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“In recent articles, users complained they would soon 

require a full-time employee to manage their sizable 

social networks.”

Problem: Community Recommendations
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Recommendations are 

completely unrelated to the  

group’s purpose!



Communities are…

• Bags of Words

• Set of words that describes a community

• Can’t provide personalized results

• Similar to document-word co-occurance

• Bag of Users

• Set of participating users

• Can’t take advantage of content similarity

• Similar to document-citation co-occurance
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Combinatorial Collaborative Filtering (CCF)

CCF considers both bag of words and bag of users.

• Communities:

• Community Descriptions:

• Users:

• Latent Variables: 

• If user u joins community c, n(c,u) = 1; else, n(c,u) = 0

• n(c,d) = R if community c contains word d for R times
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The C-U Model

• c: community uniformly selected from C

• z: topic selected from P(z|c)

• u: user chosen by sampling P(u|z)
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The C-D Model

• c: community uniformly selected from C

• z: topic selected from P(z|c)

• d: word chosen by sampling P(d|z)
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The CCF Model

• Distribution over C, U, and D

• c: community uniformly selected from C

• z: topic selected from P(z|c)

• u: user chosen by sampling P(u|z)

• d: word chosen by sampling P(d|z)
12









z

z

czPzdPzuPcP

zducPducP

)|()|()|()(

),,,(),,(



Training the recommender

• Gibbs Sampling + Expectation Maximization

• Gibbs: Too slow for large databases

• E-M: Faster, but sensitive to initialization

• Used to estimate P(z|c), P(u|z), P(d|z)

• …which parameterize CCF.
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Gibbs sampling

where
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Expectation-Maximization

• P(z|c), P(u|z), P(d|z) initialized by Gibbs sampling

• Expectation step

• Maximization step
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Parallel Computing

• Gibbs sampling

• Each machine handles subset of communities

• Master machine merges counts after each iteration

• Expectation

• Each machine computes posterior of latent variables for subset 

of communities

• Maximization

• Each machine updates P(z|ci), P(u|z), P(d|z)

• Communication needed to coordinate update values of P(u|z)

and P(d|z)
16



Inferring Recommendations

• User-community:

• Community similarity
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Evaluation of Training

• Synthetic dataset

• 5,000 documents, 10 topics

• Vocabulary size 10,000

• 50,000,000 word tokens

• EM-only training vs. Gibbs+EM training

• Kullback-Leibler divergence:

• Smaller the K-L, better estimated distribution matches actual
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K-L Divergence vs. Iterations
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K-L Divergence vs. Time
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The Orkut Dataset

• 109,987 communities

• English only

• Membership and description information

• 312,385 users

• 35,932,001 entries in community-user matrix

• Density: 0.001045

• Data collected July 26, 2007
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The Orkut Dataset
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• 52% have <100 users

• 42% have 100-1000 users

• 191,034 unique words

• 27.64 words/community



Methodology

• Randomly delete one entry per user in C-U matrix

• See if deleted group can be recommended

• Each experiment repeated 10 times

• Metrics

•

•

• Size of recommendation list limited to 200
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Precision, Recall vs. Length

25



Precision vs. Number of Communities
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Community Similarity

• Used P(cj|ci) to cluster communities based on topic 

(latent aspect)

• Used “community labels” as ground truth

• Compared clusters using Normalized Mutual Information

• 1 indicates perfect match with ground truth, 0 is random pairing
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Runtime Speedup – Methodology

• 20 Latent Aspects

• 10 Gibbs samplings

• 20 E-M iterations

• Minimum: 10 Machines

• Maximum: 200 Machines
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Runtime Speedup – Results
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Runtime Speedup – Overhead Analysis
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• Communication > Computation @ 200 Machines

• “Saturation” point deferred for larger datasets

• Parallel CCF enables near-real-time recommendations (~14 min update)



Conclusions

• By combining user and description models of 

communities, CCF produces better quality 

recommendations than other methods.

• Gibbs sampling provides better initialization values for 

E-M than random seeding.

• CCF can be parallelized to handle large data sets.
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