
UC Berkeley

Mining Console Logs for Large-Scale
System Problem Detection

Wei Xu Ling Huang
Armando Fox David Patterson Michael Jordan

1

TexPoint fonts used in EMF.

Make sense out of console logs

200 nodes,
>24 million lines of logs

abnormal log segments A single decision tree
to visualize system behavior

2

Extract
Detect Visualize

Motivation - useful but ignored

•  Console logs are useful
–  In almost every software system
–  Hand-picked information by developers
–  Expressive, convenient to use
–  Especially in large scale Internet services

•  Open source code + in-house development
•  Continuously changing system

•  But they are ignored
–  Console logs are intended for a single developer
–  Assumption: log writer == log reader
–  Today many developers => massive textual logs

3

Console logs are ignored
because they are hard to read

4

–  Verbose
–  Awkward language
–  Different levels of implementation details

–  Highly unstructured, looks like free text

Human

Machine

Problem: Don’t know what to look for!

HODIE NATUS EST RADICI FRATER*

today unto the Root a brother is born.

* "that crazy Multics error message in Latin."
http://www.multicians.org/hodie-natus-est.html

Goal and key observations

•  Discover the most interesting log messages
without any prior input

•  Recover log structure from source code analysis
– Console logs were intrinsically structured

•  Determined by log printing statement

– Constant strings = markers of message structure
– Source code is usually available

•  Message groups (and correlations among
messages) more likely to reveal problems
•  Many ways to group related log messages
•  i.e. not just by time 5

Approach -
Extract and mine structured information

… …
Creating file mydata
Wrote file mydata, size 23453674
Creating file junkfile
Backing up file mydata to 10.0.0.1
Done bk-up file mydata, status=OK
… …

Creating file mydata
Wrote file mydata, size 23453674
Creating file junkfile
Backing up file mydata to 10.0.0.1
Done bk-up file mydata, status=OK

Message Type

Creating file mydata
Wrote file mydata, size 23453674
Creating file junkfile
Backing up file mydata to 10.0.0.1
Done bk-up file mydata, status=OK Variables

Creating file mydata
Wrote file mydata, size 23453674
Creating file junkfile
Backing up file mydata to 10.0.0.1
Done bk-up file mydata, status=OK

Creating file mydata
Wrote file mydata, size 23453674
Creating file junkfile
Backing up file mydata to 10.0.0.1
Done bk-up file mydata, status=OK

PCA Anomaly Detection

Problem!

Step 1: Extract
Structures

Step 2: Create
Features

Step 3: Mining
Features with ML

1
2
1
3
4

Msg Type

Status Ratio

OK

Timeout

Abort

Message Count Vector

1 1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 2 0
1 1 1 1 0 0 0 0 0

mydata
junkfile
…

Source Code /  
Program binary 

Msg Template: 
Crea:ng file (.*) 
[filename][string] 

Case studies

•  Surveyed a number of software apps
– Linux kernel, DHCP, OpenSSH …
– Apache, MySQL, Jetty, Lucene …
– Hadoop, Cassandra, Nutch …

•  In this talk – Hadoop file system
– Per block operation logging (usually ignored)

•  Experiment on EC2 cloud
– 203 nodes * 48 hours
– ~ 300 TB HDFS data (550,000 blocks)
– ~24 million lines of console logs 7

Step 1: Log parsing
Scale log parsing with map-reduce

8

24 Million lines of console logs
= 203 nodes * 48 hours

Step 2: Feature -
Message count vector

•  Try to capture per operation behavior
•  Find identifiers == message variables that

– Have many distinct values
– Appear in multiple message types
– Reported many times

•  Group these messages by identifiers =>
message group

•  Count of distinct message types in each group
– Similar to Bag of words model in IR

•  One message count vector per identifier value
9

Message count vector example

datanode_r16 | Receiving block blk_100 src: … dest:...

namenode_r10 | allocateBlock: blk_100

namenode_r10 | allocateBlock: blk_200
datanode_r16 | Receiving block blk_200 src: … dest:...

datanode_r14 | Receiving block blk_100 src: …dest:…

datanode_r16 | Received block blk_100 of size 49486737 from …

datanode_r14 | Received block blk_100 of size 49486737 from …

datanode_r16 | Error Receiving block blk_200 of size 49486737 from …

10

0 1 2 0 0 2 0 0 0 0 0 0 0 0 2 2

0 0 1 2 0 0 2 0 0 0 0 0 0 0

blk_100

blk_200
1 1

Step 3: Mining
PCA detection and improvement

•  What to find abnormal block operations
•  Dimensions highly correlated

– Unusual correlations indicate abnormal
execution paths

– PCA separates normal pattern from abnormal,
making anomalies easy to detect

•  Feature construction analogous to “bag of
word’’ model in IR
– Applying tf/idf + cosine similarity significantly

improves results 11

0 2 2 1 2 0 0 2 0 1 0 0 0 0 0 0 55,000 vectors,
one per block

PCA detection results

12

Seq  Event Descrip/on  Actual  RAW  TF‐IDF 
1  Forgot to update namenode for deleted block  4297  475  4297 
2  Write block excep:on then client give up  3225  3225  3225 
3  Failed at beginning, no block wriRen  2950  2950  2950 
4  Over‐replicate‐immediately‐deleted  2809  2803  2788 
5  Received block that does not belong to any file  1240  20  1228 
6  Redundant addStoredBlock request received  953  33  953 

7 
Trying to delete a block, but the block no longer 
exists on data node  724  18  650 

8  Empty packet for block  476  476  476 
9  Excep:on in receiveBlock for block  89  89  89 
10  PendingReplica:onMonitor :med out  45  37  45 
11  Other anomalies  108  91  107 

Total  16916  10217  16808 

Seq  Descrip/on  RAW  TF‐IDF 

1  Normal background migra:on  1399  1397 

2  Mul:ple replica ( for task / jobdesc files )  372  349 
Total  1771  1746 

Explaining detection results with
decision tree

13

0

1

1

1

1

0

0

0

writeBlock # received exception

Starting thread to transfer block # to #

#: Got exception while serving # to #:#

Unexpected error trying to delete block #\.
BlockInfo Not found in volumeMap

addStoredBlock request received for # on
size # But it does not belong to any file

starting thread to transfer block # to #

#Verification succeeded for #

Receiving block # src: # dest: #

1
0

<=2

0

0

=0

0

0

0

>=3

>=1

>=3

>=1

>=1

>=1

>=1

>=1

<=2

Future Work

•  More production logs (can you help?)
•  Machine learning

•  Cross application logs
•  More features (esp. console log specific features)
•  Multiple sources learning
•  Allow operator feedback (semi-supervised learning)
•  Allow online detection

•  System
•  Support C programs + Linux binary (or data driven..)
•  Make open source project

•  Suggestions? 14

Summary

200 nodes,
>24 million lines of logs

abnormal log segments A single decision tree
to visualize system behavior

15

Extract
Detect Visualize

Backup slides

16

