are feasible if they can be im-
plemented in hardware at data rate at the edge of an
ISP.

• Predictable Paths: Recent work [22] has shown that
Internet paths can often be predicted without direct
measurement of each possible path. This knowledge
helps our system establish efficient yet resilient paths
for good traffic.

2.3 Goals

A complete solution to the DoS problem must satisfy a
large number of requirements including resistance to at-
tack, deployability, performance, and backward compat-
ibility. The following list of goals for our system helps
to make these requirements concrete:

• Eventual Communication: Regardless of the num-
ber of attackers, it should be possible for a connec-
tion to eventually become established. In particular
this means that a host needs to be able to perform a
name lookup and acquire some form of capability to
communicate even in the face of massive attack. Fur-
ther, this must all be possible while keeping the current
Internet’s open user model.

• Protect Established Connections: Once established,
connections should be protected from collateral dam-
age. Since any single path can easily be overwhelmed
by a million-node botnet, each connection must lever-
age multiple paths to any destination. A connection
should see degradation of at most O(B

B+G+M) where
M is the set of mailboxes in Phalanx. In other words,
performance should be proportional to the total num-
ber of good vs. bad nodes in the entire system, not the
number of good vs. bad nodes focusing on a specific
target.

• Unilateral Deployment: A single large ISP should
be able deploy an effective DoS solution for its cus-
tomers, even from a massive attack, without needing
to first reach a global agreement with all or most other
ISPs.

• Endpoint Policy: The destination, and not the net-
work, should control which connections are to be es-
tablished and which packets are to be delivered.

• Resistance to Compromise: The system must toler-
ate compromised nodes and routers; its correct behav-
ior should rely on only a few, simple (and thus possible
to secure) functions.

• Autoconfiguration: Since Internet paths do change,
both because of malicious activity and normal func-
tioning, these changes should not interrupt protection.

• Efficiency: Communication performance should be
close to that of the current Internet, even under attack.
Otherwise an attack can be at least partially successful
simply by evoking a response.

Many existing solutions achieve some of these goals,
but as we explain later in Section 5, none achieves even
the first three goals, much less all of them. We do lever-
age several key ideas from prior work, but we defer a
detailed comparison until after we have described Pha-
lanx.

3 Phalanx Architecture
In this section we describe the Phalanx architecture in
detail. At a high level the architecture calls for send-
ing all traffic through a set of mailboxes (Section 3.2)
rather than directly to the destination. This approach re-
quires some mechanism to prevent traffic from bypassing
these mailboxes (Section 3.3) and also a system for han-
dling connection setup (Section 3.4). Table 2.3 provides
a summary of the mechanisms used in Phalanx along
with their function, the goals they help achieve and where
they are discussed in this paper. Additionally, the nota-
tion that we use to simplify discussion can be found in
Table 3.2.1.

3.1 Components

Phalanx consists of three main components, which when
combined, meet the goals laid out in Section 2.3. First,
since it is easy for a large botnet to overwhelm any spe-
cific Internet path, we rely on a swarm which can match
an attacking botnet in strength. This swarm puts legit-
imate users on the same footing as attackers by artifi-
cially inflating the number of “good” hosts for any given
destination. The swarm appears to clients and servers
as simple packet mailboxes using the API sketched in
Table 3.2.1, allowing for a best effort packet store and
pick-up point. These mailboxes are further explained in
Section 3.2.

Second, a destination must explicitly request a packet
from the mailboxes for it to be delivered; we use a
set of Bloom filters at all of the border routers of the
destination’s ISP to drop any unrequested packet (with
high probability). This filtering ring implements an im-
plicit per-packet network capability, rather than the per-
connection capability [39, 40] or per-source address con-
nectivity [10] in other proposals. This filtering ring is
described in detail in Section 3.3.

Third, we use resource proofs and authentication to-
kens to facilitate connection setup. In an open Internet,
there will often be no way to distinguish an initial con-
nection request as being either good or from an attacker.

Resource proofs approximate fair queueing for these ini-
tial connection requests. We opt for computation-based
proofs as in Portcullis [26] and OverDoSe [30] over
bandwidth-based proofs [37]. The form of Phalanx re-
source proofs can be found in Section 3.4.3. Authenti-
cation tokens provide a way for clients with a preexist-
ing relationship to a specific server to bypass its resource
proof. Section 3.4.2 is a short description of Phalanx au-
thentication tokens.

Together these components create a carefully chosen
battleground where good users are on equal footing with
attackers and can leverage the swarm’s resources to fight
back against an attacking massive botnet.

3.2 Mailboxes

The basic building block in Phalanx is the packet mail-
box. Mailboxes provide a simple abstraction that gives
control to the destination instead of the source [7].
Rather than packets being delivered directly to the speci-
fied destination as in previous anti-DoS overlays [33, 19,
5], traffic is first delivered to a mailbox where it can ei-
ther be “picked up” or ignored by the destination. Traffic
which is ignored is eventually dropped from the buffers
at packet mailboxes.

The interface which each mailbox exports is sketched
in Table 3.2.1. The two basic operations are to put and
get packets. The semantics are somewhat different from
the traditional notions of put and get. A put inserts
a packet into the mailbox’s buffer, possibly bumping an
old entry, and returns. A get behaves somewhat less
intuitively. Rather than behaving like a polling request,
a get instead installs a best-effort interrupt at the mail-
box. If a matching packet is found before the request is
bumped from the buffer, the packet is returned. This is
conceptually similar to i3 [34], except triggers are valid
for only one packet.

The mailbox abstraction puts the destination in com-
plete control of which packets it receives. Flow policies
can remain at the destination where the most informa-
tion is available to make such decisions. These policies
are implemented in the network via requests and the lack
thereof. If no requests are sent, then no packets will come
through. This behavior ensures that most errors are re-
coverable locally, rather than requiring cooperation and
communication with the network control plane. This is
in contrast to accidentally installing an overly permissive
filter in the network and then being unable to correct the
problem because the control channel can now be flooded.

3.2.1 Swarms & Iterated Hash Sequences

Mailboxes act as proxies, receiving and temporarily
buffering traffic on behalf of end-hosts. If only a sin-
gle such proxy existed, then we would just be moving
the DoS problem from the end-host to the mailbox. In-

Mechanism Function Goals Section
Mailboxes lightweight network indirection primi-

tive
Unilateral Deployment, Autoconfig 3.2

Iterated Hash Sequences pseudo-random mailbox sequences Protect Established Connections, Resis-
tance to Compromise

3.2.1

Scalable Mailbox Sets provide both efficiency and resilience
according to current conditions

Efficiency 3.2.2

Filtering Ring drop unrequested traffic before it can
cause damage

Unilateral Deployment, Resistance to
Compromise

3.3

General Purpose Nonces allow small numbers of unrequested
packets through the filtering ring

Eventual Communication 3.4.1

Cryptographic Puzzles approximate fair queueing for connec-
tion establishment

Eventual Communication 3.4.3

Authentication Tokens allow for pre-authentication of trusted
flows

Eventual Communication 3.4.2

Congestion Control adapt to access link heterogeneity Autoconfig 3.5

Table 1: A summary of mechanisms used in Phalanx.

