
4/7/2009

1

DisCo
A Case Study on Distributed Mining

Spiros Papadimitriou
Jimeng Sun

IBM T.J. Watson Research Center

Data processing and mining

Gathering Post-processingPre-processing Analysis

Mining process

2

Data processing and mining

Gathering Post-processingPre-processing Analysis

Mining process

3

Feature extraction,
Aggregation,

…

Model estimation,
Validation,

…

BUT:
Both are equally important and equally time consuming

Usual focus“It’s a dirty job…”
Scalable infrastructures
for end-to-end mining?

Data processing and mining

Gathering Post-processingPre-processing Analysis

Mining process

4

Data access
APIs Processing

APIs

Distributed
File System

Distributed framework

Sawzall
Pig
Cascading
…

BigTable
HBase

…

Google FS
HDFS

KFS
…

Shared computation
and storage nodes

Overview

Gathering Post-processingPre-processing Analysis

Mining process

5

Background
Feature extraction
Mining
Conclusion

MapReduce
Aggregates & edgelists
Co-clustering

Overview

Gathering Post-processingPre-processing Analysis

Mining process

6

Background: MapReduce
Feature extraction
Mining
Conclusion

4/7/2009

2

Example – Programming model

LAST FIRST SALARY
Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moo e Jack $85 000

employees.txt mapper

reducer

def getName (line):
return line.split(‘\t’)[1]

def addCounts (hist, name):
hist[name] = \
hist.get(name,default=0) + 1

7

Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000
...
...

Q: “What is the frequency
of each first name?”

return hist

input = open(‘employees.txt’, ‘r’)

intermediate = map(getName, input)

result = reduce(addCounts, \
intermediate, {})

Three (fixed) “streams”:
key-value iterators

Comparison
Quick-n-dirty script MapReduce (Hadoop)

~5 lines of (non-boilerplate) code

Single machine,
l l d i

Up to thousands of
hi d d i

vs

8

What is hidden to achieve this:
Data partitioning, placement and replication
Computation placement (and replication)
Number of nodes (mappers / reducers)
…

local drive machines and drives

As a user, you don’t need to know
what I’m about to show you next…

Execution model: Flow

CHUNK 0

CHUNK 1

CHUNK 2

MAPPER

REDUCER
MAPPER

REDUCER

PART 0

Key/value
iteratorsSmith John $90,000

Yates John $80,000
J h 1

John 1

John 2

9

CHUNK 2

CHUNK 3

MAPPER
REDUCER PART 1

MAPPER

Sequential scan

All-to-all, hash partitioning

Sort-merge

John 1

Execution model: Placement

HOST 0

CHUNK 0 CHUNK 1

HOST 1

CHUNK 0
Replica 2/3

CHUNK 4
Replica 1/3

CHUNK 3
Replica 1/3

HOST 2

CHUNK 3
Replica 3/3

MAPPER

CHUNK 2
Replica 2/3

CHUNK 0
Replica 3/3

HOST 3

CHUNK 2
Replica 3/3

CHUNK 1
Replica 1/3

MAPPER

10

Replica 1/3

MAPPER

Replica 2/3

CHUNK 3
Replica 2/3

MAPPER

CHUNK 4
Replica 2/3

HOST 4

HOST 5

HOST 6

Computation co-located with data (as much as possible)

1990s:
“Active Disks”

Execution model: Placement

HOST 0

CHUNK 0 CHUNK 1

HOST 1

CHUNK 0
Replica 2/3

CHUNK 4
Replica 1/3

CHUNK 3
Replica 1/3

HOST 2

CHUNK 3
Replica 3/3

MAPPER

CHUNK 2
Replica 2/3

CHUNK 0
Replica 3/3

HOST 3

CHUNK 2
Replica 3/3

CHUNK 1
Replica 1/3

MAPPER

REDUCER

C
C

11

Replica 1/3

MAPPER

Replica 2/3

CHUNK 3
Replica 2/3

MAPPER

CHUNK 4
Replica 2/3

HOST 4

HOST 5

HOST 6

Rack/network-aware

C

C

Execution timeline
Co-clustering iteration

transform locally,ship to reducer wait

mappers

reducer
Group & aggregate

12

4/7/2009

3

Hadoop

Open-source implementation (ASF/Yahoo!)
Main Hadoop components:

