NP Hardness & CSPs
CPS 170

Ron Parr

Digression: NP-Hardness

e NP hardness is not an Al topic
¢ You will not be tested on it, but

e |t's important for all computer scientists

e Understanding it will deepen your understanding of Al
(and other CS) topics

e Eat your vegetables; they’re good for you




NP-hardness

e Many problems in Al are NP-hard (or worse)
e What does this mean?
e These are some of the hardest problems in CS

¢ |dentifying a problem as NP hard means:

— You probably shouldn’t waste time trying to find a
polynomial time solution

— If you find a polynomial time solution, either
* You have a bug
e Find a place on your shelf for your Turing award
e NP hardness is a major triumph (and failure) for
computer science theory

What is the class NP?

e A class of decision problems (Yes/No)
e Solutions can be verified in polynomial time
e Examples:

— Graph coloring: n

5y

T— V

— Sortedness: [1234587]




What is NP completeness?

e All NP complete problems can be “reduced” to
each other in polynomial time

e What is a reduction?
— Use one problem to solve another
— Ais reduced to B, if we can use B to solve A:

Ainstance — Pon-tim.e — | B Solver
xformation
— B,
~—

poly time A solver if B is poly time

Why care about NP-completeness?

e Solving any one NP-complete problem gives you
the key to all others
e All NP-complete problems are, in a sense,
equivalent
e Insight into solving any one gives you insight into
solving a vast array of problems of extraordinary
practical and economic significance




Proving NP Completeness

e Want to prove problem Cis NP complete
— Show that Cis in NP
— Find known NP complete problem reducible to C

— |Is graph color NP-complete?

® Prove that graph coloring isin NP
— Verify solution in poly time
— Easy
e Reduce known NP complete problem to graph coloring
— Much more challenging
— Reduction from SAT

The First NP Complete Problem
(Cook 1971)

SAT:

(X, VX, VX )N, VX, VXA ..

Want to find an assignment to all variables that
makes this expression evaluate to true

NP-complete for clauses of size 3 or greater

How would you prove this?




What is NP Hardness?

NP hardness is weaker than NP completeness
NP hard if an NP complete problem is reducible to it
NP completeness = NP hardness + NP membership

Consider the problem #SAT
— How many satisfying assignments to:

(X, VX, VX )AX, VX, VXA L.

— Is this in NP? (Not even a decision problem)
— Is it NP-hard?

#SAT is NP-hard

e Theorem: #SAT is NP hard

¢ Proof:
— Reduce SAT to #SAT
Ifx>0
SAT H#HSAT returnY
instance solver X Else
return N

SAT Solver




NP-Completeness Summary

e NP-completeness tells us that a problem belongs
to class of similar, hard problems.

e What if you find that a problem is NP hard?
— Look for good approximations
— Find different measures of complexity
— Look for tractable subclasses
— Use heuristics

CSPs

e What is a CSP?
e One view: Search with special goal criteria
e CSP definition (general):

— Variables X,..., X,

— Variable X, has domain D,

— Constaints C,,...,C,

— Solution: Each variable gets a value from its domain
such that no constraints violated

e CSP examples...
— http://www.csplib.org/




Other CSP Examples

e Satisfying curriculum/major requirements
e Sudoku
e Seating arrangements at a party

e LSAT Questions:
http://www.lsac.org/pdfs/SamplePTJune.pdf

A Restricted View

Variables X,,..., X,

A binary constraint, lists permitted assignments to
pairs of variables

A binary constraint between binary variables is a
table of size 4, listing legal assignments for all 4
combinations.

A k-ary constraint lists legal assignments to k
variables at a time.

How large is a k-ary constraint for binary variables?

Note: More expressive languages are often used.




CSP Example

Graph coloring:

Australia Q)
(WA)

New South
Whales (NSW)

Tasmania (T) \m Victoria (V)

Problem: Assign Red, Green and Blue so that no 2 adjacent
regions have the same color. (3-coloring)

Example Contd.

e Variables: {WA, NT, Q, SA, NSW, V, T}
e Domains: {R,G,B}
e Constraints:
For WA — NT:{(R,G), (R,B), (G,B), (G,R), (B,R), (B,G)}
e We have a table for each adjacent pair
e Are our constraints binary?
e Can every CSP be viewed as a graph problem?




Constraint Graph
BN _of

Y (@)
EW
— \Y
T E?umerate all O

Legal combinations
Of WA and SA @

(ignoring other regions)

CSPs as Search

® ®
O O

Nodes: Partial Assignments Actions: Make Assignments




Backtracking

e Backtracking is the most obvious (and widely used)
method for solving CSPs:
— Search forward by assigning values to variables
— If stuck, undo the most recent assignment and try again
— Repeat until success or all combinations tried

e Embellishments

— Methods for picking next variable to assign
¢ Most constrained

e Least constrained

— Backjumping

NP-Completeness of CSPs

e Are CSPs in NP?
e Are they NP-hard?

e CSPs and graph coloring are equivalent
e Convert any graph coloring problem to CSP
e Convert any CSP to graph coloring

e Known: Graph coloring is NP-complete

e CSPs are NP-complete

e End of the story or just the beginning?