Symbol Meaning
h cryptographic hash function
x, y shared secret to generate mailbox sequences
C client, endpoint instigating the connection
S server, endpoint receiving the connection
xi ith element of the sequence based on h and x
M the set of mailboxes {Mi, . . . , M|M|}
M [xi] mailbox corresponding to xi (Mxi mod |M|)
KY the public key belonging to Y
kY the private key belonging to Y
(z)KY z encrypted using Y’s public key
(z)kY z signed using Y’s private key
w the window size for requesting packets

Table 2: Notation

stead, we rely upon swarms of mailboxes to provide
an end-host with many points of presence throughout
the network. Assuming that the mailboxes’ resources
exceed that of attackers, legitimate clients will have
some functioning channels for communication despite a
widespread attack.

Individual flows are multiplexed over many mail-
boxes. Each packet in a flow is sent to a cryptograph-
ically random mailbox. Any given mailbox failure will
only slightly affect a flow by causing a small fraction of
the packets to be lost (often only a single packet). Since
each mailbox is secretly selected by the endpoints, an at-
tacker cannot “follow” a flow by attacking each mailbox
just before it is used.

We construct a pseudo-random sequence of mailboxes
during connection setup. The set of mailboxes M to use
for this connection is determined by the destination, as
described in the next section. The sequence of mailboxes
is built by iterating a cryptographic hash function such as
SHA-1 on a shared secret. We discuss how this secret is
established in Section 3.4. Equipped with this shared
sequence, both endpoints know in advance the precise
mailbox to use for each packet in the connection.

putPacket(packet p)
places a packet in the local packet buffer
getPacket(nonce n)
places a request in the local packet buffer; when/if a
packet arrives or has arrived it is returned
requestConnection(serverKey KS)
asks for a challenge to earn access to establish a
connection; returns a random nonce
submitSolution(string a, integer b)
provides a cryptographic puzzle solution to the
challenge as a resource proof
submitToken(authentication token t)
provides proof of pre-authentication
issueNonces(signed nonce list N)
registers a set of general purpose nonces to be used for
initial packet contact with the signing destination

Table 3: The Mailbox API.

To construct a sequence of mailboxes, we first define
a sequence of nonces xi based on the shared secret x and
the cryptographic hash function h as follows.

x0 = h(x||x)

xi = h(xi−1||x)

Including x in every iteration prevents an attacker who
sniffs one nonce from being able to calculate all future
nonces by iterating the hash function themselves. Our
current implementation uses MD5 [29] as the implemen-
tation of h and thus uses 16-byte nonces for simplicity.
This sequence of nonces then determines a correspond-
ing sequence of mailboxes M [xi] by modulo reducing
the nonces as follows.

M [xi] = Mxi mod |M |

Note that M need not be all mailboxes in the Phalanx
deployment, as each flow can use a subset of the mail-
boxes. Indeed, a different set of mailboxes can be used

for each half of the flow (client-to-server and server-to-
client); both sets can be dynamically re-negotiated within
a flow.

One such shared secret and iterated hash function is
used for each direction of communication. For the sake
of discussion, we assume that the shared secret x gener-
ates the sequence xi used for the client to server direction
while the shared secret y generates the sequence yi used
for the server to client direction.

Each nonce serves as a unique identifier for a packet
and is included in the header to facilitate pairing each
incoming packet with its corresponding request. Thus
the receiver can know precisely which source sent which
packet. Including a nonce in each packet simplifies the
logic needed to drop unrequested packets as described
in Section 3.3. Lastly, nonces provide a limited form
of authentication to requests; the attacker must snoop the
nonce off the wire, and then deliver a replacement packet
to a mailbox before the correct packet arrives, in order to
subvert the system.

Communication proceeds with each packet and cor-
responding request going to the next mailbox in the se-
quence. Note that the data request is asynchronous with
the data arrival—it may precede it or follow it at the mail-
box (unlike i3 [34]). In the sequence given below, the re-
quests precede the data packets, but in practice they will
be sent simultaneously and the ordering does not matter.

M [xi]← S: request for xi

C→M [xi]→ S: xi, data
M [xi+1]← S: request for xi+1

C→M [xi+1]→ S: xi+1, data

Here we only show one direction of communication,
from the client to the server. The reverse direction pro-
ceeds in exactly the same way but selects mailboxes us-
ing the iterated hash sequence yi based on the different
shared secret y.

For flow control, each endpoint maintains a sliding
window of w requested packets. This window is ad-
vanced each time a packet is received, or at the most
recent packet rate if all packets in the window are lost.
For optimal throughput, the window should be at least
as large as the bandwidth-delay product, but there are
several advantages to keeping w modest in size. First,
w represents the number of outstanding requests which
might be received all at once from a malicious sender. A
wily attacker may delay delivering packets to mailboxes
until as many gets have been registered as possible.

Second, keeping w small reduces the length of
time packets are queued at mailboxes before being re-
quested (or equivalently requests are queued before be-
ing matched). Recall that mailbox queueing is best effort

and thus packets and requests can be dropped. We as-
sume that each mailbox is well-provisioned in that it can
queue at least a few seconds of packets and requests in
DRAM at its network access link bandwidth.

3.2.2 Mailbox Sets

Picking the subset of mailboxes in Phalanx to use for a
specific connection poses a tradeoff of performance and
resilience. For best performance, we would like mail-
boxes that are only slight detours off the best path to
the destination; for resilience, we would like mailboxes
that exhibit the greatest path diversity to the filtering ring.
We opt to make the mailbox sets dynamically negotiable
within each flow to get the best of both worlds. Ini-
tially, we start each connection with a small number of
mailboxes (ten in the prototype), chosen to achieve good
resilience without sacrificing performance. In the pro-
totype, we use iPlane’s route and performance predic-
tions [22] to guide this choice. If the flow sees significant
loss, indicating a possible attack, additional mailboxes
are added to increase path diversity.

For example, a connection from Los Angeles to Seat-
tle might start off using mailboxes in different ISPs in
San Francisco and Portland for their low additional la-
tency. If loss rates cross a given threshold, then mail-
boxes in Denver and Salt Lake City can be added to in-
crease path diversity. If the attack continues and becomes
more severe, the connection might start redirecting pack-
ets through mailboxes across the US, Asia and Europe.
If an attack is ongoing, new connections might be started
off with a larger and more diverse set of initial mailboxes.
As an optimization which we do not yet implement, mail-
box sets can be passed by reference. The set of all mail-
boxes for a particular destination is relatively static and
can be widely distributed; a particular connection need
only agree on which random subset of this list to use,
e.g., by hashing on the shared connection secret.

