First Order Logic (Predicate Calculus)

CPS 170 Ronald Parr

Limitations of Propositional Logic

- Suppose you want to say: All humans are mortal
- For ~6B people, you would need ~6B propositions
- Suppose you want to stay that (at least) one person has perfect pitch
- You would need a disjunction of ~6B propositions
- There has to be a better way...

First Order Logic

- Propositional logic is very restrictive
 - Can't make global statements about objects in the world
 - Workarounds tends to have very large KBs
- First order logic is more expressive
 - Relations, quantification, functions
 - but... inference is trickier

First Order Syntax

- Sentences
- Atomic sentence predicate(term)
- Terms functions, constants, variables
- Connectives
- Quantifiers
- Constants
- Variables

Relations

- Assert relationships between objects
- Examples
 - Loves(Harry, Sally)
 - Between(Canada, US, Mexico)
- Semantics
 - Object and predicate names are mnemonic only
 - Interpretation is imposed from outside
 - Often we imply the "expected" interpretation of predicates and objects with suggested names

Functions

- Functions are specials cases of relations
- Suppose R(x₁,x₂,...,x_n,y) is such that for every value of x₁,x₂,...,x_n there is a unique y
- Then R(x₁,x₂,...,x_n) can be used as a shorthand for y
 Crossed(Right_leg_of(Ron), Left_leg_of(Ron))
- Remember that the object identified by a function depends upon the interpretation

Quantification

• For all objects in the world...

 $\forall x happy(x)$

• For at least one object in the world...

 $\exists x happy(x)$

Examples

• Everybody loves somebody

 $\forall x \exists y Loves(x,y)$

• Everybody loves everybody

 $\forall x \forall y Loves(x,y)$

• Everybody loves Raymond

 \forall xLoves(x,Raymond)

• Raymond loves everybody

 \forall xLoves(Raymond,x)

Equality

- Equality states that two objects are the same
 - Son_of(Barbara) = Ron
- Equality is a special relation that holds whenever two objects are the same
- We can imagine that every interpretation comes with its own identity relation
 - Identical(object27, object58)

What's Missing?

- There are many extensions to first order logic
- Higher order logics permit quantification over predicates:

$$\forall x, y(x = y) \Leftrightarrow (\forall p(p(x) \Leftrightarrow p(y)))$$

- Uniqueness
- Extensions typically replace a potentially long series of conjuncts with a single expression

Inference

- All rules of inference for propositional logic apply to first order logic
- We need extra rules to handle substitution for quantified variables

 $SUBST({x/Harry,y/Sally},Loves(x,y)) = Loves(Harry,Sally)$

Inference Rules

• Universal Elimination

$$\frac{\forall v : \alpha(v)}{SUBST(\{v/g\}, \alpha(v))}$$

- How to read this:
 - We have a universally quantified variable v in α
 - Can substitute any g for v and α will still be true

Inference Rules

Existential Elimination

$$\frac{\exists v : \alpha(v)}{\mathsf{SUBST}(\{v/k\}, \alpha(v))}$$

- How to read this:
 - We have a universally quantified variable v in a
 - Can substitute any k for v and α will still be true
 - IMPORTANT: k must be a *previously unused* constant (*skolem* constant). Why is this OK?

Skolemization within Quantifiers

- Skolemizing w/in universal quantifier is tricky
- Everybody loves somebody

 $\forall x \exists y : loves(x,y)$

• With Skolem constants, becomes:

 $\forall x : loves(x, object 34752)$

- Why is this wrong?
- Need to use skolem functions:

 $\forall x : loves(x, personlovedby(x))$

Inference Rules

• Existential Introduction

$$\frac{\alpha(g)}{\mathsf{SUBST}(\{v/g\},\exists v:\alpha(v))}$$

- How to read this:
 - We know that the sentence α is true
 - Can substitute variable v for any constant g in α and (w/existential quantifier) and α will still be true
 - Why is this OK?

Generalized Modus Ponens Example

- If has_US_birth_certificate(X) then natural_US_citizen(X)
- has_US_birth_certificate(Obama)
- Conclude SUBST({Obama/X},natural_US_citizen(X))
- i.e., natural_US_citizen(Obama)

Generalized Modus Ponens

$$SUBST(\theta, p_i') = SUBST(\theta, p_i) \forall i$$

$$\frac{p_1', p_2', \dots p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{SUBST(\theta, q)}$$

- How to read this:
 - We have an implication which implies q
 - Any consistent substitution of variables on the LHS must yield a valid conclusion on the RHS

Unification

- Substitution is a non-trivial matter
- We need an algorithm unify:

Unify
$$(p,q) = \theta$$
: Subst $(\theta,p) = \text{Subst}(\theta,q)$

• Important: Unification replaces variables:

 $\exists x Loves(John,x)$

 $\exists x \text{Hates}(John,x)$

• Are these the same x?

