
4/9/2009

1

Fast and Memory Efficient Mining of
Frequent Closed Itemsets

Claudio Lucchese
Salvatore Orlando
Raffaele Perego

From TKDE06

Outline

Introduction
Memory-Efficient Duplicate Detection and
PruningPruning
DCI_Closed Algorithm
Performance Analysis
Conclusion

Introduction
Dense data:
Contain strongly correlated items and long frequent patterns

Such data sets are, in fact, very hard to mine,
while the number of frequent itemsets grows up
very quickly as the minimum support threshold is
decreased.

Introduction(cont.)

Closed Itemsets
Given an itemset T D, and I I and we define

f(T) = { i I | t T , i t }
(S) { t D | i I i t }g(S) = { t D | i I , i t }

An itemset I is said to be closed if and only if
c(I)=f(g(I))=f。g(I)=I

Introduction(cont.)

min_supp = 1,

Introduction(cont.)

Browsing the search space
Lemma 1. Given two itemsets X and Y ,if X Y and supp(X) =
supp(Y), then c(X) = c(Y)

⊂

Therefore, given a generator X, if we find an already mined closed
itemsets Y that set-includes X, where the supports of Y and X are
identical, we can conclude that c(X)=c(Y). In this case, we also say
that Y subsumes X.If this holds, we can safely prune the generator
X without computing its closure. Otherwise, we have to compute
c(X) in order to obtain a new closed itemset.

4/9/2009

2

Introduction(cont.)

We could in fact mine all the closed itemsets by computing the
closure of just this single representative itemset for each
equivalence class, without generating any duplicate. Let us call
representative itemsets closure generators.

Other algorithms use a different technique, which we call closure
climbing.

For example, the closed itemset {A,B,C,D} of the figure could be
mined twice since it can be obtained as the closure of two minima
elements of its equivalence class, namely, {A,B} and
{B,C}.

Introduction(cont.)

Given an itemset X and an item i I, g(X) g(i)
i c(X)⇔

From the above lemma, we have that if g(X) g(i), then i c(X).
Therefore, by performing this inclusion check for all the items in I
not included in X, we can incrementally compute c(X).

Memory-Efficient Duplicate Detection and
Pruning(cont.)

For example, the closed itemsets {A,C,D} has four such generators,
namely, {A}, {A,C}, {A,D}, and {C,D}.

Denote with symbol < the usual lexicographic total order between
two ordered itemsets, in turn, defined on the basis of R.

Memory-Efficient Duplicate Detection and
Pruning(cont.)

A generator of the form X=Y i, where Y is a closed itemset and
i Y , is said to be order-preserving iff either c(X) = X or i <
(c(X)\X).
∉

Example of Figure, we have that {A}=ψ {A} is an order-
preserving generator of the closed itemset {A,C,D}, while
{C,D}={C} {D} is not an order-preserving generator for the same
closed itemset.

Memory-Efficient Duplicate Detection and
Pruning(cont.)

In order to mine all the closed itemsets by avoiding
redundances, we compute the closure of order-
preserving generators only and prune the others.

Theorem 1.
For each closed itemset ≠c(ψ), there exists a sequence
of n items i0 < i1 < ...< in-1, n 1, such that
<gen0,gen1,...,genn-1> =<Y0 i0,Y1 i1,…,Yn-1 in-1>,
where the various geni are order-preserving generators,
with Y0=c(ψ), j [0,n-1],Yj+1=c(Yj ij), and Yn= .

Y

∀
Y

Memory-Efficient Duplicate Detection and
Pruning(cont.)

Corollary 1.
For each closed itemset ≠c(ψ), the sequence of order-preserving
generators of Theorem 1 is unique.

Y

Example:
For the closed itemset ={A,B,C,D}, we have Y0= c(ψ)=ψ,
gen0=ψ {A}, Y1=c(gen0)={A,C,D}, gen1= {A,C,D} {B},
and,finally, = c(gen1).

Y

Y

4/9/2009

3

Memory-Efficient Duplicate Detection and
Pruning(cont.)

Detecting Order-Preserving Generator
Definition 3.
Given a generator gen = Y i, where Y is a closed itemset and i Y,
we define pre set(gen) as follows:

∉
we define pre-set(gen) as follows:

pre-set(gen) = { j | j I, j gen, and j < i}.

Lemma 3.
Let gen = Y i, i be a generator where Y is a closed itemset and i

Y. If j pre-set{gen} such that g{gen} g{j}, then gen is not
order-preserving.

∉

∉ ⊂∃

DCI_CLOSED Alogrithm
DCI_CLOSED starts by scanning the input data set D to determine
the frequent single items F1 I and builds the bitwise vertical data
set VD containing the various tidlists g(i).

f hi fi d id h hAfter this first step, DCI_CLOSED decides whether VD
corresponds to either a dense or a sparse data set. Since VD is
bitwise, if the percentage of 1s is large, the data set is soon
classified as dense.

DCI_CLOSED Alogrithm(cont.) DCI_CLOSED Alogrithm(cont.)

DCI_CLOSED Alogrithm(cont.)

Once c(ψ)=ψ, is found, four generators can be constructed by adding a
single item to c(ψ), namely, {A}, {B}, {C}, and {D}. Suppose we first
compute the closure of gen=ψ {A}={A}. Note that, since no items
precede A in the lexicographic order, then its PRE_SET is empty and,
thus, we can conclude that gen is order-preserving. DCI_CLOSEDd()
checks if g(A) is set-included in g(j),

j POST SET (i (B) (C) d (D)) d di h∀j POST_SET (i.e., g(B), g(C), and g(D)), and discovers that
c(A)={A,C,D}.

DCI_CLOSEDd() is then recursively called, with parameters
CLOSED_SET = {A,C,D}, POST_SET = {B}, while PRE_SET is still
empty. CLOSED_SET = {A,C,D} is thus extended with B (its
POST_SET), so obtaining a new generator gen ={A,C,D}

{B}={A,B,C,D}. Since PRE_SET is empty, this generator is order-
preserving by definition, but is also closed because POST_SET is now
empty.

∀

DCI_CLOSED Alogrithm(cont.)

After this first recursive exploration, DCI_CLOSEDd() starts
solving another independent subproblemby exploring generator
gen=ψ {B}={B}, where PRE_ SET = {A} and POST_SET =
{C,D}.

Finally, DCI_CLOSEDd() starts exploring the last generator gen
=ψ {D}={D}, where PRE_SET = {A,B,C} and POST_SET = ψ
Since gen is order-preserving (this is checked by comparing g(D)
with g(A), g(B), and g(C), i.e., with its PRE_SET), it is not pruned.
But, we also can conclude that {D} is also closed since POST_SET
= ψ.

4/9/2009

4

DCI_CLOSED Alogrithm(cont.) DCI_CLOSED Alogrithm(cont.)

Optimization Saving Bitwise Operations
1.Data sets with highly correlated items
如果我們要mine的目標是x，那我們在每個columns與x無關的拿掉，但是這樣又會很花時間去check

每一個column，那我們就限制條件，限制只有跟Φ相關的的itemset才可以執行。

2.Data sets with highly correlated items

此方發使用在mine dense data上，則是利用A Multi-Strategy Algorithm for Mining Frequent Sets以及

Adaptive and Resource-Aware Mining of Frequent Sets這兩篇paper的方式去作處理。

Performance Analysis Performance Analysis(cont.)

Conclusion
In this paper, we have investigated the problem of
efficiency in mining closed frequent itemsets from
transactional data sets.
Finally it showed that allows dense data sets to alsoFinally, it showed that allows dense data sets to also
be effectively mined with the lowest possible
support threshold