Because both endpoints need to be using the same set
of mailboxes to ensure proper delivery, re-negotiating the
set of mailboxes in the middle of a connection is not triv-
ial. By default, Phalanx uses two mailbox sets (one for
each direction) and each endpoint controls the set which
it receives through. If an endpoint wishes to make any
changes, it piggybacks (a pointer to) the new set in a nor-
mal packet, along with a first sequence number for which
the changes will be valid.

The endpoint then waits for that sequence number and
branches in both directions: one assuming the changes
were received successfully, the other assuming that they
were lost. Whenever one branch receives a packet, the
endpoint knows which branch was correct and drops the
other branch. If the change request arrives at the sender
too late (i.e., after the packet with the sequence number
has already been sent on the old path), the sender must

ignore it; the receiver is then free to try again. This pro-
vides support for dynamic re-negotiation and thus helps
provide both performance and resiliency according to the
prevailing conditions.

3.3 Filtering ring

With Phalanx, a protected destination only receives those
packets which it explicitly requests from a mailbox. To
enforce this, we drop all other packets for the destina-
tion at the edge of its upstream ISP (See Figure 1). This
means that a protected destination cannot serve as a mail-
box, and more importantly, this breaks legacy clients. We
have not implemented legacy client support in our proto-
type yet, but we envision an applet that a web site would
provide its clients to mediate their access through Pha-
lanx. This does not create a “chicken and egg” problem,
because the applet would be read-only data that can be
widely replicated; as we observed earlier, existing com-
mercial anti-DoS solutions are effective for distributing
read-only data.

Implementing the filtering ring is straightforward,
even at hundred gigabit data rates. Each request packet
carries a unique nonce that allows a single reply packet
to return. In the simple case of symmetric routes, the
border router records the nonce on the outgoing packet,
and matches each incoming packet to a recently stored
nonce, discarding the packet if there is no match. Each
nonce is single use, so that once an incoming packet has
matched a nonce, we remove that nonce.

Of course, an attacker might try to flood the border
router (or more precisely, the links immediately upstream
from the border router) to prevent returning packets from
ever reaching the destination. As we observed earlier,
a massive botnet may be able to flood any single link
or router in the network. However, this would discon-
nect only those mailboxes that used that specific router
to access the destination; other mailboxes would con-
tinue to deliver packets unaffected. Even a multimillion-
node botnet would be unable to sustain enough traffic to
completely disconnect a tier-1 ISP from the Internet. (To
have an effective defense against such a large scale at-
tack, a destination must either be a direct customer of a
tier-1 that provides a filtering ring, or be protected indi-
rectly, as customer of an ISP that is a customer of that
tier-1.) Since each connection can spread its packets
across a diverse set of mailboxes, connections might ex-
perience a higher packet loss rate during an attack, but
otherwise would continue to make progress.

Our implementation of the filtering logic uses two lists
of nonces, efficiently encoded using Bloom filters [12].
A whitelist contains a list of requested nonces while a
blacklist contains a list of nonces which have already en-
tered the filtering ring. The whitelist ensures that only re-
quested packets get through, while the blacklist ensures

that at most one packet gets through per request. As re-
quest packets leave the ring, the router adds their nonces
to the local whitelist. When data packets enter the ring,
their nonces are verified by checking the whitelist and
then added to a blacklist. Bloom filters must be periodi-
cally flushed to work properly; to minimize the impact of
these flushes, two copies of each list are maintained and
they are alternately flushed.

While Bloom filters provide only probabilistic guar-
antees, this is sufficient for our purposes as they do not
yield false negatives. Even in the unlikely event that
an attacker’s guessed nonce is a false positive for the
whitelist it will then be added to the blacklist making
it good for only one packet. It is not possible that a
correct returning packet will miss in the whitelist be-
cause that would require a false negative. There is still
a (small) possibility that a legitimate packet will be in-
correctly dropped because of a collision in the blacklist,
but Phalanx is designed to be robust to packet loss.

We believe that the Phalanx filtering ring is efficient
enough to be implemented even for high speed links in-
side the core of the Internet, provided there is an incen-
tive for ISPs to deploy the hardware, that is, provided
that ISPs can charge their customers for DoS protection.
(Note that ISPs that provide transit need to modify only
their ingress routers and not all routers.) A 100 gigabit
router line card would need about 50MB of hash table
space. For each delivered packet, six Bloom filter op-
erations are required: the request packet places a nonce
in the current copy of the whitelist, then when the actual
packet is received it is is checked against all four tables
(the current and previous whitelist, and the current and
previous blacklist), and then added to the current black-
list. Both the storage and computation are small rela-
tive to those needed for core Internet routing tables and
packet buffering.

To be effective, the filtering ring must be comprehen-
sive – able to examine every packet destined for a pro-
tected destination, regardless of the source of the traf-
fic. Bots are everywhere, even inside corporate networks.
As a result, it seems likely that filtering rings would
be deployed in depth, as shown in Figure 1. Initially,
small scale ISPs close to the destination could offer a
limited DoS protection service, capable of withstanding
moderate-sized botnets. Moving outward, the cost of de-
ploying the filtering ring would increase (more border
routers to upgrade), but the value would also increase as
the system would be able to withstand larger-scale bot-
nets.

Our discussion to this point has assumed routing sym-
metry. Of course, the real Internet has a substantial
amount of routing asymmetry. A request packet sent to a
mailbox may not leave the filtering ring at the same point
as the corresponding data packet returns; if so, the Bloom

Server

Mailboxes

Tier-1 ISP

Tier-2 ISP

Filtering Ring

Figure 1: Filtering ring placement. Unlike in current Internet
routing where all packets for a single connection take a sin-
gle path across each ISP boundary, in Phalanx packets from a
given connection may use many different paths across the set
of filtering rings.

filter at the return point will drop the packet. This prob-
lem becomes more likely as the nesting level increases.

To address this problem, we allow destinations to
loosely source route request packets via IP-in-IP tunnel-
ing to each mailbox. The source route is chosen to be the
reverse of the predicted sequence of filtering ring nodes
from the mailbox back to the destination. This guaran-
tees that each filtering ring will be appropriately primed.
We use iPlane to gather the data to make the route pre-
diction [22].

3.4 Connection Establishment

Thus far, we have described a way for a destination to re-
ceive packets it is expecting. In order to establish a con-
nection, a first (unexpected) packet must be delivered.

We allow for connection establishment by issuing pe-
riodic requests which ask for connection establishment
packets rather than specific data packets. These general
purpose nonces are described in Section 3.4.1. Simply
allowing for such first packets doesn’t solve the prob-
lem as they immediately become a scarce resource and
this capability acquisition channel can be attacked [8].
To solve this problem, we require clients to meet some
burden before giving them access to a general purpose
nonce. Clients can either present an authentication to-
ken signed by the server as explained in Section 3.4.2 or
present a cryptographic puzzle solution as explained in
Section 3.4.3.

