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Covered in First Lecture

e Decision Theory Review
e MDPs

e Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
¢ Value Iteration

¢ Policy Iteration
e Linear Programming




Decision Theory
What does it mean to make an optimal decision?

e Asked by economists to study consumer behavior
e Asked by MBAs to maximize profit

e Asked by leaders to allocate resources

e Asked in OR to maximize efficiency of operations
e Asked in Al to model intelligence

e Asked (sort of) by any intelligent person every day

Utility Functions

e A utility function is a mapping from world
states to real numbers

e Also called a value function

e Rational or optimal behavior is typically
viewed as maximizing expected utility:

max Y P(s |a)U(s)

a = actions, s = states




Swept under the today

e Utility of money (assumed 1:1)
e How to determine costs/utilities

e How to determine probabilities

Playing a Game Show

e Assume series of questions
— Increasing difficulty
— Increasing payoff
e Choice:
— Accept accumulated earnings and quit
— Continue and risk losing everything

e “Who wants to be a millionaire?”




State Representation
(simplified game)

Start 1 correct 2 correct 3 correct
S100 $1,000 $10,000 $50,000
( ) $61,100
$0 $0 $0 50
S100 $1,100 $11,100

Making Optimal Decisions
e Work backwards from future to present

e Consider $50,000 question
— Suppose P(correct) =1/10
— V(stop)=$11,100
— V(continue) = 0.9*S0 + 0.1*$61.1K = $6.11K

e Optimal decision stops




Working Recursively

V=$3,749 V=$4,166 V=$5,555 V=$11.1K
: 9/10 3/4 1/2 1/10
>0 $0 $0 >0
$100 $1,100 $11,100

Decision Theory Review

e Provides theory of optimal decisions
* Principle of maximizing utility

e Easy for small, tree structured spaces with
— Known utilities
— Known probabilities




Covered in Today

e Decision Theory
e MDPs

e Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
¢ Value Iteration

¢ Policy Iteration
e Linear Programming

Dealing with Loops

Suppose you can pay $1000 (from any losing state) to play again

: 9/10 3/4 1/2 1/10
L 50 $0 $0 $0
$-1000 l l l

$100 $1,100 $11,100




From Policies to Linear Systems

e Suppose we always pay until we win.
e What is value of following this policy?

V(s,) = 0.10(=1000 + V(s,)) + 0.90V(s,)
V(s,) =0.25(-1000 + V(s,)) + 0.75V(s,)
V(s,) = 0.50(-~1000 + V(s,)) + 0.50V(s,)
V(s,) = 0.90(-1000 + V(s,)) + 0.10(61100)
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Return to Start Continue

And the solution is...

V=S$3,749 V=$4,166 V=$5,555 V=S$11.11K w/o
l l l l cheat
V=S532.47K V=$32.58K V=532.95K V=534.43K
9/10 3/4 1/2 1/10

_

$-1000

Is this optimal?
How do we find the optimal policy?




The MDP Framework

e State space: S
e Action space: A

Transition function: P

Reward function: R
Discount factor: ¥
Policy: m(s) = a

Objective: Maximize expected, discounted return
(decision theoretic optimal behavior)

Applications of MDPs

¢ Al/Computer Science

— Robotic control
(Koenig & Simmons, Thrun et al., Kaelbling et al.)

— Air Campaign Planning (Meuleau et al.)

— Elevator Control (Barto & Crites)

— Computation Scheduling (Zilberstein et al.)

— Control and Automation (Moore et al.)

— Spoken dialogue management (Singh et al.)

— Cellular channel allocation (Singh & Bertsekas)




Applications of MDPs

e Economics/Operations Research
— Fleet maintenance (Howard, Rust)
— Road maintenance (Golabi et al.)
— Packet Retransmission (Feinberg et al.)
— Nuclear plant management (Rothwell & Rust)

Applications of MDPs

e EE/Control

— Missile defense (Bertsekas et al.)

— Inventory management (Van Roy et al.)

— Football play selection (Patek & Bertsekas)
e Agriculture

— Herd management (Kristensen, Toft)
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The Markov Assumption

Let S, be a random variable for the state at time t
P(S¢|AL1Si1s-A0Se) = P(S;1AL;1S:1)
Markov is special kind of conditional independence

Future is independent of past given current state

Understanding Discounting

¢ Mathematical motivation
— Keeps values bounded
— What if | promise you $0.01 every day you visit me?

e Economic motivation
— Discount comes from inflation
— Promise of $1.00 in future is worth $0.99 today

e Probability of dying
— Suppose e probability of dying at each decision interval
— Transition w/prob ¢ to state with value 0
— Equivalent to 1- ¢ discount factor
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Discounting in Practice

e Often chosen unrealistically low
— Faster convergence
— Slightly myopic policies

e Can reformulate most algs. for avg. reward

— Mathematically uglier
— Somewhat slower run time

Covered Today

e Decision Theory
e MDPs

e Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
¢ Value Iteration

¢ Policy Iteration
e Linear Programming
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Value Determination

Determine the value of each state under policy

V(s) =R(s,m(s)) + yES' P(s'l s,m(s))V(s')

Bellman Equation

01 (@
- @
@

V(s,) =1+y(0.4V(s,)+0.6V(s;))

Matrix Form

P(s, |s,,m(s))) P(s, Is;,m(s,)) P(s; |s,,7(s,))
P=|P(s, Is,,n(s,)) P(s,ls,,m(s,)) P(s;ls,,m(s,))
P(s, |s;,mt(s;)) P(s, |s;,7(s;))  P(s, |s;,7(s;))

V=1PV+R

How do we solve this system?
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Solving for Values

V=7 V+R
For moderate numbers of states we can solve this system exacty:
-1
V=(>1-y)"R

Guaranteed invertible because YP,
has spectral radius <1

Iteratively Solving for Values

V=1PV+R

For larger numbers of states we can solve this system indirectly:

Vi =yP V' +R

Guaranteed convergent because yP,
has spectral radius <1
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Establishing Convergence

e Eigenvalue analysis

e Monotonicity
— Assume all values start pessimistic
— One value must always increase
— Can never overestimate

e Contraction analysis...