10



Issues

e What are good heuristics?

— N.B.: Here we use the term “heuristic” to refer to a procedure
for selecting next variables, not an h(x) function as in A*

— Often good to think of this as a local search

— Focus on choosing actions carefully, instead of pruning nodes
carefully (as in A* or alpha-beta)

e Can we develop heuristics that apply to the entire class
of problems, not just specific instances?

e What’s the best we can hope for?

Constraint Graphs

e Constraint graphs are important because they capture the
structural relationships between the variables

e IMPORTANT CONCEPT:
Not all instances of a hard problem class are hard
— Structural features give insight into hardness
— Group problems within class by structural features
— New measure of problem complexity

11



Node Consistency

oo

©

Check all nodes for
inconsistencies

For each node, there must
exist at least one valid
assignment given
assignments to neighbors

Rules out some bad
assignments quickly

Arc Consistency

Check all arcs for inconsistencies

For each value at the start, there
must exist a consistent value at
the terminus

Catches many inconsistencies

Can use to iteratively reduce
number of possible assignments to
each variable

(constraint propagation)

12



Generalized Arc Consistency

@ @ e k-consistency
— Consider sets of k variables

— For each legal setting of a k-1 subset
@ — Check for legal setting for the kt" variable
@ Checks for more distant influences

I e Prunes out inconsistent settings

1-consistency = node consistency

2 consistency = arc consistency

Is this 3-consistent?

Facts About Arc Consistency

e Strong k-consistency: Consistent for all i<k

e What if a graph with n variables is strongly
n-consistent?

Solution exists!

e What is the worst-case cost of checking n-
consistency? N
0(2")

13



Linear Constraint Structures

Are these easy or hard?

Suppose our chain is arc consistent...

Properties of Chains

Theorem: Arc consistent linear constraint graphs are strongly n
consistent.

Proof: Induction on n.
Base: Arc consistent chains of length 1 are consistent.
I.H. Arc consistent chains of length i are strongly i consistent

I.S. Extending an i step arc-consistent chain by 1 new arc consistent link
produces an i+1 link strongly i+1 consistent chain.

Proof of I.S.: Since the last link is strongly arc-consistent, any choice for
variable i ensures a consistent choice for i+1. No other variables participate
in constraints for i+1.

14



Properties of Trees

Theorem: Arc consistent constraint trees are n consistent.

Proof: Same as chain case...

Corollary: Hardness of CSPs with constraint trees

Polynomial!

Cool fact: We now have a graph-based test for separating
out some of the hard problems from the easy ones.

Variable Elimination

Eliminate WA '

@0@ @40

Domain(NT,SA) = {(blue, green), (blue, red),
(green, blue), (green, red), (red, blue), (red, green)}

15



Eliminate Q

@'@ @

oa @)
® >

Domain(NT,SA,NSW) = {(blue, green, blue), (blue, red, blue),
(red, blue, red), (red, green, red), (green, blue, green),
(green, red, green)}

Simplify

@ Domain(SA, NSW) =

{(blue, green), (blue, red),
(green, blue), (green, red),

@ (red, blue), (red, green)}
-’

Domain(NT,SA,NSW) = {(blue, green, blue), (blue, red, blue),
(red, blue, red), (red, green, red), (green, blue, green),
(green, red, green)}

16



Finish

Domain(SA, NSW) =

@ @ {(blue, green), (blue, red),

" (green, blue), (green, red),

O (red, blue), (red, green)}

Can identify all settings of SA, V, NSW for which
there is guaranteed to be a consistent setting of
the remaining variables.

Q: How do we get the settings of the other variables?

Variable Elimination

Var_elim_CSP_solve (vars, constraints)
Q = queue of all variables
i = length(vars)+1
While not(empty(Q))
X=pop(Q)
Xi = merge(X, neighbors(X))
Simplify Xi
remove_from_Q(Q, neighbors(X))
add_to_Q(Q, Xi)
i=i+1

Note: Merge operation can be tricky to implement, depending
upon constraint language.

17



Variable Elimination Issues

e How expensive is this?

Exponential in size of largest merged variable set — 1.

e |s it sensitive to elimination ordering?

Yes!

Variable Elimination Ordering

ﬁ

Is it better to start at the edges and work in, or at the center
and work out?
Edges!

18



Variable Elimination Facts

You can figure out the cost of a particular elimination
ordering without actually constructing the tables

Finding optimal elimination ordering is NP hard

Good heuristics for finding near optimal orderings
Another structural complexity measure

Investment in finding good ordering can be amortized

CSP Summary

CSPs are a specialized language for describing certain
types of decision problems

We can formulate special heuristics and methods for
problems that can be described in this language

In general, CSPs are NP hard — no general, fast
solutions on the horizon

In some cases, we can use structural measures of
complexity to figure out which ones are really hard

19



