PRACTICE TESTS — QPsool Fheiaw]

PROBLEM 1: (Short and To the Point (14 points))

A. For each of the following object-oriented programming terms, summarize the distinction
between the two terms. Your answer should be brief.

1. class vs. object

2. the constructor vs. any other class method

B. Write a method majority that takes three boolean inputs and returns the most com-
mon value. For example, majority(false, false, true) should return false, while
majority(false, true, true) returns true.

C. The following method, floorRoot, was designed to compute the largest integer whose
square is no greater than N, where N is assumed to be a positive number. (If N is 5, then
the procedure should report the value 2.) Find and correct the error.

/* returns the largest integer whose square is no greater than n */
public int floorRoot(int n)

{

int x = 0;
while (x * x <= n)
{
X =x+1;
}

return x;

D. What is the value of name after the following code executes?

String name = "Richard H. Brodhead"
name = name.substring(name.index0f (" ")+1) + ", " +

name.substring(0,name.index0f (" "));

PROBLEM 2 : (Loop-de-loop-de-loop (20 points))

Consider solving the problem of finding all the maximum values in an array and moving
them to the front of the array, while keeping all the other elements in the array in the same
order.

For example if the array was 7893295

Then after moving the maximum values (in this case two 9’s) to the front of the array, the
array values would be 9 9 7 8 3 2 5, note the non-max items are still in the same order.

We will solve this problem in two parts.

PART A. First, given an array numbers (assume it has been created and initialized with
values), compute max, the maximum value in the array, and maxCount, the number of occur-
rences of max in the array. Do not modify the array for this part.

int [] numbers; // code to initialize not shown
int max; // maximum value in array numbers
int maxCount = 0; // number of occurences of max in numbers

// TODO: compute max and maxCount for the array numbers

PROBLEM 3 : (Birthdays to Weight Classes (24 points))

In this problem, you will write methods to compute the proper weight class for an item of
a given weight. Items need to go in the smallest weight class larger than their weight. Items
bigger than all weight classes are classified as “heavyweight.”

A.. The weights will be easier to compare if represented as integers rather than text. In this
step, you will write methods to convert from a weight description to the number of ounces.

Weight is given in pounds and ounces in the following form "1 1b 6 oz". There are 16
ounces in a pound, and both the number of pounds and ounces are > 0. Below are some
examples of calls to weightToOz and the appropriate return values.

weightTo0z ("0 1b 14 oz") — 14
weightTo0z("4 1b 4 oz") — 68
weightTo0z("1 1b 20 oz") — 36

Note:

e The Integer.parseInt method converts a String to an int. For example,
Integer.parseInt("408") — 408.

Complete weightTo0z below.

/*%

* Returns specified weight in ounces

* @param weight nonnegative weight in the form "n 1lb m oz"
* For example "O 1lb 14 oz"

*/

public int weightToOz(String weight)

{

B. The external interface to your code requires a text representation of the weights. Write a
method, 0zToWeight to convert from a nonnegative number of ounces to weight of the form
"n 1b m oz".

Examples:

ozToWeight(0) — "0 1b 0 oz"
weightTo0z(40) — "2 1b 8 oz"

/**

* Returns weight as "N 1b M oz". For example,

* 0zToWeight (33) should return "2 1b 1 oz"

* @param n a value that is greater than or equal to 0
*/

public String ozToWeight(int n)

{

C. Write the method readWClasses below that reads data from a file and returns an array
of Strings, one for each weight class in the file. The first line of the file contains the number
of weight classes. Each additional line of the file has the name of the weight class followed
by its weight limit. Every word is separated by exactly one space.

A sample data file is shown below with four weight classes.

4

Lightweight 1 1b 8oz
Featherweight O 1b 4 oz
Cruiserweight 17 1b 3oz
Middleweight 5 1b 2 oz

Given a Scanner initialized to the file above, readWClasses should return
{"1 1b 8 oz", "0 1b 4 oz", "17 1b 3 oz", "5 1b 2 oz"}

Complete readWClasses below.