Unification Example

```
\forall x Knows(John,x) \Rightarrow Loves(John,x)

Knows(John,Jane)

\forall y Knows(y,Leonid)

\forall y Knows(y,Mother(y))

\forall x Knows(x,Elizabeth)
```

Note: All unquantified variables are assumed universal from here on.

```
\begin{aligned} & \text{Unify}(Knows(John,x),Knows(John,Jane)) = & & \{x/Jane\} \\ & \text{Unify}(Knows(John,x),Knows(y,Leonid)) = & & \{x/Leonid,y/John\} \\ & \text{Unify}(Knows(John,x),Knows(y,Mother(y))) = & & \{y/John,x/Mother(John)\} \\ & \text{Unify}(Knows(John,x),Knows(x,Elizabeth)) = & & \{x_1/Elizabeth,x_2/John\} \end{aligned}
```

Most General Unifier

- Unify(Knows(John,x),Knows(y,z))
 - {y/John,x/z}
 - {y/John,x/z,w/Freda}
 - {y/John,x/John,z/John)
- When in doubt, we should always return the most general unifier (MGU)
 - MGU makes least commitment about binding variables to constants

Proof Procedures

- Suppose we have a knowledge base: KB
- We want to prove q
- Forward Chaining
 - Like search: Keep proving new things and adding them to the KB until we are able to prove q
- Backward Chaining
 - Find $p_1...p_n$ s.t. knowing $p_1...p_n$ would prove q
 - Recursively try to prove p₁...p_n

Forward Chaining Example

 $\forall x Knows(John,x) \Rightarrow Loves(John,x)$

Knows(John,Jane)

 \forall yKnows(y,Leonid)

 \forall yKnows(y,Mother(y))

 $\forall x Knows(x, Elizabeth)$

- Loves(John, Jane)
- Loves(John, Leonid)
- Loves(John,Mother(John))
- Loves(John, Elizabeth)

Forward Chaining

```
Procedure Forward_Chain(KB,p)

If p is in KB then return

Add p to KB

For each (p<sub>1</sub> ^ ... ^ p<sub>n</sub>=>q) in KB such that for some i,

Unify(p<sub>i</sub>,p)=q succeeds do

Find_And_Infer(KB,[p<sub>1</sub>,...,p<sub>i-1</sub>,p<sub>i+1</sub>,...,p<sub>n</sub>],q,q)

end

Procedure Find_and_Infer(KB,premises,conclusion,q)

If premises=[] then

Forward_Chain(KB,Subst(q,conclusion))

Else for each p' in KB such that

Unify(p',Subst(q,Head(premises)))=q<sub>2</sub> do

Find_And_Infer(KB,Tail(premises),conclusion,[q,q<sub>2</sub>]))

end
```

A Note About Forward Chaining

- As presented, forward chaining seems undirected
- Can view forward chaining as a search problem
- Can apply heuristics to guide this search
- If you're trying to prove that Barack Obama is a natural born citizen, should you should start by proving that square127 is also a rectangle???

Backward Chaining Example

 $\forall x Knows(John,x) \Rightarrow Loves(John,x)$

Knows(John,Jane)

 \forall yKnows(y,Leonid)

 $\forall y Knows(y, Mother(y))$

 $\forall x Knows(x, Elizabeth)$

• Goal: Loves(John, Jane)?

• Subgoal: Knows(John,Jane)

Backward Chaining

Function Back_Chain(KB,q)
Back_Chain_List(KB,[q],{})

Function Back_Chain_List(KB,qlist,q)

If qlist=[] then return q

q<-head(qlist)

For each q_i' in KB such that q_i<-Unify(q,q_i') succeeds do

Answers \leftarrow Answers + $[q,q_i]$

For each $(p_i^{\cdot}...^p_n = >q_i')$ in KB: $q_i < -Unify(q,q_i')$ succeeds do

Answers<- Answers+

Back_Chain_List(KB,Subst(q_i ,[p_i ... p_n]),[q_i , q_i]))

return union of Back_Chain_List(KB,Tail(qlist),q) for each q in answers

Completeness

$$\forall x P(X) \Rightarrow Q(x)$$

$$\forall x \neg P(X) \Rightarrow R(x)$$

$$\forall x Q(x) \Rightarrow S(x)$$

$$\forall x R(x) \Rightarrow S(x)$$

$$S(A)???$$

- Problem: Generalized Modus Ponens not complete
- Goal: A sound and complete inference procedure for first order logic

