NP Hardness & CSPs CPS 170

Ron Parr

Digression: NP-Hardness

- NP hardness is not an AI topic
- You will not be tested on it, but
- It's important for all computer scientists
- Understanding it will deepen your understanding of Al (and other CS) topics
- Eat your vegetables; they're good for you

NP-hardness

- Many problems in AI are NP-hard (or worse)
- What does this mean?
- These are some of the hardest problems in CS
- Identifying a problem as NP hard means:
 - You probably shouldn't waste time trying to find a polynomial time solution
 - If you find a polynomial time solution, either
 - You have a bug
 - Find a place on your shelf for your Turing award
- NP hardness is a major triumph (and failure) for computer science theory

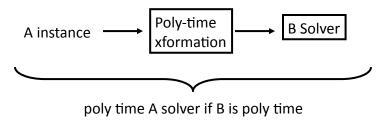
What is the class NP?

- A class of decision problems (Yes/No)
- Solutions can be verified in polynomial time
- Examples:
 - Graph coloring:

- Sortedness: [1 2 3 4 5 8 7]

What is NP completeness?

- All NP complete problems can be "reduced" to each other in polynomial time
- What is a reduction?
 - Use one problem to solve another
 - A is reduced to B, if we can use B to solve A:



Why care about NP-completeness?

- Solving any one NP-complete problem gives you the key to all others
- All NP-complete problems are, in a sense, equivalent
- Insight into solving any one gives you insight into solving a vast array of problems of extraordinary practical and economic significance

Proving NP Completeness

- Want to prove problem C is NP complete
 - Show that C is in NP
 - Find known NP complete problem reducible to C
 - Is graph color NP-complete?
 - Prove that graph coloring is in NP
 - Verify solution in poly time
 - Easy
 - Reduce known NP complete problem to graph coloring
 - Much more challenging
 - Reduction from SAT

The First NP Complete Problem (Cook 1971)

• SAT:

$$(X_1 \vee \overline{X}_7 \vee X_{13}) \wedge (\overline{X}_2 \vee X_{12} \vee X_{25}) \wedge \dots$$

- Want to find an assignment to all variables that makes this expression evaluate to true
- NP-complete for clauses of size 3 or greater
- How would you prove this?

What is NP Hardness?

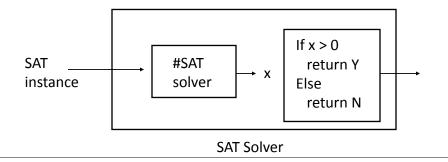
- NP hardness is weaker than NP completeness
- NP hard if an NP complete problem is reducible to it
- NP completeness = NP hardness + NP membership
- Consider the problem #SAT
 - How many satisfying assignments to:

$$(X_{\scriptscriptstyle 1} \vee \overline{X}_{\scriptscriptstyle 7} \vee X_{\scriptscriptstyle 13}) \wedge (\overline{X}_{\scriptscriptstyle 2} \vee X_{\scriptscriptstyle 12} \vee X_{\scriptscriptstyle 25}) \wedge \dots$$

- Is this in NP? (Not even a decision problem)
- Is it NP-hard?

#SAT is NP-hard

- Theorem: #SAT is NP hard
- Proof:
 - Reduce SAT to #SAT



NP-Completeness Summary

- NP-completeness tells us that a problem belongs to class of similar, hard problems.
- What if you find that a problem is NP hard?
 - Look for good approximations
 - Find different measures of complexity
 - Look for tractable subclasses
 - Use heuristics

CSPs

- What is a CSP?
- One view: Search with special goal criteria
- CSP definition (general):
 - Variables X₁,...,X_n
 - Variable X_i has domain D_i
 - Constaints C₁,...,C_m
 - Solution: Each variable gets a value from its domain such that no constraints violated
- CSP examples...
 - http://www.csplib.org/

Other CSP Examples

- Satisfying curriculum/major requirements
- Sudoku
- Seating arrangements at a party
- LSAT Questions: http://www.lsac.org/pdfs/SamplePTJune.pdf

A Restricted View

- Variables X₁,...,X_n
- A binary constraint, lists permitted assignments to pairs of variables
- A binary constraint between binary variables is a table of size 4, listing legal assignments for all 4 combinations.
- A k-ary constraint lists legal assignments to k variables at a time.
- How large is a k-ary constraint for binary variables?