/%%

* Reads weight class information from the file represented by
* the parameter Scanner and returns it in an array

*/

public String[]l readWClasses(Scanner input) {

D. Given a String weight, and String[] classes, a list of weight classes, return a String,
the value of the smallest weight class greater than weight. For example, if

String[] we = {"1 1b 8 oz", "0 1b 4 oz", "17 1b 3 oz", "5 1lb 2 oz"};
then

nextWClass("4 1b 13 oz", wc) — "5 1b 2 oz"
nextWClass("16 1b 25 oz", wc) — "Heavyweight"
nextWClass("0 1b 0 oz", wc) — "0 1b 4 oz"

Notes:

e You can and should use weightToOz and ozToWeight in your solution to convert to
and from a integer to string representations of weights. /

e Use the Arrays.sort or Collections.sort to rearrange an array or ArrayList, re-
spectively, of integers in increasing order.

o If weight is larger than all given classes, return "Heavyweight".

o The reasoning for this problem is similar to that of the Birthday APT.
Complete nextWClass below.

/** :
* Returns the next weight class that is appropriate for an item
* with a given weight. That is, return the smallest weight class
* greater than or equal to weight.
* Q@param weight nonnegative weight in the form "n lb m oz"
* @param classes unsorted weights in the form "n lb m oz"
*/

public String nextWClass(String weight, String[] classes)

{

Throughout this test, assume that the following classes and methods are available. These
classes are taken directly from the material used in class.

public class String {

// Returns the length of this string.

public int length ()

// Returns a substring of this string that

// begins at the specified beginIndex and

// extends to the character at index

// endIndex - 1.

public String substring (int beginIndex,
int endIndex)

// Returns a substring of this string that

// begins at the specified beginIndex and

// extends to the end of the string. }

public String substring (int beginIndex)

// Returns position of the first

// occurrence of str, -1 if not found

public int index0Of (String str)

// Returns the position of the first

// occurrence of str after index start

// returns -1 if str is not found

public int index0f (String str, int start)

// returns character at position index

public char charAt(int index)

// returns true if str has the exact

// same characters in the same order

public boolean equals(String str)

// returns the string as an array

// of characters B

public char [] toCharArray()

}

public class Arrays {
// Sorts the specified array into {
// ascending numerical order
public static void sort(int[] a)

}

public class Integer {
// Returns the argument as a signed integer.
public int parselnt(String s)

}

public class Random {
// Create a new random number generator
public Random()
// Returns a pseudorandom, uniformly
// distributed value in [0,n)
public int nextInt(int n)

13

public class Color {

// Creates a color with the specified red,
// green, and blue values in the range

// (0 - 256)

public Color(int r,int g,int b)

// Returns the red component

public int getRed()

// Returns the green component

public int getGreen()

// Returns the blue component

public int getBlue()

public class ArrayList {

// Comstructs an empty list

public ArrayList ()

// Returns the number of elements
public int size ()

// Returns element at position index
public Object get (int index)

// Replaces the item at position index
// with element.

public Object set (int index, Object element)
// Appends specified element to end of
// this list.

public boolean add (Object o)

public class Scanner

// Create Scanner that reads data from a file.
public Scanner (File file)

// Create Scanner that reads data from a string.
public Scanner (String str)

// Change delimiters used to separate items
public void useDelimiter (String characters)
// Check if more items are available

public boolean hasNext ()

// Get next delimited item as a string

public String next ()

// Get next line as a string

public String nextLine ()

// Get next delimited item as an integer value
public int nextInt ()

// Get next delimited item as a Double value
public double nextDouble ()

Compsci 6 Test 1 Spring 2008
PROBLEM 1: (Mystery Repeat Repeat Repeat: (22 pts))

PART A (12 pts):
Consider the following Mystery method.

public int Mystery (String phrase)

{
int pos = phrase.index0f("e");
int pos2 = phrase.index0f ("e",pos+1);
System.out.println(phrase.substring(pos,pos+3));
return phrase.substring(pos2).length();

. A. What type is the return value for the method Mystery?
B. How many parameters are there?