3.4.1 Passing through the filtering ring

Rather than invent new mechanisms to deal with allow-
ing first packets through the filtering ring, we reuse the
existing request packet framework to punch nonspecific
holes in the filtering ring. Destinations send each mail-
box a certain rate of general purpose requests. Each re-
quest contains a nonce to be placed in such first packets.
When a mailbox wishes to send a first packet, it places
one of these general purpose nonces into the packet al-
lowing it to pass through the filtering ring.

These general purpose requests implement a form of
admission control. Each general purpose nonce an-
nounces the destination’s willingness to admit another
flow. This further increases the destination’s control over
the traffic it receives, allowing it to directly control the
rate of new connection requests.

In order for the general purpose nonce mechanism
to be resilient to DoS attack, it is necessary to spread
them across a wide set of well-provisioned mailboxes;
a particular client only needs to access one. Refreshing
these general purpose nonces can pose an unreasonable
overhead for destinations that receive few connection re-
quests, and as a result, our prototype supports nonces is-
sued for aggregates of IP addresses. Thus, an ISP can
manage general purpose nonces on behalf of an aggre-
gate of users, at some loss in control over the rate of new
connections being made to each address. Of course, the
ISP must carefully assign aggregates based on their ca-
pacity to handle new connection requests; for example,
google should not be placed in the same aggregate as
a small web site, or else the attacker could use general
purpose nonces to flood the small site. An ISP already
manages the statistical multiplexing of resources We dis-
cuss in Section 3.6 how the client learns the initial set of
mailboxes to use for a specific destination.

When a client wishes to contact some server, it first
contacts a mailbox and asks that mailbox to insert a gen-
eral purpose nonce into its first packet and forward it
to the destination. Because general purpose nonces are
a scarce resource, the mailbox needs rules governing
which connections to give these nonces and in what or-
der. The next two sections deal with those mechanisms.

3.4.2 Authentication tokens

Each packet requesting to initiate a connection must ei-
ther carry an authentication token or a solution to a cryp-
tographic puzzle. These provide the burden of proof nec-
essary for a mailbox to allow access to general purpose
nonces. Authentication tokens provide support for pre-
authenticated connections allowing them to begin with
no delay; for example, a popular e-commerce site such as
Amazon might provide a cookie to allow quicker access
to its web site to its registered users. Cryptographic puz-
zles provide resource proofs to approximate fair queue-

ing of requests, when no prior relationship exists be-
tween source and destination.

Authentication tokens are simply a token signed by the
server stating that the given client is allowed to contact
that server. An additional message exchange is required
to prove that the client is in fact the valid token holder.
Authentication tokens take the form (KC , t)kS

(N)kC
.

The first portion is the public key of the client and an
expiration time signed by the server. This represents that
the server has given the client the right to initiate connec-
tions until the listed expiration time. The second portion
is a random fresh nonce issued by a mailbox and signed
by the client. This proves that the client is in control of
the private key to which the token was originally issued.

The authentication token connection establishment
protocol then proceeds as follows:

C→M [∗]: request challenge
C←M [∗]: N
C→M [∗]→ S: N , (KC , t)kS (N + 1)kC , (KC , x)KS

C→M [x0]: request for x0

C←M [x0]← S: x0, (KS , y)KC , data
M [y0]← S: request for y0

C→M [y0]→ S: y0, data
C→M [x1]: request for x1

...

First a challenge nonce is requested and received. The
nonce is created to be self certifying as in SYN cook-
ies [11] by making it a secret cryptographic hash of
the mailbox and client IP addresses and ports as well
as some local, slowly-increasing timer. This prevents a
SYN flood style attack on memory at the mailbox.

Next the authentication token is presented along with
the client’s public key and a shared secret to be forwarded
to the server. If the token is valid, the mailbox forwards
the whole request on to the server which can then choose
to accept the connection or not as it sees fit.

3.4.3 Crypto-puzzles

The crypto-puzzle is designed to be a resource proof al-
lowing hosts which spend more time solving the puzzle
to get higher priority to the limited number of general
purpose nonces each mailbox possesses. While there
are many kinds of resource proofs, we opt for a com-
putational resource proof rather than a bandwidth re-
source proof [37] because computation tends to be much
cheaper and less disruptive when heavily used.

We borrow the solution presented in Portcullis [26]
and OverDoSe [30] where the crypto-puzzle used is to
find a partial second pre-image of a given random chal-
lenge string such that, when hashed, both strings match
in the lower b bits. The goal for each client is then to find

some string a given a challenge nonce N such that:

h(a||N) ≡ h(N) mod 2b

The random nonce is included in both strings to pre-
vent attackers from building up tables of strings which
cover all 2b possible values of the lower b bits in advance.
In effect, they need to cover 2b+|N | possible values to
find matches for all values of the lower b bits and for all
possible nonces, whereas solving the puzzle online need
only search 2b−1 strings on average. Because the length
of the nonces is under the control of the mailboxes, it
is possible to make the pre-computing attack arbitrarily
harder than waiting and solving puzzles online.

First packets are granted general purpose nonces with
priority given first to those with valid authentication to-
kens and then in decreasing order of matching bits in the
crypto-puzzle solution. This allows any source to get a
first packet through against an attacker using only finite
resources per first packet albeit at an increase in latency.

Assuming that attackers have some fixed computa-
tional ability, we know that there is some number of
bits ba such that if attackers continuously solved cryp-
tographic puzzles in ba bits, they would not be able to
consume all general purpose requests. Knowing this, it
is easy to show that any client which solves a crypto puz-
zle in ba bits will be guaranteed to get a general purpose
nonce.

If the attackers solve puzzles in ba or more bits, then
by definition of ba there will be left over general pur-
pose nonces for the client to use. If the attackers solve
puzzles in fewer than ba bits, then the client will pref-
erentially receive general purpose nonces based on the
priority queuing.

Knowing ba in advance is not necessary because solv-
ing puzzles in all numbers of bits from 1 to ba only takes
twice as long as solving a puzzle in ba bits. Thus, at a
cost of a factor of 2 in latency, we can try all possible
numbers of bits until we find the “correct” number.

In addition to reducing overhead, aggregating gen-
eral purpose nonces across multiple IP addresses has
one further benefit. Without aggregation, a botnet can
amass its resources to drive up the cost of acquiring all
of the nonces for a specific destination. With aggrega-
tion, the botnet must compete with a larger number of
good clients, and a faster refresh rate of general purpose
nonces, in order to target any specific destination.

Connection establishment using crypto-puzzles pro-
ceeds as follows:

C→M [∗]: request challenge
C←M [∗]: N
C→M [∗]→ S: N , a, h(a||N), b, (KC , x)KS

C→M [x0]: request for x0

C←M [x0]← S: x0, (KS , y)KC , data
M [y0]← S: request for y0

C→M [y0]→ S: y0, data
C→M [x1]: request for x1

...

With the exception of the substitution of a crypto-
puzzle solution for an authentication token, this is iden-
tical to the solution presented in Section 3.4.2.

