Neural Networks

CPS 170
Ron Parr

Neural Network Motivation

Human brains are only known example of actual intelligence
Individual neurons are slow, boring

Brains succeed by using massive parallelism
Idea: Copy what works

Raises many issues:
— Is the computational metaphor suited to the computational hardware?
— How do we know if we are copying the important part?

— Are we aiming too low?

Why Neural Networks?

Maybe computers should be more brain-like:

Computers Brains
Computational Units 108 gates/CPU |10 neurons
Storage Units 107° bits RAM | 10" neurons

103 bits HD 10'4 synapses
Cycle Time 10°S 103 S
Bandwidth 1010 bits/s* 10" bits/s
Compute Power 107° Ops/s 104 Ops/s

Comments on Jaguar
(world’s fastest supercomputer as of 4/10)

e 2,332 Teraflops

e 10% Ops/s (Jaguar) vs. 10* Ops/s (brain)

e 224,256 processor cores
e 300 TB RAM (10%° bits)

e 10 PB Disk storage

e 7 Megawatts power
(~S500K/year in electricity [my estimate])

e ~S100M cost

* 4400 sq ft size (very large house)

e Pictures and other details: http://www.nccs.gov/jaguar/

More Comments on Modern
Supercomputers vs. Brains

e What is wrong with this picture?
— Weight
— Size
— Power Consumption
e What is missing?
— Still can’t replicate human abilities
(though vastly exceeds human abilities in many areas)
— Are we running the wrong programs?

— Is the architecture well suited to the programs we
might need to run?

Artificial Neural Networks

Develop abstraction of function of actual neurons

Simulate large, massively parallel artificial neural
networks on conventional computers

Some have tried to build the hardware too

Try to approximate human learning, robustness to
noise, robustness to damage, etc.

Use of neural networks

e Classic examples

— Trained to pronounce English
e Training set: Sliding window over text, sounds
® 95% accuracy on training set
e 78% accuracy on test set

— Trained to recognize handwritten digits w/>99% accuracy
— Trained to drive (Pomerleau’s no-hands across America)

e Current examples

— Credit risk evaluation, OCR systems, voice recognition, etc.
(though not necessarily the best method for any of these
tasks)

— Built in to many software packages, e.g., matlab

Neural Network Lore

¢ Neural nets have been adopted with an almost religious fervor
within the Al community - several times

e Often ascribed near magical powers by people, usually those
who know the least about computation or brains

e For most Al people, magic is gone, but neural nets remain
extremely interesting and useful mathematical objects

Artificial Neurons

node/
neuron
/ : \

a, = h(zwj’,xj)
J

X

a; is the activation level of neuron |
h can be any function, but usually a smoothed step function

Threshold Functions

h(x)=sgn(x)
(perceptron)

|

-5 0 5 10

|

h(x)=tanh(x) or 1/(1+exp(-x))
(logistic sigmoid)

Network Architectures

e Cyclic vs. Acyclic

— Cyclic is tricky, but more biologically plausible
¢ Hard to analyze in general
¢ May not be stable

* Need to assume latches to avoid race conditions

— Hopfield nets: special type of cyclic net useful for
associative memory

e Single layer (perceptron)
e Multiple layer

Feedforward Networks

We consider acyclic networks
One or more computational layers

Entire network can be viewed as computing a complex
non-linear function

Typical uses in learning:

— Classification (usually involving complex patterns)

— General continuous function approximation

Special Case: Perceptron

)] .
x

—

node/ Y
neuron

/ h

h is a simple step function (sgn)

Perceptron Learning

We are given a set of inputs x(1)...x("
t)...t(" is a set of target outputs (boolean) {-1,1}
w is our set of weights

output of perceptron = w'x
Perceptron_error(x), w) = -wTx(* t()
Goal: Pick w to optimize:

(i)

min E perceptron_error(x'”,w)
w

i€misclassified

Update Rule

Repeat until convergence:

V V:w.<w. +axt?
i€misclassified j J J [J

“Learning Rate”
(can be any constant)

e i iterates over samples
e j iterates over weights

http://neuron.eng.wayne.edu/java/Perceptron/New38.html

Perceptron Learning
The Good News First

e For functions that are representable using the
perceptron architecture (more on this later):

— Perceptron learning rule converges to correct
classifier for any choice of a
— Online classification possible for streaming data
(very efficient implementation)
e Positive perceptron results set off an
explosion of research on neural neworks

Perceptron Learning
Now the Bad News

* Perceptron computes a linear function of its inputs,
e Asks if the input lies above a line (hyperplane, in general)

e Representable functions are functions that are “linearly
separable”; i.e., there exists a line (hyperplane) that
separates the positive and negative examples

e If the training data are not linearly separable:
— No guarantees
— Perceptron learning rule may produce oscillations

Visualizing Linearly Separable Functions

Is red linearly separable from green?
Are the circles linearly separable from the squares?