C. For the call Mystery(‘ ‘GoeDukeiea’’), list first what is printed as output and list second
the return value.

D. For the call Mystery(‘ ‘eeeee’’), list first what is printed as output and list second the
return value.

E. Describe in words what the method Mystery does.

F. Give an example value for phrase that will cause the function Mystery to crash. Explain
why it crashes.

PART B (10 pts): Consider the following Mystery2 method.

public int Mystery2(ArrayList<Integer> numbers)
{

int x = 0;
for (Integer num: numbers)
{

if (num < 6)

{

X += num;

}

}

return x;

A. List the names of the local variables in Mystery?2.
B. What is the return type of Mystery2?

C. Suppose wvalues is an ArrayList<Integer> and has the values 8, 4, 9, 2 and 3
stored in this order from position 0 to position 4. What is the return value of the call
Mystery2(values)?

D. Describe in words what the method Mystery2 does.

E. Explain why the the ArrayList is of type Integer instead of type int.
PROBLEM 2 : (Don’t forget the middle: (8 pts))

Complete the method InsertMiddle that is given two string parameters. The first string is a
name consisting of a first name and a last name separated by one blank. The second string
is a middle name. This method returns the name with the middle name inserted between
the first and last name.

For example, InsertMiddle(“Sarah Forth”, ”Go”) would return the string ”Sarah Go Forth”.

You can assume that there is exactly one blank in name, between the first name and last
name.

public String InsertMiddle(String name, String middle)
{

PROBLEM 3 : (Living on Lampus: (10 pts))

Consi¥er the following two £Llasses.

ublic String getName (

return myName;

4.setSport(‘ ‘golf’?);
Yystem. out.println(dormé.gesName());

PROBLEM 4 : (Checkmate(42 pts))

Consider the class Player shown below to represent a chess player. Chess is a board game
played by two people. A Player stores information about a chess player including their name,
their rank (a number that is larger means the player is higher ranked, and 0 means they are
unranked.), and their grade in school, 1-13, with 13 meaning they are out of high school.

There is no grade higher than 13.

public class Player {

private String myName; // name of player
private int myRank; // rank of player
private int myGrade; // grade player is in, from 1-13

public Player (String name, int rank, int grade)
{ // code not shown }

// return name of player
public String getName()
{ // code not shown }

// return rank of player
public int getRank()
{ // code not shown }

// return grade of player
public int getGrade()

{ // code not shown }

// increment grade of player by 1

// except if grade of player is 13, do not change grade.
public void incrementGrade ()

{ // code not shown }

// change rank of player to "rank"
public void setRank(int rank)
{ // code not shown }

}

PART A (18 pts):
PART A1 (4 pts): Complete the constructor for the class Player.

public Player (String name, int rank, int grade)

{

X

PART A2 (14 pts):
Complete the code for the following methods.

// return name of player
| public String getName()
| {

}

// return rank of player
public int getRank()
{

}

// return grade of player
public int getGrade()
{

}

// increment grade of player by 1
| // except if grade of player is 13, do not change grade.
! public void incrementGrade()

}

// change rank of player to "rank"
public void setRank(int rank)

{

PART B (24 pts):
Consider the ChessTournament class that is listed below with an example.

public class ChessTournament {

private ArrayList<Player> myPlayers; // list of all chess players

public ChessTournament (Scanner input)

{

// code not shown J}

public static void main(String[] args) throws FileNotFoundException

{

}

String inputFileName = "chessdata.txt";

FileReader reader = new FileReader (inputFileName);
Scanner in = new Scanner (reader);

ChessTournament Feb8 = new ChessTournament (in);

System.out.println("Grade 5 highest player is: " + Feb8.highestPlayerInGrade(5));
System.out.println("Grade 9 highest player is: " + Feb8.highestPlayerInGrade(9));
System.out.println("Grade 4 highest player is: " + Feb8.highestPlayerInGrade(4));
System.out.println("Number players with rank between 400 and 700 is: "

+ Feb8.NumberPlayersBetween (400, 700));

ArrayList<String> highRankPlayers = Feb8.PlayersWithRankGreater(600);
System.out.println("Name of players rank greater than 600: ");
for (String name: highRankPlayers)
{
System.out.print(name + " ");

3

// returns the number of players whose rank is between minRank and maxRank inclusive
public int NumberPlayersBetween (int minRank, int maxRank)

{ // code not shown }

// returns the name of the highest ranking player in the given grade
public String highestPlayerInGrade(int grade)
{ // code not shown +

// returns an Arraylist of names of players whose rank is greater than rank
public ArraylList<String> PlayersWithRankGreater(int rank)
{ // code not shown }

Here is a sample data file called chessdata.txt.