3.5 Congestion Control

Forwarding traffic through mailboxes with significant
path diversity makes Phalanx interact somewhat poorly
with normal TCP. Packets will be frequently reordered,
and losses from one mailbox should not necessarily
cause a connection to reduce its rate. Although this sce-
nario bears resemblance to multipath congestion control,
the issue in Phalanx is further complicated by the fact
that attackers can exploit congestion response as an av-
enue for DoS [21, 27].

Instead, we build a simple congestion control proto-
col based on the assumption that congestion only occurs
at the access links of the sender, receiver and/or mail-
box. Receivers advertise a maximum packet rate they
are willing to receive from a particular sender, based on
local policies and available resources. A sender uses
the receiver’s advertised rate along with current observed
packet receipt rate to adjust its sending rate.

Essentially, the receiver picks a rate it is willing to
receive, say 50 packets per second. To begin with the
sender sends 50 packets a second through its set of mail-
boxes. If losses bring the rate below 50 packets a sec-
ond, indicating either congestion or a DoS attack, the
sender will ramp up its packet rate to compensate, us-
ing either forward error correction or retransmissions to
recover lost packets. While this is not TCP friendly, it
is impossible to be both TCP friendly and resistant to
flooding attacks.

It is also possible for mailboxes to become overloaded,
e.g., due to true congestion. A mailbox experiencing
congestion is free to simply drop packets, but it can
also set the IP ECN bit in packets passing through it.
This signals to the destination that it should reduce the
rate through this particular mailbox. The destination can
achieve this by simply removing that mailbox from fu-
ture flows, or reconfiguring the mailbox sets of exist-
ing flows to exclude the congested mailbox. In our pro-
totype, we have implemented a finer-grained approach.
Each mailbox in the mailbox set is assigned a weight,

corresponding to the estimate of how much traffic that
mailbox can successfully handle. This weight is used
to bias the random selection of mailboxes to favor those
that can handle more traffic; the weights can be dynam-
ically adjusted, in the same manner as in Section 3.2.2,
by agreement between the source and destination.

3.6 Name Service Lookup

In order to provide a complete DoS solution, all compo-
nents of a connection must be protected, from looking up
the server, to logging in, to closing the connection. As we
attempt to solve the more general problem of providing
DoS protection for typical public server on the current
Internet, protecting lookup is as important as protecting
the actual connection.

Fortunately, lookup services typically serve small
amounts of static content and can thus be highly repli-
cated to provide DoS resilience. Other highly replicated
name services based on DHT like CoDoNS [28] provide
such solutions. One approach would be to run the DHT-
based lookup service on top of all mailboxes.

Rather than returning the address of a server, the name
service instead returns a list of mailboxes willing to han-
dle connections for the server. As before, this list of mail-
boxes can be chosen using iPlane in the absence of an at-
tack, or taken randomly from a topologically diverse list
to provide better resilience. These points of contact can
differ from the mailboxes which will eventually be used
for normal communication; those mailboxes are negoti-
ated during connection setup.

The server must be able to update these records, but we
imagine the set of first contact mailboxes will not change
especially quickly and it is not necessary for the change
to be atomic. This enables almost any off-the-shelf DHT
semantics to serve our purposes.

3.7 A Working Example

To illustrate the complete system in action, we consider
the example of fetching a web page from a Phalanx-
protected server. The example can also be followed in
Figure 2 where the numbered steps will be mentioned.

First, the client looks up the address of the server for
and subsequently requests the static, cacheable content
of the page via any current CDN-style system with high-
availability, such as Akamai, CoDeeN or Coral (as in
steps 1 and 2). As part of fetching this content, the client
receives a static and cacheable Java applet, which then
serves as a zero-installation client to allow for interaction
with Phalanx mailboxes. At this point, the Java applet
is responsible for rendering the dynamic, non-cacheable
portions of the page and speaking the Phalanx protocols.

The applet begins by making a name request for
the dynamic content server to the distributed name ser-
vice (3). Again, because the naming information is static

Applet

Distributed
DNS

Static
Server

1

2

Dynamic
Server

3

Mailboxes

8
7

4 5
6

9

9

9

Figure 2: A diagram illustrating a simple HTTP-style request
done with Phalanx. The numbers correspond to the description
in Section 3.7.

and cacheable, this service can be provided by any highly
available name service, such as CoDoNs or Akamai’s
DNS service. The name service returns a list of “first-
contact” mailboxes. These first-contact mailboxes hold
general purpose nonces that the server has issued to al-
low new connections to be made.

The applet requests a challenge nonce from one of
these mailboxes and replies with either a puzzle solution
or an authentication token (4). In either case, the applet
waits some period of time for a response before retrying
the request possibly with a more complex puzzle solution
and/or trying a different mailbox.

At the mailbox, a steady stream of general purpose
nonces has been arriving from the dynamic content
server (5). One of these general purpose nonces is even-
tually assigned to the client’s connection request (6)
at which point the applet’s request is forwarded to the
server along with the general purpose nonce (7) to cross
back through the filtering rings without being dropped.

Eventually, a response will come back from the
server (8) containing a list of mailboxes to use for the re-
mainder of the connection along with a shared secret al-
lowing standard Phalanx communication to commence.
Along with the response, the server will send packet
fetch requests to the first several mailboxes to be used
in preparation to receive further packets from the client.

The client uses the shared secret to determine the se-
quence of mailboxes the server expects the client to use
and begins to send packets to these mailboxes. These
data packets are paired with their corresponding requests
and forwarded onto the server passing through the filter-
ing ring by virtue of the holes opened by the requests.
This constitutes the normal behavior of the Phalanx con-
nection (9).

If at any point in time the server decides that the con-
nection is no longer desirable or simply starts running
low on resources, it can either decrease the rate at which

Figure 3: The cumulative distribution of round trip
latencies over 1000 packets sent between Berlin
edi.tkn.tu-berlin.de and North Carolina
planet02.csc.ncsu.edu using both standard UDP
(Internet) and Phalanx.

it requests new data packets or simply stops requesting
packets altogether.

4 Evaluation
To evaluate Phalanx, we implemented a prototype server,
client, filtering ring, and mailbox. Our prototype is ap-
proximately 1750 lines of C code between the four func-
tions. We have not yet integrated our code with a scal-
able name system; several good candidates exist such as
CoDoNS [28], DDNS [14], and Overlook [36], and in-
tegrating our system with one of these options is part of
future work. We also augment the experimental results
from our prototype with simulation results on a large-
scale Internet topology.

4.1 Micro-benchmarks

To get a high-level idea of the performance of Phalanx in
normal operating conditions with no ongoing attacks, we
ran a series of experiments on PlanetLab. Each run sent
packets between two randomly chosen PlanetLab nodes
at different sites in late September 2007. (We eliminated
PlanetLab sites where no node responded to a ping, and
we avoided measuring during the time immediately pre-
ceding the conference submission deadline.) For each
pair of nodes, we used iPlane to select an additional ten
PlanetLab nodes, each at a physically different location,
to serve as mailboxes. The nodes were selected as those
that iPlane predicted would offer the lowest latency for a
one hop path between the pair of nodes.