Generalized Resolution

$$\begin{split} \theta &= \mathsf{Unify}(p_{_{j}}, \neg \, q_{_{k}}) \\ &\frac{(p_{_{1}} \vee \dots p_{_{j}} \dots \vee p_{_{m}}), (q_{_{1}} \vee \dots q_{_{k}} \dots \vee q_{_{n}})}{\mathsf{SUBST}(\theta, (p_{_{1}} \vee \dots p_{_{j-1}} \vee p_{_{j+1}} \dots \vee p_{_{m}} \vee q_{_{1}} \vee \dots q_{_{k-1}} \vee q_{_{k+1}} \dots \vee q_{_{n}}))} \end{split}$$

 If the same term appears in both positive and negative form in two disjunctions, they cancel out when disjunctions are combined

Generalized Resolution Example

$$(\neg P(x) \lor Q(x))$$

$$(P(x) \lor R(x))$$

$$(\neg Q(x) \lor S(x))$$

$$(\neg R(x) \lor S(x))$$

$$S(A)???$$

Example on board/tablet...

Resolution Properties

 Proof by refutation (asserting negation and resolving to nil) is sound and complete

(NB: We did not do this in the previous example)

- Resolution is not complete in a generative sense, only in a testing sense
- This is only part of the job
- To use resolution, we must convert everything to a canonical form

Canonical Form

- Eliminate Implications
- Move negation inwards
- Standardize (apart) variables
- Move quantifiers Left
- Skolemize
- Drop universal quantifiers
- Distribute AND over OR
- Flatten nested conjunctions and disjunctions

Computational Properties

- We can enumerate the set of all proofs
- We can check if a proof is valid
- First order logic is complete (Gödel)
- What if no valid proof exists?
- Inference in first order logic is semi-decidable
- Compare with halting problem (halting problem is semi-decidable)

Gödel's Incompleteness Result

- Gödel's incompleteness result is, perhaps, better known
- Incompleteness applies to logical/mathematical systems rich enough to contain numbers and math
 - Need a way of enumerating all valid proofs within the system
 - Need a way of referring to proofs by number
- Construct a Gödel sentence:
 - S: For all i, i is not the number of a proof of the sentence j
 - (Equivalent to saying, there does not exist a proof of sentence j)
 - Suppose sentence S is sentence j
 - If S is false, then we have a contradiction
 - If S is true, then we can't have a proof of it

Diagonalization

- Incompleteness can be seen as an instance of diagonalization:
 - Define a set (Rationals, TMs that halt, theorems that are provable)
 - Use rules of the system to create an impossible object
- Example: Proof that reals are not enumerable (i.e., not countable and therefore larger than the rationals)

Countability of Rationals

$$X = \frac{n_0 \times 2^0 + n_1 \times 2^1 + n_2 \times 2^2 \dots}{d_0 \times 2^0 + d_1 \times 2^1 + d_2 \times 2^2 \dots}$$

Label	n ₀	\mathbf{d}_0	n ₁	d ₁	
0	0	0	0	0	
1	1	0	0	0	
2	0	1	0	0	
3	1	1	0	0	•••

Uncountability of Reals

• Given:

Label	n ₀	$\mathbf{d_0}$	n ₁	d ₁	
0	0	0	0	0	•••
1	1	0	0	0	
2	0	1	0	0	
3	1	1	0	0	
			•••		•••

• Construct:

Label	\mathbf{n}_0	$\mathbf{d_0}$	\mathbf{n}_1	$\mathbf{d_1}$	
1	1	0	0	0	
1	1	1	0	0	
2	0	1	1	0	
3	1	1	0	1	
	•••			•••	

Implications of all this

- Sophomoric interpretation: All is impossible/implausible because there will always be true things that cannot be discovered by logic
- A bit of reality:
 - Incompleteness talks about a system's ability to prove things about itself
 - For any given system, it may be possible to prove things by talking about the system in a more expressive language
 - Relationship of the unprovable to intelligence is murky at best: Are the things you can't justify the things that make you intelligent?
 - Not clear that anything interesting is unprovable in a practical sense (though plenty of interesting things remain unproven)

First Order Logic Conclusions

- First order logic adds relations and quantification to predicate logic
- Inference in first order logic is, essentially, a generalization of inference in predicate logic
 - Resolution is sound and complete
 - Use of resolution requires:
 - Conversion to canonical form
 - · Proof by refutation
- In general, inference is first order logic is semi-decidable
- FOL + basic math is no longer complete