Markov Decision Processes (MDPs)

Ron Parr CPS 170

Covered in First Lecture

- Decision Theory Review
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Decision Theory

What does it mean to make an optimal decision?

- Asked by economists to study consumer behavior
- Asked by MBAs to maximize profit
- Asked by leaders to allocate resources
- · Asked in OR to maximize efficiency of operations
- Asked in AI to model intelligence
- Asked (sort of) by any intelligent person every day

Utility Functions

- A *utility function* is a mapping from world states to real numbers
- Also called a value function
- Rational or optimal behavior is typically viewed as maximizing expected utility:

$$\max_{a} \sum_{s} P(s \mid a) U(s)$$

a = actions, s = states

Swept under the today

- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

Playing a Game Show

- Assume series of questions
 - Increasing difficulty
 - Increasing payoff
- Choice:
 - Accept accumulated earnings and quit
 - Continue and risk losing everything
- "Who wants to be a millionaire?"

Making Optimal Decisions

- Work backwards from future to present
- Consider \$50,000 question
 - Suppose P(correct) = 1/10
 - V(stop)=\$11,100
 - V(continue) = 0.9*\$0 + 0.1*\$61.1K = \$6.11K
- Optimal decision stops

Working Recursively

Decision Theory Review

- Provides theory of optimal decisions
- Principle of maximizing utility
- Easy for small, tree structured spaces with
 - Known utilities
 - Known probabilities

Covered in Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Dealing with Loops

Suppose you can pay \$1000 (from any losing state) to play again

From Policies to Linear Systems

- Suppose we always pay until we win.
- What is value of following this policy?

$$V(s_0) = 0.10(-1000 + V(s_0)) + 0.90V(s_1)$$

$$V(s_1) = 0.25(-1000 + V(s_0)) + 0.75V(s_2)$$

$$V(s_2) = 0.50(-1000 + V(s_0)) + 0.50V(s_3)$$

$$V(s_3) = 0.90(-1000 + V(s_0)) + 0.10(61100)$$

Return to Start

Continue

How do we find the optimal policy?

The MDP Framework

• State space: S

• Action space: A

• Transition function: P

• Reward function: R

Discount factor: γ

• Policy: $\pi(s) \rightarrow a$

Objective: *Maximize expected, discounted return* (decision theoretic optimal behavior)

Applications of MDPs

- AI/Computer Science
 - Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 - Air Campaign Planning (Meuleau et al.)
 - Elevator Control (Barto & Crites)
 - Computation Scheduling (Zilberstein et al.)
 - Control and Automation (Moore et al.)
 - Spoken dialogue management (Singh et al.)
 - Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

- Economics/Operations Research
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)

Applications of MDPs

- EE/Control
 - Missile defense (Bertsekas et al.)
 - Inventory management (Van Roy et al.)
 - Football play selection (Patek & Bertsekas)
- Agriculture
 - Herd management (Kristensen, Toft)

The Markov Assumption

- Let S_t be a random variable for the state at time t
- $P(S_t | A_{t-1}S_{t-1},...,A_0S_0) = P(S_t | A_{t-1}S_{t-1})$
- Markov is special kind of conditional independence
- Future is independent of past given current state

Understanding Discounting

- Mathematical motivation
 - Keeps values bounded
 - What if I promise you \$0.01 every day you visit me?
- Economic motivation
 - Discount comes from inflation
 - Promise of \$1.00 in future is worth \$0.99 today
- Probability of dying
 - Suppose e probability of dying at each decision interval
 - Transition w/prob ϵ to state with value 0
 - Equivalent to 1- ϵ discount factor

Discounting in Practice

- Often chosen unrealistically low
 - Faster convergence
 - Slightly myopic policies
- Can reformulate most algs. for avg. reward
 - Mathematically uglier
 - Somewhat slower run time

Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Value Determination

Determine the value of each state under policy π

$$V(s) = R(s,\pi(s)) + \gamma \sum_{s'} P(s'|s,\pi(s))V(s')$$

Bellman Equation

$$V(s_1) = 1 + \gamma(0.4V(s_2) + 0.6V(s_3))$$

Matrix Form

$$\mathbf{P} = \begin{pmatrix} P(s_1 \mid s_1, \pi(s_1)) & P(s_2 \mid s_1, \pi(s_1)) & P(s_3 \mid s_1, \pi(s_1)) \\ P(s_1 \mid s_2, \pi(s_2)) & P(s_2 \mid s_2, \pi(s_2)) & P(s_3 \mid s_2, \pi(s_2)) \\ P(s_1 \mid s_3, \pi(s_3)) & P(s_2 \mid s_3, \pi(s_3)) & P(s_3 \mid s_3, \pi(s_3)) \end{pmatrix}$$

$$V = \gamma P_{\pi} V + R$$

How do we solve this system?

Solving for Values

$$V = \gamma P_{\pi} V + R$$

For moderate numbers of states we can solve this system exacty:

$$\mathbf{V} = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1} \mathbf{R}$$

Guaranteed invertible because γP_{π} has spectral radius <1

Iteratively Solving for Values

$$V = \gamma P_{\pi} V + R$$

For larger numbers of states we can solve this system indirectly:

$$V^{i+1} = \gamma P_{\pi} V^{i} + R$$

Guaranteed convergent because γP_{π} has spectral radius <1

Establishing Convergence

- Eigenvalue analysis
- Monotonicity
 - Assume all values start pessimistic
 - One value must always increase
 - Can never overestimate
- Contraction analysis...

