Logic Programming Systems

CPS 170
Ron Parr

Automating Reasoning

e Want a sound and complete procedure

e Need to represent information in our
database in a canonical form

e Need to understand the factors that
influence the efficiency of our reasoning
system




Proofs by Resolution

e Convert to canonical form
e Assert negation of the proof target
e Resolve until “nil” is obtained

® Problem: In general, we can’t bound the number
of steps of resolution needed.
(In some cases, we can make assumptions about a
restricted number of objects in the universe, but then we
go from semi-decidable to exponential, still unpleasant.)

Speeding Up Resolution

e There are many heuristics for speeding up resolution —
we can view it as a special kind of search

e Can also consider special cases

e Al has a colorful history of special case logics and special
case reasoning engines for handling these logics




Implementation Issues

e Any reasoning system must be able to identify
relevant sentences in its KB rapidly

e Maintain multiple indices:
— A list of positive literals for each predicate symbol
— A list of negative literals for each predicate symbol
— A list of sentences with this predicate as conclusion
— Alist of sentences with this predicate as premise

e More sophisticated, tree-based indexing schemes are
possible

Unification

e We need to avoid circular unifications
e Consider Unify(P(x,f(x)),P(y,y))=27?"
e What happens:
— Bindxtoy
— Bind f(x) toy
— This implies x is bound f(x)
— This is circular
e Checking called an “occurs check”

¢ O(n?) to check this (many systems don’t)




Prolog

e Prolog is a grand effort to make logic a practical
programming method
e Prolog is a declarative language
— State the things that are true
— Ask the system to prove things
— All computations are essentially proofs
e Prolog makes many restrictions on KB
e My bias: Prolog is a fascinating way to think

about logic and programming, but is of waning
importance in Al

Prolog Properties

KB is sequences of sentences
(all implicitly conjoined)
All sentences must be horn
Can use constants, variables, or functions
Queries can include conjunctions or disjunctions

Cannot assert negations
— Closed world assumption
— Everything not implied by the KB is assumed false




Prolog Properties

e All syntactically distinct terms refer to
distinct objects

— Two variables can be =
— Two objects cannot be =
e Built in predicates for arithmetic

e Build in list handling as part of the
unification process

Prolog Implementation

Inferences are done with backward chaining

Is this complete?

What is the computational complexity?

Conjuncts are tried in left to right order
(as entered in the KB)

e Tries implications in order they are entered
e No occurs check (in most Prologs)




Prolog Ul

Load a database using consult

Consult(user) loads database from the
command line ctrl-d to terminal

Consult(file) loads database from a file.

Some prologs use [file].

Prolog Syntax

e Variables are upper case

e Constants are lower case

e Implication :-

e Universal quantification is implicit

e Sentences are terminated with a .

e Specify RHS first: Mortal(X):-Man(X)

e Conjunction with ,: Mortal(X):-Man(X),Living(X).




Prolog Syntax

e Lists [Head|Tail]
— Head is bound to first element of list
— Tail is bound to remainder of list
— Append
e Numbers
— Numbers are assigned with “is”
— Checked with =, =<, =>

Prolog Bindings

Use = to check if two bindings are same
Use \==to check if they are different
Hit enter at the end of query to stop search

Use ; to get multiple answers




Weird/Interesting Stuff About Prolog

Purely declarative (or purely functional) framework for
programming leaves little room for “side effects” such as
graphics, file output, etc.

but... Prolog has lots of back doors that let you step outside of
the purely declarative framework

Prolog is Turing Complete

Prolog programmers must be continually aware of the operation
of the theorem proving engine
You can easily write prolog programs that go into infinite loops,

and it will not be obvious why this is happening until you have
fully internalized the way the theorem prover works

Prolog Redux

¢ Despite its coolness and potential power, prolog is not widely used today
— Horn restrictions are awkward in practice
— Knowledge representation is hard in general
— Programming paradigm is alien to many and awkward for things other than
logic queries
e Prolog concepts live on in a restricted form in the database query
language datalog:
— Subset of prolog
— Sound and complete
— Efficient implementations exist
e Datalog is used primarily for database research, but datalog concepts
have influenced mainstream database implementations