Note: More expressive languages are often used.

CSP Example

Graph coloring:

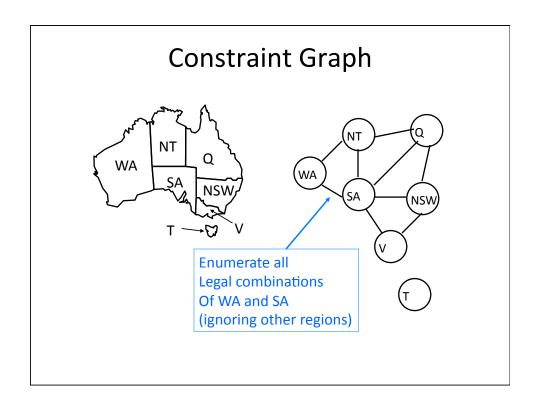
Problem: Assign Red, Green and Blue so that no 2 adjacent regions have the same color. (3-coloring)

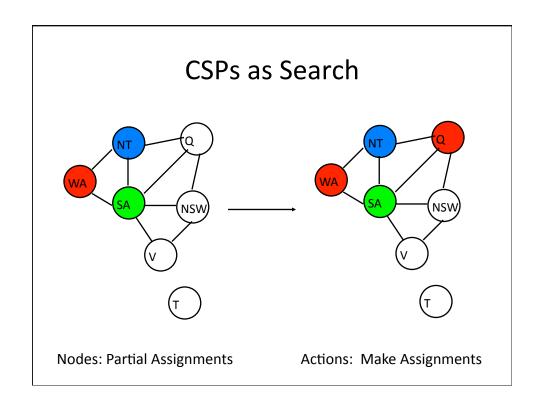
Example Contd.

- Variables: {WA, NT, Q, SA, NSW, V, T}
- Domains: {R,G,B}
- Constraints:

For WA – NT:{(R,G), (R,B), (G,B), (G,R), (B,R), (B,G)}

- We have a table for each adjacent pair
- Are our constraints binary?
- Can every CSP be viewed as a graph problem?





Backtracking

- Backtracking is the most obvious (and widely used) method for solving CSPs:
 - Search forward by assigning values to variables
 - If stuck, undo the most recent assignment and try again
 - Repeat until success or all combinations tried
- Embellishments
 - Methods for picking next variable to assign
 - Most constrained
 - · Least constrained
 - Backjumping

NP-Completeness of CSPs

- Are CSPs in NP?
- Are they NP-hard?
- CSPs and graph coloring are equivalent
 - Convert any graph coloring problem to CSP
 - Convert any CSP to graph coloring
- Known: Graph coloring is NP-complete
- CSPs are NP-complete
- End of the story or just the beginning?

Issues

- What are good heuristics?
 - N.B.: Here we use the term "heuristic" to refer to a procedure for selecting next variables, not an h(x) function as in A*
 - Often good to think of this as a local search
 - Focus on choosing actions carefully, instead of pruning nodes carefully (as in A* or alpha-beta)
- Can we develop heuristics that apply to the entire class of problems, not just specific instances?
- What's the best we can hope for?

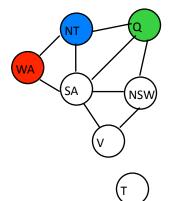
Constraint Graphs

- Constraint graphs are important because they capture the structural relationships between the variables
- IMPORTANT CONCEPT:

Not all instances of a hard problem class are hard

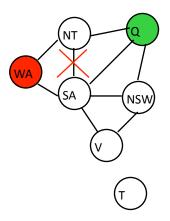
- Structural features give insight into hardness
- Group problems within class by structural features
- New measure of problem complexity

Node Consistency



- Check all nodes for inconsistencies
- For each node, there must exist at least one valid assignment given assignments to neighbors
- Rules out some bad assignments quickly

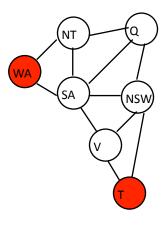
Arc Consistency



- Check all arcs for inconsistencies
- For each value at the start, there must exist a consistent value at the terminus
- Catches many inconsistencies
- Can use to iteratively reduce number of possible assignments to each variable

(constraint propagation)

Generalized Arc Consistency



Is this 3-consistent?