For each pair, we sent constant bitrate UDP traffic at
approximately 25 kilobytes per second (25 packets per
second) from the source to the destination first using Pha-
lanx and then using plain UDP. In both cases we sent ap-
proximately 1000 packets per connection.

Triangle routing packets through mailboxes will usu-
ally incur some extra latency, particularly on Planet-
Lab where scheduling delays can dominate. However,
iPlane’s predictions can help counter this by selecting
mailboxes which offer the least latency. Figure 3 shows a

Figure 4: Cumulative distribution of loss rate, across all pairs
of PlanetLab nodes, for standard UDP packets sent over the
Internet and packets sent via Phalanx.

sample run for traffic between a node in Berlin and and a
node in North Carolina, measured for standard UDP and
for Phalanx. As the figure shows, despite crossing the At-
lantic, Phalanx has only a modest effect on per-packet la-
tency. iPlane is able to find ten suitable mailboxes which
do not significantly affect end to end latency. On average
the latency goes up by a little less than 25 milliseconds
or 20%.

A denser deployment of mailboxes, for instance us-
ing BitTorrent’s client network or Akamai’s worldwide
network of servers, should improve these numbers sig-
nificantly.

Because of its indirection architecture, Phalanx re-
quires multiple packets to be successfully sent and re-
ceived in order to successfully deliver what would be
a single packet in the underlying Internet. As a conse-
quence, we would expect that Phalanx’s packet loss rates
would be worse than that of normal UDP.

Figure 4 illustrates this effect, showing the cumula-
tive distribution of the measured loss rate across all pairs
of PlanetLab nodes, for the experiment described above.
While Phalanx does see more loss than the standard UDP,
the effect is close to a constant factor increase in loss rate.

4.2 Attack Resilience

We next study Phalanx’s ability to counter attacks. For
this, we repeat the previous experiment between the
PlanetLab nodes in Berlin and North Carolina, but con-
figured so that half of the mailboxes simulate an attack
where they drop 75% of the arriving packets. This might
occur if the mailboxes themselves were being flooded, or
equivalently, if a portion of the filtering ring was being
attacked. The sender and receiver respond to this loss by
increasing the sending rate through the unaffected mail-
boxes to compensate; they could also expand the number
of mailboxes in use, but this was not necessary to com-
pensate for the simulated attack.

Figure 5 shows the result. After twelve seconds, the
simulated attack begins. By increasing the sending rate,
the receiver is able to maintain an average of 25 packets

Figure 5: The rate at which packets are sent and received in the
face of a modeled attack. Starting at 12 seconds, 5 of the 10
Phalanx mailboxes are “attacked”, cause 75% loss of arriving
data packets. Noting the decrease in throughput, the receiver
asks the sender to send faster and is able to maintain an average
throughput of 25 packets per second.

per second despite half of the mailboxes dropping most
of their packets.

4.3 Simulation

Evaluating systems like Phalanx at scale has always
posed a problem because they are fundamentally in-
tended to operate at scales well beyond what can be eval-
uated on a testbed. To address this issue, we built a sim-
ulator that captures the large-scale dynamics of Phalanx
and allows us to simulate millions of hosts simultane-
ously.

The simulator uses a router-level topology gathered by
having iPlane [22] probe a list of approximately 7200
known Akamai nodes from PlanetLab nodes. These
Akamai nodes serve as stand-ins for appropriately lo-
cated mailboxes. Each PlanetLab node serves as a stand-
in for a server which is under attack.

We assume that attackers target the mailboxes, the
server and the links near the server. Traffic is assumed
to flow from clients to mailboxes unmolested. We as-
sign link capacities by assuming mailbox access links
are 10 Mbps, the server access link is 200 Mbps, and
link capacity increases to the next category of {10 Mbps,
100 Mbps, 1 Gbps, 10 Gbps, 40 Gbps} as the links move
from the edge to the core.

We assign attackers with attack rates according to end-
host upload capacity information gathered in our previ-
ous work [22, 18] and assume that good clients commu-
nicate at a fixed rate of 160 Kbps.

By using IP to AS mappings, we are able to
simulate the behavior of the system under vary-
ing levels of deployment of the Phalanx filtering
rings. Figure 6 shows the effect of increasing de-
ployment of filtering rings for a server located at
planetlab-01.kyushu.jgn2.jp. (The results
are similar when we use other PlanetLab nodes as
servers.) In this simulation, there are 100,000 attacking

Figure 6: The cumulative fraction of mailboxes seeing at most a
given fraction of goodput when communicating with the server.

Figure 7: The cumulative fraction of mailboxes seeing at most
a given loss rate for a varying number of attackers.

nodes and 1000 good clients all trying to reach the vic-
tim server. We simulate varying degrees of deployment
by iteratively adding the largest adjacent AS to the cur-
rent area of deployment.

As one might expect, even a little deployment helps
quite a bit. Only deploying filters at the victim AS pro-
vides significant relief and allows some mailboxes to see
lossless communication. Deploying in just 4 ASes (in-
cluding the tier-1 AS NTT) results in the vast majority
of mailboxes seeing lossless communication, effectively
stopping the attack in its tracks if we assume that con-
nections use any degree of redundancy to handle losses.

We next look at the scalability of Phalanx in handling
attacks involving millions of bots. For this experiment
we consider a somewhat stronger deployment: upgrad-
ing the mailboxes to 100 Mbps access links. Figure 7
examines the effect on mailbox loss rate as we increase
the number of attackers. Most connections easily with-
stand the brunt of an attack involving one million nodes,
and Phalanx still allows some (though severely degraded)
communication through when facing 4 million nodes. In
practice, Akamai advertises more than 15,000 nodes and
many of them are connected via 1 Gbps links, which
would easily give another order of magnitude in protec-
tion.

We are also able to quantitatively show the bene-
fit of the multipathing approach in Phalanx over previ-
ous capability-based schemes like TVA [40]. Figure 8

Figure 8: The fraction of connections which see less than 3%
loss when sending 3 copies of each packet.

shows the fraction of connections which suffer accept-
able loss when using a single-path system, like TVA,
as compared with Phalanx. We use the same setup as
the scalability experiment (mailboxes with 100 Mbps ac-
cess links), with filtering rings being equivalent to TVA-
enabled routers. Further we assume that all packets are
sent three times to attempt to overcome loss. We define
acceptable loss to be less than 3% after the redundancy.

The benefit of multipathing is immediately clear as
Phalanx is able to provide almost all connections with
acceptable loss rates even when defending against one
million attackers. TVA on the other hand is forced to use
a single path per connection meaning that some unfor-
tunate connections will always have to endure high loss.
Further, a calculating adversary can inflict the maximum
possible damage with his available resources by targeting
them on specific sets of links rather than being forced to
spread his attack out.

