CompSci 6 Programming Design and Analysis

t_0			=	2.0
t_1	=	$\frac{1}{2}(t_0 + \frac{2}{t_0})$	=	1.5
t_2	=	$\frac{1}{2}(t_1 + \frac{2}{t_1})$	=	1.416666666666665
t_3	=	$\frac{1}{2}(t_2 + \frac{2}{t_2})$	=	1.4142156862745097
t_4	=	$\frac{1}{2}(t_3 + \frac{2}{t_3})$	=	1.4142135623746899
t_5	=	$\frac{1}{2}(t_4 + \frac{2}{t_4})$	=	1.414213562373095

February 4, 2010

Prof. Rodger and Prof. Forbes

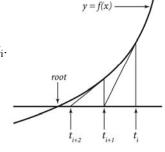
Announcements

- Reading for next time
 Chap. 4.6, Chap 7.5, Chap 11.1
 Reading Quiz due before next class
- Assignment 3 due tonight!
- Assignment 4 out.

Estimation

- Square Root:
 - Given a real number *c* and some error tolerance *epsilon*
 - Estimate *t*, the square root of *c*
- Pi:
 - Estimate π with a given number of *Monte Carlo* trials

While Loops: Square Root


- Q. How might we implement Math.sqrt()?
- A. To compute the square root of c:
 - Initialize $t_0 = c$.
 - Repeat until t_i = c / t_i, up to desired precision: set t_{i+1} to be the average of t_i and c / t_i.

```
\begin{array}{rcl} t_0 & = & 2.0 \\ t_1 & = & \frac{1}{2}(t_0+\frac{2}{t_0}) & = & 1.5 \\ t_2 & = & \frac{1}{2}(t_1+\frac{2}{t_0}) & = & 1.41666666666655 \\ t_3 & = & \frac{1}{2}(t_1+\frac{2}{t_0}) & = & 1.4142156862745097 \\ t_4 & = & \frac{1}{2}(t_1+\frac{2}{t_0}) & = & 1.4142135623746899 \\ t_5 & = & \frac{1}{2}(t_4+\frac{2}{t_0}) & = & 1.414213562373095 \end{array}
```

computing the square root of 2

Newton-Raphson Method

- Square root method explained. $f(x) = x^2 c$ to compute \sqrt{c}
 - Goal: find root of function f(x).
 - Start with estimate $t_0 = c$.
 - Draw line tangent to curve at $x = t_i$.
 - Set t_{i+1} to be x-coordinate where line hits x-axis.
 - Repeat until desired precision.

Needle Position

- Needle length = 1, distance between lines = 2
- Generate random *ylow* between 0 and 2
- Generate random angle α between 0 and 180 degrees
- yhigh = ylow + sin(α)
- Hit if $yhigh \ge 2$

5

Figure 4

When Does the Needle Fall on a Line?

Big Java by Cay Horstmann Copyright © 2008 by John Wiley & Sons All rights reserved

Buffon Needle Experiment

Figure 3

The Buffon Needle Experiment

Big Java by Cay Horstmann Copyright © 2008 by John Wiley & Sons All rights reserved

Constructing objects/Applying methods

- Class Rectangle in Chapter 2
- Creating a Rectangle object with x, y, width, and height

Rectangle box = new Rectangle(5, 10, 20, 30);

• Applying Methods

box.translate(15, 25); // move the rectangle System.out.println("x: ", box.getX()); // print x System.out.println("y: ", box.getY()); // print y

Parts of a Class

- State
 - Data
- Constructors
 - Initialize state when object is created
- Accessor methods
 - Accessing data
- Mutator methods
 - Modify data change the state

Class Example

- Needle class Needle.java
 - Defines state and behavior of Needle
 - Keeps track of the number of times needle hits the line
 - Use drop() method to simulate dropping needle
- java.util.Random class in Java library
 - nextDouble() generates pseudo-random
 numbers in [0,1]

ch06/random2/Needle.java

```
01: import java.util.Random;
02:
03: /**
       This class simulates a needle in the Buffon needle experiment.
04:
05: */
06: public class Needle
07: {
08:
       / * *
09:
          Constructs a needle.
10:
       */
       public Needle()
11:
12:
13:
          hits = 0;
14:
          tries = 0;
15:
          generator = new Random();
16:
17:
18:
       / * *
19:
          Drops the needle on the grid of lines and
20:
          remembers whether the needle hit a line
21:
       * /
                                                               Continued
```

Big Java by Cay Horstmann Copyright © 2008 by John Wiley &

Sons All rights reserved

ch06/random2/Needle.java (cont.)

22: 23:	blic void drop()			
23: 24: 25: 26:	<pre>{ double ylow = 2 * generator.nextDouble(); double angle = 180 * generator.nextDouble();</pre>			
27: 28:	// Computes high point of needle			
29: 30:	<pre>double yhigh = ylow + Math.sin(Math.toRadians(angle)); if (yhigh >= 2) myHits++;</pre>			
31: 32:	tries++; }			
33: 34:	/**			
35: 36:	Gets the number of times the needle hit a line. @return the hit count			
37: 38:	*/ public int getHits()			
39: 40:	{ return myHits;			
41: 42:	} Continued			
	Big Java by Cay Horstmann			

Big Java by Cay Horstmann Copyright © 2008 by John Wiley & Sons All rights reserved

ch06/random2/Needle.java (cont.)

```
43:
       /**
44:
         Gets the total number of times the needle was dropped.
45:
          @return the try count
46:
       */
       public int getTries()
47:
48:
       {
49:
          return myTries;
50:
       }
51:
       private Random myGenerator;
52:
53:
       private int myHits;
54:
       private int myTries;
55: }
```

Intended Output:

Tries = 10000, Tries / Hits = 3.08928 Tries = 1000000, Tries / Hits = 3.14204

> Big Java by Cay Horstmann Copyright © 2008 by John Wiley & Sons All rights reserved

Classwork Today – Loops/Classes

- Snarf the *classwork* project
- Complete Sqrt
 - Finish estimate method
 - Print results
- Complete Needle
 - Finish main method
 - Print results
- Classwork handout has all the details
- Submit under assignment name Class07-Feb04