Contraction Analysis

e Define maximum norm
V||, =max,V,

[

e Consider V1 and V2
v, -l =¢
e WLOG say

V1 < \/2 + & (Vector of all €’s)
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Contraction Analysis Contd.
e At next iteration for V,:
V. =R+yPV,

e ForV,
V. =R+yP(V,)<R+yP(V, +€) =R+yPV, +yPe =R+ PV, +ye

\—/
Distribute

e Conclude:

V, -V,

2

<ye

[e¢)

Importance of Contraction

e Any two value functions get closer
e True value function V* is a fixed point

e Max norm distance from V* decreases
dramatically quickly with iterations

o v

ey e

NB: (Superscripts) indicate iterations here
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Iterative Policy Evaluation

9/10 3/4 1/2 1/10
$111,100
S-1000
0.00 0.00 0.00 0.00 lterations
-100.00 -250.00 -500.00 5210.00
-335.00 -650.00 2055.00 4908.00
-718.50 1207.50 1892.50 9908.50
914.90 989.75 1595.00 4563.35
882.26 1174.97 2239.12 6033.41
lterations Continued

iteration V(S,) V(s,) V(S,) V(S,)

0 0.0 0.0 0.0 0.0

1 -100.0 -250.0 -500.0 5210.0

2 -335.0 -650.0 2055.0 4908.0

3 -718.5 1207.5 1892.5 9908.5

4 914.9 989.8 1595.0 4563.4

5 882.3 1175.0 2239.1 6033.4

10 2604.5 3166.7 4158.8 7241.8

20 5994.8 6454.5 7356.0 10.32K

200 29.73K 29.25K 29.57K 31.61K

2000 32.47K 32.58K 32.95K 34.43K

Note: Slow convergence because y=1




Covered Today

e Decision Theory
e MDPs

e Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
¢ Value lteration
¢ Policy Iteration
e Linear Programming

Finding Good Policies

Suppose an expert told you the “value” of each state:

V(S2) =5
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Improving Policies

e How do we get the optimal policy?
e Take the optimal action in every state
¢ Fixed point equation with choices:

V' (s) = max, ES' R(s,a) +yP(s'l s,a)V" (s")

Decision theoretic optimal choice given V*

Value Iteration

We can’t solve the system directly with a max in the equation
Can we solve it by iteration?

Vi~ (s) =max, Ey R(s,a) +yP(s'ls,a)V'(s'")

eCalled value iteration or simply successive approximation
eSame as value determination, but we can change actions

eConvergence:
e Can’t do eigenvalue analysis (not linear)
e Still monotonic
e Still a contraction in max norm (exercise)
e Converges quickly
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Optimality

e VI converges to optimal policy
e Why?
e Optimal policy is stationary

e Why?

Covered Today

e Decision Theory
e MDPs

e Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
¢ Value Iteration
e Policy Iteration
e Linear Programming
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Greedy Policy Construction
Pick action with highest expected future value:

7, (s) =argmax  R(s,a) + VES- P(s'ls,a)V(s'")

\ J
|

Expectation over
next-state values

7, =greedy(V)

Consider our first policy

V=$3.7K  V=%$4.1K V=$5.6K V=$11.1K w/o
cheat

9/10 3/4 1/2 1/10
-

Recall: We played until last state, then quit
Is this greedy with cheat option?

Value of continuing in last state is:
0.1*111,100 + 0.9%(3,749-1000)=$13584
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Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess =,

V_ = value of acting on «t Eiﬁij;‘;g?:\lt
(solve linear system) change

m,<—greedy(V,)

Guaranteed to find optimal policy
Usually takes very small number of iterations
Computing the value functions is the expensive part

Comparing VI and PI

— Value changes at every step
— Policy may change at every step
— Many cheap iterations

— Alternates policy/value updates

— Solves for value of each policy exactly

— Fewer, slower iterations (need to invert matrix)
e Convergence

— Both are contractions in max norm

— Plis shockingly fast in practice (why?)
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Computational Complexity

VI and Pl are both contraction mappings w/rate vy
(we didn’t prove this for Pl in class)

VI costs less per iteration
Pl tends to take O(n) iterations in practice
Open question: Subexponential bound on PI

Is there a guaranteed poly time MDP algorithm???

Covered Today

e Decision Theory
e MDPs

e Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
¢ Value Iteration

¢ Policy Iteration
e Linear Programming
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Linear Programming Review
e Minimize: €'X
e Subjectto: Ax=b

e Can be solved in weakly polynomial time

e Arguably most common and important
optimization technique in history

Linear Programming

V(s) = R(s,a) + ymax, E P(s'ls,a)V(s")
s
Issue: Turn the non-linear max into a collection of linear constraints

Vs,a:V(s)=R(s,a) + )/ES, P(s'l s,a)V(s")

— _/
v

MINIMIZE: EV(S) Optimal action has
S

tight constraints

Weakly polynomial; slower than Pl in practice.
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MDP Difficulties & RL

e MDP operate at the level of states
— States = atomic events

— We usually have exponentially (infinitely) many of these

e We assume P and R are known

e Machine learning to the rescue!
— Infer P and R (implicitly or explicitly from data)
— Generalize from small number of states/policies

Coming Up Next

e Multiple agents

e Partial observability
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