Observations

e Linear separability is fairly weak

¢ We have other tricks:

— Functions that are not linearly separable in one space, may
be linearly separable in another space

— If we engineer our inputs to our neural network, then we
change the space in which we are constructing linear
separators

— Every function has a linear separator (in some space)

e Perhaps other network architectures will help

Separability in One Dimension

If we have just a single
input x, there is no
way a perceptron
can correctly

J classifiy these data

Copyright © 2001, 2003, Andrew W. Moore

10

Harder 1-dimensional dataset

« Remember how
permitting non-
linear basis

. functions made
linear regression so
. much nicer?
Let’s permit them
° here too, using
1,x,x% as inputs to
the perceptron

Copyright © 2001, 2003, Andrew W. Moore

Multilayer Networks

* Once people realized how simple perceptrons were, they lost
interest in neural networks for a while (feature engineering turned
out to be impractical in many cases)

e Multilayer networks turn out to be much more expressive
(with a smoothed step function)

— Use sigmoid, e.g., tanh(wx) or logistic sigmoid: 1/(1+exp(-x))
— With 2 layers, can represent any continuous function

— With 3 layers, can represent many discontinuous functions

e Tricky part: How to adjust the weights

X

11

Smoothing Things Out

e |dea: Do gradient descent on a smooth error function
e Error function is sum of squared errors
e Consider a single training example first
E =0.5error(X"” w)?
dE JE 9a; a; =2W,.jz,.
ow, da, dw, i
y J U] a. 7 /
3 ! / Z
P _6.]
da !

Propagating Errors

e For output units (assuming no weights on outputs)

oE

a—: j=y—t aj=2Wijzi

a. i

. .] I /_7

e For hidden units e z=output
zj=f(aj)

e Chain rule -
JE da dE oh
—=6,=2 . =E W.—=h(a,)Ewk,.6k
da p a p

da, da, “da, “9

I

All upstream nodes from i

12

Differentiating h

e Recall the logistic sigmoid:

e 1
h(x) = =
) 1+e 1+e™”
1
1-h(x)=—<

1+e™ 1l+e*
e Differentiating:

e 1 e™”

h'(x) = >z = z .
A+e™)* @A+e™)(A+e™)

= h(x)(1 - h(x))

Putting it together

Apply input x to network (sum for multiple inputs)
— Compute all activation levels
— Compute final output (forward pass)

Compute 0 for output units
O=y-—t
Backpropagate &’s to hidden units

JdE da
0. =Y ——F*=p@)dw,d
! gaak da, (’)2 ok

Compute gradient update: aa—E =da

Joi
i

13

Summary of Gradient Update

Gradient calculation, parameter update have
recursive formulation

Decomposes into:

— Local message passing

— No transcendentals:
¢ h’(x)=1-h(x)?2 for tanh(x)
¢ h’(x)=h(x)(1-h(x)) for logistic sigmoid

Highly parallelizable
Biologically plausible(?)

Celebrated backpropagation algorithm

Good News

Can represent any continuous function with two
layers (1 hidden)

Can represent essentially any function with 3 layers
(But how many hidden nodes?)

Multilayer nets are a universal approximation
architecture with a highly parallelizable training
algorithm

14

Back-prop Issues

* Backprop = gradient descent on an error function
e Function is nonlinear (= powerful)
e Function is nonlinear (= local minima)
e Big nets:
— Many parameters
e Many optima

¢ Slow gradient descent
¢ Risk of overfitting

— Biological plausibility = Electronic plausibility
e Many NN experts became experts in numerical
analysis (by necessity)

Neural Network Tricks

e Many gradient descent acceleration tricks
e Early stopping (prevents overfitting)
e Methods of enforcing transformation invariance
(e.g. if you have symmetric inputs)
— Modify error function
— Transform/augment training data
— Weight sharing

e Handcrafted network architectures

Neural Nets in Practice

Many applications for pattern recognition tasks

Very powerful representation
— Can overfit
— Can fail to fit with too many parameters, poor features

Very widely deployed Al technology, but

— Few open research questions (Best way to get a machine
learning paper rejected: “Neural Network” in title.)

— Connection to biology still uncertain

— Results are hard to interpret

“Second best way to solve any problem”

— Can do just about anything w/enough twiddling
— Now third or fourth to SVMs, boosting, and ???

16