Contraction Analysis

• Define maximum norm

$$\|V\|_{\infty} = \max_{i} V_{i}$$

Consider V1 and V2

$$\left\| V_1 - V_2 \right\|_{\infty} = \varepsilon$$

• WLOG say

$$V_1 \le V_2 + \vec{\varepsilon}$$
 (Vector of all ε 's)

Contraction Analysis Contd.

• At next iteration for V₂:

$$V_{2} = R + \gamma P V_{2}$$

For V₁

$$V_{1} = R + \gamma P(V_{1}) \le R + \gamma P(V_{2} + \vec{\varepsilon}) = R + \gamma PV_{2} + \gamma P\vec{\varepsilon} = R + \gamma PV_{2} + \gamma \vec{\varepsilon}$$

• Conclude:

• Conclude:

$$\left\| V_{2} - V_{1} \right\|_{\infty} \leq \gamma \varepsilon$$

Importance of Contraction

- Any two value functions get closer
- True value function V* is a fixed point
- Max norm distance from V* decreases dramatically quickly with iterations

$$\left\| V^{(0)} - V^* \right\|_{\infty} = \varepsilon \rightarrow \left\| V^{(n)} - V^* \right\|_{\infty} \le \gamma^n \varepsilon$$

NB: (Superscripts) indicate iterations here

Iterations Continued

iteration	V(S ₀)	V(S ₁)	V(S ₂)	V(S ₃)
0	0.0	0.0	0.0	0.0
1	-100.0	-250.0	-500.0	5210.0
2	-335.0	-650.0	2055.0	4908.0
3	-718.5	1207.5	1892.5	9908.5
4	914.9	989.8	1595.0	4563.4
5	882.3	1175.0	2239.1	6033.4
10	2604.5	3166.7	4158.8	7241.8
20	5994.8	6454.5	7356.0	10.32K
200	29.73K	29.25K	29.57K	31.61K
2000	32.47K	32.58K	32.95K	34.43K

Note: Slow convergence because $\gamma=1$

Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Finding Good Policies

Suppose an expert told you the "value" of each state:

Improving Policies

- How do we get the optimal policy?
- Take the optimal action in every state
- Fixed point equation with choices:

$$V^{*}(s) = \max_{a} \sum_{s'} R(s,a) + \gamma P(s'|s,a) V^{*}(s')$$

Decision theoretic optimal choice given V*

Value Iteration

We can't solve the system directly with a max in the equation Can we solve it by iteration?

$$V^{i+1}(s) = \max_{a} \sum_{s'} R(s,a) + \gamma P(s'|s,a) V^{i}(s')$$

- Called value iteration or simply successive approximation
- •Same as value determination, but we can *change* actions
- Convergence:
 - Can't do eigenvalue analysis (not linear)
 - Still monotonic
 - Still a contraction in max norm (exercise)
 - Converges quickly

Optimality

- VI converges to optimal policy
- Why?
- Optimal policy is stationary
- Why?

Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Greedy Policy Construction

Pick action with highest expected future value:

$$\pi_{v}(s) = \operatorname{arg\,max}_{a} R(s,a) + \gamma \sum_{s'} P(s'|s,a) V(s')$$

Expectation over next-state values

$$\pi_{v} = \operatorname{greedy}(V)$$

Consider our first policy

V=\$3.7K V=\$4.1K V=\$5.6K V=\$11.1K w/o cheat

Recall: We played until last state, then quit Is this greedy with cheat option?

Value of continuing in last state is: 0.1*111,100 + 0.9*(3,749-1000)=\$13584

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess $\pi_v = \pi_0$ V_{π} = value of acting on π (solve linear system) $\pi_v \leftarrow \text{greedy}(V_{\pi})$ Repeat until policy doesn't change

Guaranteed to find optimal policy
Usually takes very small number of iterations
Computing the value functions is the expensive part

Comparing VI and PI

- VI
 - Value changes at every step
 - Policy may change at every step
 - Many cheap iterations
- PI
 - Alternates policy/value updates
 - Solves for value of each policy exactly
 - Fewer, slower iterations (need to invert matrix)
- Convergence
 - Both are contractions in max norm
 - PI is shockingly fast in practice (why?)

Computational Complexity

- VI and PI are both contraction mappings w/rate γ (we didn't prove this for PI in class)
- VI costs less per iteration
- PI tends to take O(n) iterations in practice
- Open question: Subexponential bound on PI
- Is there a guaranteed poly time MDP algorithm???

Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Linear Programming Review

Minimize: c^Tx

• Subject to: $Ax \ge b$

- Can be solved in weakly polynomial time
- Arguably most common and important optimization technique in history

Linear Programming

$$V(s) = R(s,a) + \gamma \max_{a} \sum_{s'} P(s'|s,a) V(s')$$

Issue: Turn the non-linear max into a collection of linear constraints

$$\forall s,a: V(s) \ge R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')$$

MINIMIZE: $\sum_{s} V(s)$ Optimal action has tight constraints

Weakly polynomial; slower than PI in practice.

MDP Difficulties \rightarrow RL

- MDP operate at the level of states
 - States = atomic events
 - We usually have exponentially (infinitely) many of these
- We assume P and R are known
- Machine learning to the rescue!
 - Infer P and R (implicitly or explicitly from data)
 - Generalize from small number of states/policies

Coming Up Next

- Multiple agents
- Partial observability