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Unsupervised Learning

Supervised learning: Data <x1, x2, ... xn, y>
e Unsupervised Learning: Data <x1, x2, ... xn>

So, what’s the big deal?
Isn’t y just another feature?

No explicit performance objective

— Bad news: Problem not necessarily well defined without
further assumptions

— Good news: Results can be useful for more than
predicting y




Model Learning

® Produce a global summary of the data

¢ Not an exact copy

e Consider space of models M and dataset D
* One approach: Maximize P(M|D)

e How to do this? Bayes Rule:

P(D | M)P(M)

P(M D) = P D)

Example: Modeling Coin Flips

e Suppose we have observed: D=HTTHT
e Which is a better model?

— P(H=0.4)

— P(H=0.5)

P(D | M)P(M)

P(M1D) ===

P(DI(P(H=0.5))=0.5" =0.312
P(DI(P(H=0.4))=0.4>*0.6> =0.3456

What about P(D) and P(M)???




Model Learning With Bayes Rule

P(D I M)P(M)

P(M D) = D)

e We call P(D| M) the likelihood
e We canignore P(D)... Why?
e What about P(M)?

— Call this a our prior probability on models

— If P(M) is uniform (all models equally likely) then
maximizing P(D | M) is equivalent to maximizing P(M|D)
(Call this the maximium likelihood approach.)

Using Priors

Suppose we have good reason to expect that the
coin is fair

Should we really conclude P(H)=0.4"?

Suppose we think P(P(H=0.5)) = 2 x P(P(H=0.4))
This means P(D|P(H=0.4)) must be 2X larger than P
(D|P(H=0.5)) to compensate if P(H=0.4) is to
maximize the posterior probability
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Data Can Overwhelm a Prior
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Specifying Priors

* In our coin example, we considered just two models P
(H=0.4) and P(H=0.5)

¢ In general, we might want to specify a distribution over
all possible coin probabilities

e This introduces complications:
— P(M) is now a distribution over a continuous parameter
— Need to use calculus to find maximizer of P(D|M)P(M)




Conjugate Priors

» A likelihood and prior are said to be conjugate if their
product has the same parametric form as the prior

» (This is outside the scope of the class, but we provide
one nice example.)

» The beta distribution is conjugate to the binomial
distribution

— Can think of the beta distribution as specifying a number of
“‘imagined” heads and tails

— Maximum of the posterior adds together observed heads and
tails with imagined heads and tails

— Examples:

* Prior of 100 heads and 100 tails is a strong prior towards fairness
* Prior of 1 head and 1 tail is a weak prior towards fairness

Clustering as Modeling

e Clustering assigns points in a space to clusters

e Example: By examining x-rays of cancer
tumors, one might identify different subtypes
of cancer based upon growth patterns

e Each cluster has its own probabilistic model
describing how items of that cluster’s type
behave




Examples of Clustering Applications

e Marketing: Help marketers discover distinct groups in their
customer bases, and then use this knowledge to develop
targeted marketing programs

¢ Land use: Identification of areas of similar land use in an earth
observation database

¢ Insurance: Identifying groups of motor insurance policy holders
with similar claim cost

e City-planning: Identifying groups of houses according to their
house type, value, and geographical location

e Earth-quake studies: Observed earth quake epicenters should
be clustered along continent faults

Example of Subtleties in Clustering

¢ Household Dataset:

location, income, number of children, rent/own, crime
rate, number of cars

e Appropriate clustering may depend on use:
— Goal to minimize delivery time = cluster by location
— Others?

— Clustering work often suffers from mismatch between
the clustering objective function and the performance
criterion




Clustering Desiderata

Decomposition or partition of data into groups so that
— Points in one group are similar to each other
— Are as different as possible from the points in other groups
Measure of distance is fundamental
Explicit representation:
— D(x(i),x(j)) for each x
— Only feasible for small domains
Implicit representation by measurement:

— Distance computed from features
— Implement this as a function

Families of Clustering Algorithms

Partition-based methods

— e.g., K-means

Hierarchical clustering

— e.g., hierarchical agglomerative clustering
Probabilistic model-based clustering

— e.g., mixture models

Graph-based Methods

— e.g., spectral methods




K-means

Start with randomly chosen cluster centers
Assign points to closest cluster

Recompute cluster centers

Reassign points

Repeat until no changes

K-means example
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K-means example
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K-means example
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K-means example
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K-means example #2
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Demo

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Complexity

e Does algorithm terminate?
yes
e Does algorithm converge to optimal clustering?

Can only guarantee local optimum

e Time complexity one iteration?

nk
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Understanding k-Means

e Implicitly models data as coming from a Gaussian
distribution centered at cluster centers

e |og P(data) ~ sum of squared distances

o<,

P(x,Ec;)) x e

clustering(i))

P(data) = HP(X, Ec

lOg(P(tha)) = CZE(XI - Cclustering(i))2

Understanding k-Means |l

e Each step of k-Means increases P(data)

— Reassigning points moves points to clusters for
which their coordinates have higher probability

— Recomputing means moves cluster centers to
increase the average probability of points in the
cluster

* Fixed number of assignments and monotonic
score implies convergence
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Understanding k-Means |l

P(D | M)P(M)

P(M | D) = P D)

Can view k-means as max likelihood method with a twist

— Unlike the coin toss example, there is a hidden variable with each
datum — the cluster membership

— k-means iteratively improves its guesses about these hidden pieces of
information

k-means can be interpreted as an instance of a general

approach to dealing with hidden variables called Expectation

Maximization (EM)

But How Do We Pick k?

Sometimes there will be an obvious choice given background

knowledge or the intended use of the clustering output

What if we just iterated over k?
— Picking k=n will always maximize P(D|M)

— We could introduce a prior over models using P(M) in Bayes rule

Compare prior over models with regularization:
— Regularization in regression penalized overly complex solutions

— We can assign models with a high number of clusters low probability to

achieve a similar effect

— (In general, use of priors subsumes regularization.)
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Is Clustering Well Defined?

Clustering is not clearly axiomatized

Can we define an “optimal” clustering w/o specifying an a
priori preference (prior) on the cluster sizes or making
additional assumptions?

Kleinberg: Clustering is impossible under some plausible
assumptions (IOW, union of unstated assumptions made by
clustering algorithms is logically inconsistent)

Recent efforts make progress putting clustering on more solid

ground

Model Learning Conclusion

Often seek to find the most likely model given the data

Can be viewed as maximizing the posterior P(M|D) using
Bayes rule

Model learning can be applied to:

— Coin flips

— Clustering

— Learning parameters of Bayes nets or HMMs

— etc.

Some care must go into formulation of modeling assumptions
to avoid degenerate solutions, e.g., assigning every point to
its own cluster

Priors can help avoid degenerate solutions
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