- k-consistency
 - Consider sets of k variables
 - For each legal setting of a k-1 subset
 - Check for legal setting for the kth variable
- Checks for more distant influences
- · Prunes out inconsistent settings
- 1-consistency = node consistency
- 2 consistency = arc consistency

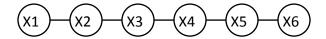
Facts About Arc Consistency

- Strong k-consistency: Consistent for all i<k
- What if a graph with n variables is strongly n-consistent?

Solution exists!

• What is the worst-case cost of checking n-consistency? $O(2^n)$

Linear Constraint Structures



Are these easy or hard?

Suppose our chain is arc consistent...

Properties of Chains

Theorem: Arc consistent linear constraint graphs are strongly n consistent.

Proof: Induction on n.

Base: Arc consistent chains of length 1 are consistent.

I.H. Arc consistent chains of length i are strongly i consistent

I.S. Extending an i step arc-consistent chain by 1 new arc consistent link produces an i+1 link strongly i+1 consistent chain.

Proof of I.S.: Since the last link is strongly arc-consistent, any choice for variable i ensures a consistent choice for i+1. No other variables participate in constraints for i+1.

Properties of Trees

Theorem: Arc consistent constraint trees are n consistent.

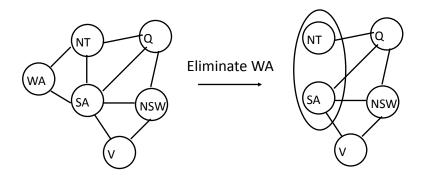
Proof: Same as chain case...

Corollary: Hardness of CSPs with constraint trees

Polynomial!

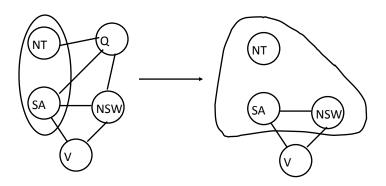
Cool fact: We now have a graph-based test for separating out some of the hard problems from the easy ones.

Variable Elimination



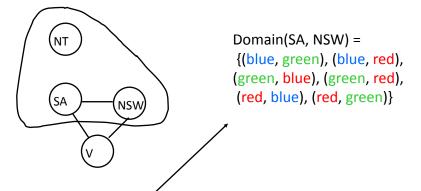
Domain(NT,SA) = {(blue, green), (blue, red), (green, blue), (green, red), (red, blue), (red, green)}

Eliminate Q



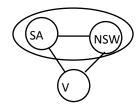
Domain(NT,SA,NSW) = {(blue, green, blue), (blue, red, blue), (red, blue, red), (red, green, red), (green, blue, green), (green, red, green)}

Simplify



Domain(NT,SA,NSW) = {(blue, green, blue), (blue, red, blue), (red, blue, red), (red, green, red), (green, blue, green), (green, red, green)}

Finish



```
Domain(SA, NSW) =
{(blue, green), (blue, red),
(green, blue), (green, red),
(red, blue), (red, green)}
```

Can identify all settings of SA, V, NSW for which there is guaranteed to be a consistent setting of the remaining variables.

Q: How do we get the settings of the other variables?

Variable Elimination

```
Var_elim_CSP_solve (vars, constraints)
Q = queue of all variables
i = length(vars)+1
While not(empty(Q))
  X = pop(Q)
  Xi = merge(X, neighbors(X))
  Simplify Xi
  remove_from_Q(Q, neighbors(X))
  add_to_Q(Q, Xi)
  i=i+1
```

Note: Merge operation can be tricky to implement, depending upon constraint language.

Variable Elimination Issues

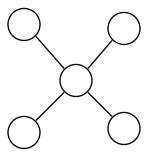
• How expensive is this?

Exponential in size of largest merged variable set -1.

• Is it sensitive to elimination ordering?

Yes!

Variable Elimination Ordering



Is it better to start at the edges and work in, or at the center and work out?

Edges!

Variable Elimination Facts

- You can figure out the cost of a particular elimination ordering without actually constructing the tables
- Finding optimal elimination ordering is NP hard
- Good heuristics for finding near optimal orderings
- Another structural complexity measure
- Investment in finding good ordering can be amortized

CSP Summary

- CSPs are a specialized language for describing certain types of decision problems
- We can formulate special heuristics and methods for problems that can be described in this language
- In general, CSPs are NP hard no general, fast solutions on the horizon
- In some cases, we can use structural measures of complexity to figure out which ones are really hard