HDFS: Clone of Google FS
MapReduce

13

MapReduce
HTable: Clone of BigTable
Hadoop On Demand (HOD)

Overview

Gathering Post-processingPre-processing Analysis

Mining process

14

Background
Feature extraction
Mining
Conclusion

Histogram benchmark

347.5GB raw data input (text)
~30KB total reducer output

U t 39 d d

15

Up to 39 quad-core nodes
…see paper for setup details

3766

6844

5000

6000

7000

8000

w
id

th
 (M

bp
s)

Scalability
Simple benchmark

7 minutes

16

113

3766

0

1000

2000

3000

4000

0 5 10 15 20 25 30 35 40

Number of nodes

A
gg

re
ga

te
 b

an
dw

Single
drive

Fibre

Caveat: cluster is running a single job

7 hours

Parameter tuning study

Process pool size
Number of reducers
Input file split size

17

…see paper

Pre-processing vs. co-clustering

Pre-processing Co-clustering

Edgelist extraction, 39 nodes

18

0.2 0.4 0.6 0.8 10

... both are equally important and equally time consuming

4/7/2009

4

Overview

Gathering Post-processingPre-processing Analysis

Mining process

19

Background
Feature extraction
Mining: (co-)clustering
Conclusion

k = 5, ℓ = 5k = 5, ℓ = 5

Co-clustering
Summary

k = 1, ℓ = 1

20

splitshuffle

k=1, ℓ=2 k=2, ℓ=2 k=2, ℓ=3 k=3, ℓ=3 k=3, ℓ=4 k=4, ℓ=4 k=4, ℓ=5

splitshuffle

Split:
Increase k or ℓ

Shuffle:
Rearrange rows and cols

Search for solution
Shuffles

p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

Similarity (KL-divergence)
of row fragments
to blocks of a row group

Assign to second row-group

21

, ,

p3,3p3,2p3,1

(Co-)clustering with MapReduce

1
KEY VAL

5 7 13

2

3

3 9 11 19 27

6 12

22

m 98

Sequence file in HDFS

(Co-)clustering with MapReduce

1
KEY VAL

5 7 13

2

3

3 9 11 19 27

6 12

R(2) p1 p2 p3

KEY VAL
2

MAP

p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

p3,3p3,2p3,1

23

col-cluster labels

cluster statistics

m 98

p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

p3,1 p3,2 p3,3

C(1) C(2) C(n)