5 Related Work
Our work on Phalanx leverages many elements from
prior attempts to design a solution to mitigate DoS at-
tacks. As we have argued, the primary differences come
down to goals: ours is to design a system that could be
easily deployed today, does not change the open model
of Internet access, yet is powerful enough to deal with
massive botnets.

5.1 Network Filtering

CenterTrack [35] and its later cousin dFence [24] pro-
pose new functionality for individual ASes to ensure that
all traffic for a specific destination (e.g., one under at-
tack) flows through certain filtering boxes. While effec-
tive for many attacks found in the wild today, this central-
ized approach is unlikely to scale to be able to handle the
terabit attacks possible with multimillion-node botnets.

Pushback schemes [8, 9, 23] attempt to scale the power
of network filtering by pushing filters to routers immedi-
ately downstream from where the traffic is entering the
network. These filters are specially constructed to block
attack traffic while allowing good traffic through. For
example, in Active Internet Traffic Filtering [9], victims

alert their upstream routers of undesired flows. These
routers temporarily block the flows while they in turn ne-
gotiate with routers further upstream to block the flows.

In the case of a multimillion-node botnet, where bots
are found in almost every corner of the Internet, con-
taining a botnet would require support for installing and
managing filters at routers throughout the public Internet.

5.2 Capabilities

Capability schemes [7, 40, 10, 38, 39] have also received
quite a lot of attention from the research community. Ca-
pability approaches drop (or relegate to lower priority)
all traffic which does not carry a certificate proving that
the packet was explicitly allowed by the recipient.

For example, in SIFF [39], capabilities are created dur-
ing connection setup by each router on the path from
source to destination. These routers stamp the initial con-
nection request packet with time-limited cryptographic
information. If the connection is desired by the desti-
nation, it returns the stamps to the sender, enabling it to
prove to each router in the path that the connection is
to be permitted. Because the capabilities are based on
cryptographic hashes of flow identifiers, a secret key and
local timestamps at routers, they cannot easily be forged
or reused spatially or temporally.

The solutions for acquiring capabilities are noticeably
less fleshed out and are usually some form of approx-
imate fair queueing on the flow and/or path identifier.
Furthermore, the capabilities are path-specific and any
change to the route forces all flows using that path to
reacquire their capabilities.

In Phalanx, we use a per-packet capability to identify
which specific packets are to be allowed through the fil-
tering ring at the request of a destination. Flows whose
packets are not requested, do not have permission to send
and are thus dropped. Additionally we make use of a
more robust resource proof-based fair queuing scheme
for the connection setup channel. Lastly, Phalanx uses
loose source routing and rapidly refreshed capabilities to
ensure that routing changes do not prevent the system
from providing service even under attack.

5.3 Overlays

Overlay schemes [19, 5, 30, 33] leverage a set of trusted
or semi-trusted nodes to act as proxies for end-hosts
which may become the subject of attack. The common
idea is to use more fully functional, and easier to de-
ploy, machines to perform complex operations on pack-
ets, ones that might not be feasible at line rate inside of
routers.

For example, one of the first overlay proposals for
DoS protection was Secure Overlay Services (SOS) [19].
In SOS and later systems such as Mayday, only
pre-authenticated users were allowed to route packets

through the overlay. Hence these systems could not
be used for protecting general Internet traffic. A valid
source could send packets to any node in the overlay
by including an authentication token, and these packets
were then routed to a specific output node (generalized
later to be a set of output nodes), which then forwarded
the packets to the destination. If the destination IP ad-
dress and the identity of the overlay output node were
both kept secret, an attack would be difficult to mount.

Phalanx builds on the basic approach of using an over-
lay network; in our view, overlays are the only way we
will be able to deploy a solution to multimillion-node
botnets in the foreseeable future. However, we general-
ize on the prior overlay work, so that in Phalanx: (i) any
Internet host can send packets through the overlay with-
out pre-authentication, (ii) any overlay node can send
packets to any destination, and (iii) there is a simple,
scalable, and efficient protocol for installing network fil-
ters to prevent unauthorized packets from reaching the
destination.

5.4 Resource Proofs

A relatively new technique borrows resource proofs from
techniques to deal with Sybil attacks [15]. Resource
proofs allow service to be given in proportion to the re-
sources available to a given user. This has the effect of
preventing attackers from flooding and thus drowning-
out well behaved users.

Speak-up [37] proposes using bandwidth for resource
proofs by having legitimate hosts send more requests
during times of attack. This results in per-bandwidth fair
queue. OverDoSe [30] and Portcullis [26] both instead
have hosts solve cryptographic puzzles to provide per-
computation fair queueing.

In Phalanx, as in Portcullis, we use cryptographic puz-
zles to provide per-computation fair queueing because
computation is a local-only, reasonably cheap resource
especially in comparison to bandwidth.

5.5 Architectures

In addition, several proposals have suggested completely
new architectures that would make denial of service at-
tacks much harder to mount. For example, Off By De-
fault [10] proposes that the network be modified to estab-
lish routes only where explicitly allowed by the recipient;
in other words, only legitimate sources would be allowed
to send packets to a specific destination. Establishing
and tearing down routes is a fairly heavyweight opera-
tion, however, while Phalanx achieves the same goal on
a per-packet granularity.

Phalanx is perhaps closest in spirit to the Internet Indi-
rection Infrastructure (i3) proposal, in that every packet
is sent through a mailbox abstraction [34]. Secure-i3 [4]
extends the original i3 approach for routing via DHTs

to use an almost-unlimited address space to help prevent
certain attacks. Like Phalanx, Secure-i3 makes use of
a level of indirection in between sender and receiver as
well as a large swarm computers acting as intermediaries.
Unlike Phalanx requests, i3 triggers last for long periods
of time, usually minutes, instead of being installed on
a packet granularity. Further, i3 assumes that all pack-
ets are carried over i3, so that it cannot be attacked from
below. Phalanx is designed to withstand attacks carried
over the underlying Internet.

6 Conclusion
In this paper, we presented Phalanx, a system for ad-
dressing the emerging denial of service threat posed by
multimillion-node botnets. Phalanx asks only for two
primitives from the network. The first is a network of
overlay nodes each implementing a simple, but carefully
engineered, packet forwarding mechanism; this network
must be as massive as the botnet that it is defending
against. Second, we require a filtering ring at the bor-
der routers of the destination’s upstream tier-1 ISP; this
filtering ring is designed to be simple enough to operate
at the very high data rates typical of tier-1 border routers.
We have implemented an initial prototype of Phalanx on
PlanetLab, and used it to demonstrate its performance.
We have further demonstrated Phalanx’s ability to scale
to million node botnets through simulation.

7 Acknowledgments
We would like to thank Arun Venkataramani for a set of
conversations which helped us realize the need for more
scalable DDoS protection. We would also like to thank
our shepherd, Sylvia Ratnasamy, as well as our anony-
mous reviewers for their help and valuable comments.
Additionally, this work was supported by National Sci-
ence Foundation grant #CNS-0430304.