Narten 680 5
Lapidus 956 5
Ward 550 5
Smith 430 3
Yee 800 4
Parker O 8
Kumar 0 4
Guilak 758 5

Here is the corresponding output when the program is run with this data file.

Grade 5 highest player is: Lapidus

Grade 9 highest player is: No Player in this grade.
Grade 4 highest player is: Yee

Number players with rank between 400 and 700 is: 3
Name of players rank greater than 600:

Narten Lapidus Yee Guilak

PART B1 (6 pts):

Note that the Scanner input is already bound to a file in main. The file is in the following
format. Each line in the file has the name of a player (containing no blanks), the rank of the
player as an integer and the grade of a player as an integer.

Complete the constructor for the ChessTournament class below. (hint: what do you need to
construct with new?)

public ChessTournament (Scanner input)

{

PART B2 (6 pts):

Complete the method NumberPlayersBetween that has two parameters minRank and
mazRank and returns the number of players whose rank is between minRank and mazRank
inclusive.

For the example shown earlier in which Feb8 is a ChessTournament variable, the call
Feb8.NumberPlayersBetween (400, 700)) returned 3.

// returns the number of players whose rank is between minRank and maxRank inclusive

public int NumberPlayersBetween (int minRank, int maxRank)

{
3

PART B3 (6 pts):
Complete the method highestPlayerInGrade that has a grade as a parameter and returns the

name of the highest ranking player in that grade, or returns the string “No Player in this
grade” if there are no players in that grade.

See the three examples earlier for grade 5 (Lapidus), grade 9 (No player in this grade) and
grade 3 (Yee).

// returns the name of the highest ranking player in the given grade
public String highestPlayerInGrade(int grade)
{

3

PART B4 (6 pts):
Complete the method Players WithRankGreater that has one parameter, a rank, and returns
an ArrayList of names of players with that rank.

See the previous example in which Feb8 is a ChessTournament object tied to the given data
file and the call Feb8.Players WithRankGreater(600) returned an ArrayList with the names
of the 4 players whose rank is greater than 600 (Narten Lapidus Yee Guilak).

// returns an ArrayList of names of players whose rank is greater than rank
public ArrayList<String> PlayersWithRankGreater(int rank)
{

public class String

{
// Returns the length of this string.

8

public int length ()

// Returns a substring of this string that begins at the specified
// beginIndex and extends to the character at index endIndex - 1.
public String substring (int beginIndex, int endIndex)

// Returns a substring of this string that begins at the specified
// beginIndex and extends to the end of the string.
public String substring (int beginIndex)

// Returns position of the first occurrence of str, returns -1 if not found
public int index0f (String str)

// Returns the position of the first occurrence of str after index start
// returns -1 if str is not found
public int indexOf (String str, int start)

// returns character at position index
public char charAt(int index)

// returns true if str has the exact same characters in the same order
public boolean equals(String str)

// returns the string as an array of characters
public char [] toCharArray()

}

public class Arraylist

{
// Constructs an empty list
public ArrayList ()
// Returns the number of elements in this list.
public int size ()
// Returns element at position index in this list.
public Object get (int index)
// Replaces the item at position index with element.
public Object set (int index, Object element)
// Appends specified element to end of this list.
public boolean add (Object o)

}

public class Scanner

// Create Scanner that reads data from a file.
public Scanner (File file)

// Create Scanner that reads data from a string.
public Scanner (String str)

// Change delimiters used to separate items
public void useDelimiter (String characters)

// Check if more items are available
public boolean hasNext ()

// Get next delimited item as a string
public String mnext ()

// Get next line as a string
public String nextLine ()

// Get next delimited item as an integer value
public int nextInt ()

// Get next delimited item as a Double value
public int nextDouble ()

10