P

C

Sequence file in HDFS Broadcast job parameters

p1

(Co-)clustering with MapReduce

1
KEY VAL

5 7 13

2

3

3 9 11 19 27

6 12

R(2) p2 p3

VAL
2

R(1) p1 p2 p3 1

VALR(3) p1 p2 p3 3

KEY VAL

24

m 98

VALp1 p2 p3

VALR(m) p1 p2 p3 m

4/7/2009

5

(Co-)clustering with MapReduce

p1R(2) p2 p3

VAL
2

R(1) p1 p2 p3 1

VALR(3) p1 p2 p3 3

25

VALp1 p2 p3

VALR(m) p1 p2 p3 m

p1

(Co-)clustering with MapReduce

R(2) p2 p3

VAL
2

R(1) p1 p2 p3 1

R(3) p1 p2 p3 3

1 =

2 =

1 =

26

p1 p2 p3

VALR(m) p1 p2 p3 m3 =

R(4) p1 p2 p3 42 =

R(5) p1 p2 p3 53 =

(Co-)clustering with MapReduce

VALR(1) p1 p2 p3 11 =

p1R(2) p2 p3 22 =

R(3) p1 p2 p3 31 =

27

VALR(m) p1 p2 p3 m

p1 p2 p3

3 =

R(4) p1 p2 p3 42 =

R(5) p1 p2 p3 53 =

3

(Co-)clustering with MapReduce

VALR(1) p1 p2 p3 11 =

R(3) p1 p2 p3 31 =

+ ∪

REDUCE
1 p1,1 p1,2 p1,3

KEY VAL
1

28

VALR(m) p1 p2 p3 m

p1R(2) p2 p3 22 =

3 =

R(4) p1 p2 p3 42 =

R(5) p1 p2 p3 53 =

row-cluster labels

cluster statistics
p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

p3,1 p3,2 p3,3

R(1) R(2) R(m)

P

R

Broadcast job parameters

(Co-)clustering with MapReduce

1
KEY VAL

5 7 13

2

3

3 9 11 19 27

6 12

R(2) p1 p2 p3

KEY VAL
2

MAP

29

col-cluster labels

cluster statistics

m 98

P

C

Sequence file in HDFS Broadcast job parameters

Scales w.r.t. number of edges – what about nodes ?

Co-clustering with MapReduce

row statistics

1
KEY VAL

5 7 13

2

3

3 9 11 19 27

6 12

1

2

3

KEYVAL R(1)

5

2

0 1 0

KEY VAL

KEY VAL

MAP

MAP

sharing scans ?

30

adjacency list
m 98

Sequence file Sequence file in HDFS

m

7

13

0 1 0

0 1 0

cluster statistics
P

Broadcast job parameters

map-side joins ?

4/7/2009

6

992

1475
1640 1650

1000

1200

1400

1600

1800

w
id

th
 (M

bp
s)

(Co-)clustering
Scalability

Raw data: ~100GB (knee beyond 39 nodes)
Binary edgelist: ~4GB (knee ~15 nodes)

31

113

686

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40

Number of nodes

A
gg

re
ga

te
 b

an
dw

Job length ≈ 20 ± 2 sec
Sleep overhead ≥ 5 sec

Scales up to ~10-15 nodes
But, at the moment, Hadoop implementation is sub-optimal for short jobs…

Single
drive

In-memory
distributed/SMP
MapReduce??

Scales with
data volume

Overview

Gathering Post-processingPre-processing Analysis

Mining process

32

Background
Feature extraction
Mining
Conclusion

Other work
Hadoop/MapReduce “ecosystem”

Lower-level (storage/virtualization):
Kosmos FS (KFS), Amazon S3, Parascale
VSN, Ceph, Lustre/Gluster, PanFS
Amazon EC2

33

Higher-level (data access):
BigTable, HBase, Hypertable

Higher-level (computation):
PIG, Cascading, Sawzall, Dryad/DryadLINQ

Other work
Distributed/Parallel Mining

Sector
FREERIDE-G

M R d f ML lti [NIPS06]

34

MapReduce for ML on multi-core [NIPS06]

Conclusions and lessons
MapReduce

Simple programming model
Part of a growing, open “ecosystem”
of data processing tools
Scalable and fault-tolerant

35

Scalability ≡ performance
Ideal for (pre-)processing large
volumes of data

‘[…] MapReduce is the first instruction of the
“data center computer” […]’

– David Patterson,
“The Data Center Is The Computer”,

CACM, Jan. 2008

Conclusions and lessons
Distributed mining process

Data pre-processing and mining
End-to-end view
Both equally important and time-consuming

How big the data really is depends

36

How big the data really is depends
on the task at hand (cf. [NIPS06])

4/7/2009

7

DisCo
A Case Study on Distributed Mining

Spiros Papadimitriou
Jimeng Sun

IBM T.J. Watson Research Center

See also http://www.bitquill.net/trac/wiki/PCC/Start