References
[1] Akamai technologies. http://www.akamai.com/.
[2] Microsoft’s unabated patch flow. http://www.avertlabs.

com/research/blog/index.php/category/
security-bulletins/, May 9 2007.

[3] ’Surge’ in hijacked PC networks. http://news.bbc.co.
uk/2/hi/technology/6465833.stm, March 2007.

[4] D. Adkins, K. Lakshminarayanan, A. Perrig, and I. Stoica. To-
wards a more functional and secure network infrastructure. Tech-
nical report, UC Berkeley, 2003.

[5] D. G. Andersen. Mayday: Distributed filtering for internet ser-
vices. In USITS, 2003.

[6] N. Anderson. Vint Cerf: one quarter of all computers part of
a botnet. http://arstechnica.com/news.ars/post/
20070125-8707.html, January 25 2007.

[7] T. Anderson, T. Roscoe, and D. Wetherall. Preventing internet
denial-of-service with capabilities. In HotNets-II, 2003.

[8] K. Argyraki and D. Cheriton. Network capabilities: The good,
the bad and the ugly. In HotNets-IV, 2005.

[9] K. Argyraki and D. R. Cheriton. Real-time response to denial-of-
service attacks. In USENIX, 2005.

[10] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and
S. Shenker. Off by default! In HotNets-IV, 2005.

[11] D. J. Bernstein. SYN cookies. http://cr.yp.to/
syncookies.html, 1996.

[12] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[13] M. Casado, P. Cao, A. Akella, and N. Provos. Flow-cookies:
Using bandwidth amplification to defend against DDoS flooding
attacks. In IWQoS, 2006.

[14] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS using a
peer-to-peer lookup service. In IPTPS, 2002.

[15] J. R. Douceur. The sybil attack. In IPTPS, 2001.
[16] P. Finn. Cyber assaults on Estonia typify a new battle tac-

tic. http://www.washingtonpost.com/wp-dyn/
content/article/2007/05/18/AR2007051802122.
html, May 19 2007.

[17] J. Franklin, V. Paxson, A. Perrig, and S. Savage. An Inquiry into
the Nature and Causes of the Wealth of Internet Miscreants. In
CCS, 2007.

[18] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Lever-
aging bittorrent for end host measurements. In PAM, 2007.

[19] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure over-
lay services. In SIGCOMM, 2002.

[20] B. Krebs. Blue security kicked while it’s down.
http://blog.washingtonpost.com/securityfix/
2006/05/blue security surrenders but s.html,
May 2006.

[21] A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted Denial
of Service Attacks (The Shrew vs. the Mice and Elephants. In
SIGCOMM, 2003.

[22] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,
A. Krishnamurthy, and A. Venkataramani. iPlane: An informa-
tion plane for distributed services. In OSDI, 2006.

[23] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker. Controlling high bandwidth aggregates in the
network. CCR, 2002.

[24] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and Y. Zhang.
dFence: Transparent Network-based Denial of Service Mitiga-
tion. In NSDI, 2007.

[25] A. McCue. Bookie reveals $100,000 cost of denial-of-
service extortion attacks. http://software.silicon.
com/security/0,39024655,39121278,00.htm, June
11 2004.

[26] B. Parno, D. Wendlant, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu.
Portcullis: Protecting connection setup from Denial-of-Capbility
attacks. In SIGCOMM, 2007.

[27] B. Raghavan and A. Snoeren. Decongestion Control. In Hotnets-
V, 2005.

[28] V. Ramasubramanian and E. G. Sirer. The design and imple-
mentation of a next generation name service for the internet. In
SIGCOMM, 2004.

[29] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (In-
formational), Apr. 1992.

[30] E. Shi, I. Stoica, D. Andersen, and A. Perrig. OverDoSe: A
generic DDoS protection service using an overlay network. Tech-
nical report, Carnegie Mellon University, 2006.

[31] E. Skoudis. Big honkin’ botnet - 1.5 million! http://isc.
sans.org/diary.html?storyid=778, October 2005.

[32] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the internet
in your spare time. In USENIX Security, 2002.

[33] A. Stavrou and A. D. Keromytis. Countering DoS attacks with
stateless multipath overlays. In CCS, 2005.

[34] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Inter-
net indirection infrastructure. In SIGCOMM, 2002.

[35] R. Stone. CenterTrack: An IP Overlay Network for Tracking DoS
Floods. In USENIX Security, 2000.

[36] M. Theimer and M. B. Jones. Overlook: Scalable name service
on an overlay network. In ICDCS, 2002.

[37] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and
S. Shenker. DDoS defense by offense. In SIGCOMM, 2006.

[38] D. Wendlant, D. G. Andersen, and A. Perrig. Bypassing network
flooding attacks using fastpass. Technical report, Carnegie Mel-
lon University.

[39] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless internet flow
filter to mitigate DDoS flooding attacks. In IEEE Symposium on
Security and Privacy, 2004.

[40] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. In SIGCOMM, 2005.

http://www.akamai.com/
http://www.avertlabs.com/research/blog/index.php/category/security-bulletins/
http://www.avertlabs.com/research/blog/index.php/category/security-bulletins/
http://www.avertlabs.com/research/blog/index.php/category/security-bulletins/
http://news.bbc.co.uk/2/hi/technology/6465833.stm
http://news.bbc.co.uk/2/hi/technology/6465833.stm
http://arstechnica.com/news.ars/post/20070125-8707.html
http://arstechnica.com/news.ars/post/20070125-8707.html
http://cr.yp.to/syncookies.html
http://cr.yp.to/syncookies.html
http://www.washingtonpost.com/wp-dyn/content/article/2007/05/18/AR2007051802122.html
http://www.washingtonpost.com/wp-dyn/content/article/2007/05/18/AR2007051802122.html
http://www.washingtonpost.com/wp-dyn/content/article/2007/05/18/AR2007051802122.html
http://blog.washingtonpost.com/securityfix/2006/05/blue_security_surrenders_but_s.html
http://blog.washingtonpost.com/securityfix/2006/05/blue_security_surrenders_but_s.html
http://software.silicon.com/security/0,39024655,39121278,00.htm
http://software.silicon.com/security/0,39024655,39121278,00.htm
http://isc.sans.org/diary.html?storyid=778
http://isc.sans.org/diary.html?storyid=778

	Introduction
	Phalanx Overview
	Background
	Assumptions
	Goals

	Phalanx Architecture
	Components
	Mailboxes
	Swarms & Iterated Hash Sequences
	Mailbox Sets

	Filtering ring
	Connection Establishment
	Passing through the filtering ring
	Authentication tokens
	Crypto-puzzles

	Congestion Control
	Name Service Lookup
	A Working Example

	Evaluation
	Micro-benchmarks
	Attack Resilience
	Simulation

	Related Work
	Network Filtering
	Capabilities
	Overlays
	Resource Proofs
	Architectures

	Conclusion
	Acknowledgments

