Machine Learning Intro

CPS 170 Ron Parr

Why Study Learning?

- Considered a hallmark of intelligence
- Viewed as way to reduce programming burden
- Many algorithms assume parameters that are difficult to determine exactly a priori

Examples

- · SPAM classification
- Computational Biology/medicine
 - Distinguish healthy/diseased tissue (e.g., skin/colon cancer)
 - Find structure in biological data (regulatory pathways)
- Financial events
 - Predict good/bad credit risks
 - Predict price changes
 - Response to marketing
- Drilling sites likely to have oil
- Document categorization
- Learn to play games
- Learn to control systems
 - Fly Helicopter
 - Optimize OS components
- Public database of learning problems:
 - http://www.ics.uci.edu/~mlearn/MLSummary.html

Who Does Machine Learning?

- In Al
 - Core Al topic (AAAI, IJCAI)
 - Specialized communities (ICML, NIPS)
- Databases (data mining KDD)
- Used in (CS):
 - Vision
 - Systems
 - Comp. Bio
- Statistics

Who Does Machine Learning (@Duke)

- CS:
 - Faculty: Pankaj Agarwal, Vince Conitzer, Alex Hartemink, Kamesh Munagala, Ron Parr, Carlo Tomasi, Jun Yang
- ISDS (everybody, but especially):
 - Scott Schmidler, Sayan Mukherjee
- IGSP:
 - Terry Furey, Uwe Ohler
- Engineering:
 - Larry Carin, Silvia Ferrari, Rebecca Willett

Who Hires in Machine Learning?

- Universities
- Microsoft Research
- Search: Google/Yahoo/Amazon
- Defense contractors
- Some financial institutions (quietly)
- Many startups
- ML viewed as good background for many other tasks (robotics, vision, systems, engineering)

What is Machine Learning

- Learning Element
 - The thing that learns
- Performance Element
 - Objective measure of progress
- Learning is simply an increase in the ability of the learning element over time to achieve the task specified by the performance element

ML vs. Statistics?

- Machine learning is:
 - Younger
 - More empirical
 - More algorithmic
 - (arguably) More practical
 - (arguably) More decision theoretic
- Statistics is:
 - More mature
 - (arguably) More formal and rigorous

ML vs. Data Mining

- Machine Learning is:
 - (Arguably) more formal
 - (Arguably) more task driven/decision theoretic
- Data Mining is:
 - More constrained by size of data set
 - More closely tied to database techniques

Types of Learning

- Inductive Learning
 - Acquiring new information that previously was not available
 - Learning concepts
- Speedup learning
 - Learning to do something you already "know" faster or better

Feedback in Learning

- Supervised Learning
 - Given examples of correct behavior
- Unsupervised Learning
 - No external notion of what is correct
 - Is this well-defined?
- Reinforcement Learning
 - Indirect indication of effectiveness

Learning Methodology

- Distinction between training and testing is crucial
- Correct performance on training set is just memorization!
- Researcher should *never* look at the test data
- Raises some troubling issues for "benchmark" learning problems

Computational Learning Theory

- Formal study of what can be learned from data
- Closely related to ML, but also to CS theory
- Assumptions:
 - Training examples must be representative
 - Algorithm needn't always work, but should scale well
- Goals:
 - Algorithms that have a low error rate with high probability
 - Good characterization of how performance scales

COLT

- Learning theory is elegant and mathematically rich. However,
 - It sometimes isn't constructive
 - It sometimes tells us how many data are needed, but not how to manipulate the data efficiently
- Through the late 90's, learning theory drifted away from practical learning algorithms
- New advances fresh thinking have led to a rapprochement, e.g.:
 - Support vector machines
 - Boosting

Example: Supervised Learning

- Classical framework
- Target concept, e.g., green
- Learner is presented with labeled instances
 - True: Green cones, green cubes, green spheres
 - False: Red cones, red cubes, red spheres, blue cones, blue cubes, blue spheres
- Learner must correctly identify the target concept from the training data

Performance Measure

- Training set won't have all possible objects
- Test set will contain novel objects
 - Blue cylinders, yellow tetrahedra
- To learn successfully, learner must have good performance when confronted w/novel objects
 - This is what we would expect from people
 - A blue Broccolisaurus is still blue

Why Learning Is Tricky

- Suppose we have seen:
 - Red tetrahedron(f), Blue sphere(t), Blue cone(t), green cube(f)
- Possible concepts:
 - Blue
 - (Blue Sphere) or (Blue Cone)
 - Objects a prime number from start
 - Objects with a circular cross-section
- What if some data are mislabeled?

Learning and Representation

- Learning is very sensitive to representation
- Every learning algorithm can be viewed as a search through a space of concepts
- Space of concepts determines
 - Difficulty of task
 - Appropriate algorithm
 - Restricting too aggressively can trivialize problem
 - Failure to restrict (or regularize) can trivialize the problem
- Example Space: Conjunctions of colors and shapes
 - Eliminates primes and (possibly) cross sections

Management of the Hypothesis Space

- Ockham's Razor:
 - All things being equal, favor the simplest consistent hypothesis
 - Guiding principle of science, e.g., Einstein:
 'In my opinion the theory here is the logically simplest relativistic field theory that is at all possible. But this does not mean that nature might not obey a more complex theory. More complex theories have frequently been proposed... In my view, such more complicated systems and their combinations should be considered only if there exist physical-empirical reasons to do so.'
- Ockham's razor is not provably correct, but
 - Computational learning theory shows us that the more choices we have, the more data we need to distinguish reliably among these choices
 - Well known trade off between bias and variance
 - How many points do you need to fit a degree 2 polynomial?
 - How many points do you need to fit a degree 100 polynomial?
- · Ockham's razor is embodied in a wide range of methods

Learning Intro Final Thoughts

- Machine learning is one of the most successful areas of AI
 - Many practical applications
 - Many ways to succeed without solving the "whole problem"
 - Many fields view machine learning as a special sauce that will give them an advantage
- Machine learning conferences are almost as large as the general AI conferences

How to Succeed with Machine Learning

- Theoretical/algorithmic success
 - Maneuver through space of hypotheses efficiently
 - Efficiency
 - Make good use of data
 - Make good use of time
- Practical Success
 - Getting something to learn can be hard (my job!)
 - Know your problem!
 - Pick training data carefully
 - Craft hypothesis space