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Introduction
Dense data:
Contain strongly correlated items and long frequent patterns

Such data sets are, in fact, very hard to mine, 
while the number of frequent itemsets grows up 
very quickly as the minimum support threshold is 
decreased.

Introduction(cont.)

Closed Itemsets
Given an itemset T D, and I I and we define

f(T) = { i I | t T , i t }
(S) { t D | i I i t }g(S) = { t D | i I , i t }

An itemset I is said to be closed if and only if
c(I)=f(g(I))=f。g(I)=I

Introduction(cont.)

min_supp = 1,

Introduction(cont.)

Browsing the search space
Lemma 1. Given two itemsets X and Y ,if X   Y and supp(X) = 
supp(Y), then c(X) = c(Y)

⊂

Therefore, given a generator X, if we find an already mined closed 
itemsets Y that set-includes X, where the supports of Y and X are 
identical, we can conclude that c(X)=c(Y). In this case, we also say 
that Y subsumes X.If this holds, we can safely prune the generator 
X without computing its closure. Otherwise, we have to compute 
c(X) in order to obtain a new closed itemset.
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Introduction(cont.)

We could in fact mine all the closed itemsets by computing the 
closure of just this single representative itemset for each 
equivalence class, without generating any duplicate. Let us call 
representative itemsets closure generators.

Other algorithms use a different technique, which we call closure 
climbing.

For example, the closed itemset {A,B,C,D} of the figure could be 
mined twice since it can be obtained as the closure of two minima 
elements of its equivalence class, namely, {A,B} and 
{B,C}.

Introduction(cont.)

Given an itemset X and an item i I, g(X) g(i)     
i c(X)⇔

From the above lemma, we have that if g(X) g(i), then i c(X). 
Therefore, by performing this inclusion check for all the items in I 
not included in X, we can incrementally compute c(X).

Memory-Efficient Duplicate Detection and 
Pruning(cont.)

For example, the closed itemsets {A,C,D} has four such generators, 
namely, {A}, {A,C}, {A,D}, and {C,D}.

Denote with symbol < the usual lexicographic total order between 
two ordered itemsets, in turn, defined on the basis of R.

Memory-Efficient Duplicate Detection and 
Pruning(cont.)

A generator of the form X=Y i, where Y is a closed itemset and 
i     Y , is said to be order-preserving iff either c(X) = X or i < 
(c(X)\X).
∉

Example of Figure, we have that {A}=ψ {A} is an order-
preserving generator of the closed itemset {A,C,D}, while 
{C,D}={C} {D} is not an order-preserving generator for the same 
closed itemset.

Memory-Efficient Duplicate Detection and 
Pruning(cont.)

In order to mine all the closed itemsets by avoiding 
redundances, we compute the closure of order-
preserving generators only and prune the others.

Theorem 1.
For each closed itemset    ≠c(ψ), there exists a sequence 
of n items i0 < i1 < ...< in-1, n 1, such that 
<gen0,gen1,...,genn-1>  =<Y0 i0,Y1 i1,…,Yn-1 in-1>, 
where the various geni are order-preserving generators, 
with Y0=c(ψ),     j [0,n-1],Yj+1=c(Yj ij), and Yn=   .

Y

∀
Y

Memory-Efficient Duplicate Detection and 
Pruning(cont.)

Corollary 1.
For each closed itemset    ≠c(ψ), the sequence of order-preserving 
generators of Theorem 1 is unique.

Y

Example:
For the closed itemset     ={A,B,C,D}, we have Y0= c(ψ)=ψ, 
gen0=ψ {A}, Y1=c(gen0)={A,C,D}, gen1= {A,C,D} {B}, 
and,finally,     = c(gen1). 

Y

Y
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Memory-Efficient Duplicate Detection and 
Pruning(cont.)

Detecting Order-Preserving Generator
Definition 3.
Given a generator gen = Y i, where Y is a closed itemset and i    Y, 
we define pre set(gen) as follows:

∉
we define pre-set(gen) as follows: 

pre-set(gen) = { j | j I, j    gen,  and j < i}.

Lemma 3.
Let gen = Y i, i be a generator where Y is a closed itemset and i    

Y. If   j pre-set{gen} such that g{gen}    g{j}, then gen is not 
order-preserving.

∉

∉ ⊂∃

DCI_CLOSED Alogrithm
DCI_CLOSED starts by scanning the input data set D to determine 
the frequent single items F1 I and builds the bitwise vertical data 
set VD containing the various tidlists g(i).

f hi fi d id h hAfter this first step, DCI_CLOSED decides whether VD
corresponds to either a dense or a sparse data set. Since VD is 
bitwise, if the percentage of 1s is large, the data set is soon 
classified as dense.

DCI_CLOSED Alogrithm(cont.) DCI_CLOSED Alogrithm(cont.)

DCI_CLOSED Alogrithm(cont.)

Once c(ψ)=ψ, is found, four generators can be constructed by adding a 
single item to c(ψ), namely, {A}, {B}, {C}, and {D}. Suppose we first 
compute the closure of gen=ψ {A}={A}. Note that, since no items 
precede A in the lexicographic order, then its PRE_SET is empty and, 
thus, we can conclude that gen is order-preserving. DCI_CLOSEDd() 
checks if g(A) is set-included in g(j),   

j POST SET (i (B) (C) d (D)) d di h∀j POST_SET (i.e., g(B), g(C), and g(D)), and discovers that 
c(A)={A,C,D}. 

DCI_CLOSEDd() is then recursively called, with parameters 
CLOSED_SET = {A,C,D}, POST_SET = {B}, while PRE_SET is still 
empty. CLOSED_SET = {A,C,D} is thus extended with B (its 
POST_SET), so obtaining a new generator gen ={A,C,D} 

{B}={A,B,C,D}. Since PRE_SET is empty, this generator is order-
preserving by definition, but is also closed because POST_SET is now 
empty.

∀

DCI_CLOSED Alogrithm(cont.)

After this first recursive exploration, DCI_CLOSEDd() starts 
solving another independent subproblemby exploring generator 
gen=ψ {B}={B}, where PRE_ SET = {A} and POST_SET = 
{C,D}.

Finally, DCI_CLOSEDd() starts exploring the last generator gen 
=ψ {D}={D}, where PRE_SET = {A,B,C} and POST_SET = ψ
Since gen is order-preserving (this is checked by comparing g(D) 
with g(A), g(B), and g(C), i.e., with its PRE_SET), it is not pruned. 
But, we also can conclude that {D} is also closed since POST_SET 
= ψ.
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DCI_CLOSED Alogrithm(cont.) DCI_CLOSED Alogrithm(cont.)

Optimization Saving Bitwise Operations
1.Data sets with highly correlated items
如果我們要mine的目標是x，那我們在每個columns與x無關的拿掉，但是這樣又會很花時間去check

每一個column，那我們就限制條件，限制只有跟Φ相關的的itemset才可以執行。

2.Data sets with highly correlated items

此方發使用在mine dense data上，則是利用A Multi-Strategy Algorithm for Mining Frequent Sets以及

Adaptive and Resource-Aware Mining of Frequent Sets這兩篇paper的方式去作處理。

Performance Analysis Performance Analysis(cont.)

Conclusion
In this paper, we have investigated the problem of 
efficiency in mining closed frequent itemsets from 
transactional data sets. 
Finally it showed that allows dense data sets to alsoFinally, it showed that allows dense data sets to also 
be effectively mined with the lowest possible 
support threshold


