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With content adapted from Lise Getoor, Tom Dietterich, Andrew Moore & Rich Maclin

Supervised Learning

e Given: Training Set
e Goal: Good performance on test set
e Assumptions:

— Training samples are independently drawn, and
identically distributed (1ID)

— Test set is from same distribution as training set




Fitting Continuous Data
(Regression)

Datum i has feature vector: ¢=(¢,(x1)...¢, (xD))
Has real valued target: t(")
Concept space: linear combinations of features:

y(x";w) = iqb, (x"w, = (x") w

Learning objective: Search to find “best” w

e (This is standard “data fitting” that most people
learn in some form or another.)

Linearity of Regression

e Regression typically considered a linear
method, but...

Features not necessarily linear

Features not necessarily linear

Features not necessarily linear

and, BTW, features not necessarily linear
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Regression Examples

e Predicting housing price from:
— House size, lot size, rooms, neighborhood*, etc.
e Predicting weight from:
— Sex, height, ethnicity, etc.
e Predicting life expectancy increase from:
— Medication, disease state, etc.
e Predicting crop yield from:
— Precipitation, fertilizer, temperature, etc.
e Fitting polynomials
— Features are monomials

Features/Basis Functions

Polynomials

Indicators

Gaussian densities

Step functions or sigmoids
e Sinusoids (Fourier basis)

e Wavelets

e Anything you can imagine...
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What is “best”?

e No obvious answer to this question
e Three compatible answers:
— Minimize squared error on training set

— Maximize likelihood of the data
(under certain assumptions)

— Project data into “closest” approximation

e Other answers possible

Minimizing Squared Training Set Error
e Why is this good?
e How could this be bad?

e Minimize:

E(w) = i(wT(])(x”)) - t0)’




Minimizing E by Gradient Descent

E(w)

gradient vector

Start with initial weight vector w

JE(w) OE(w) JE(w)

Compute the gradient V.E=

aw, " ow, " aw

n

Compute W< w—qaVE Whereaisthe step size

Repeat until convergence

(Adapted from Lise Getoor’s Slides)

Gradient Descent Issues

e For this particular problem:

— Global minimum exists

— Convergence “guaranteed” if done in “batch”
e In general

— Local optimum only

— Batch mode more stable

— Incremental possible
e Can oscillate

e Use decreasing step size (Robbins-Monro) to stabilize
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Solving the Minimization Directly

E= D" -wp(x")y

i=1

V,Ex Yt - wg(x")p(x ")
i=1
scalar row vector

Set gradient to 0 to find min:

i(tm -w p(x"MNP(x M) =0 —(])(X(l))-
Y . @
Do W PP Wpix?Y =0 o= P
O - WD =t - dw =0 .
[p(x™))

w=(0'P) @'t

What is the Best Choice of Features?
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Degree 3 Fit

Degree 9 Fit
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Observations

e Degree 3 is the best match to the source
e Degree 9 is the best match to the samples
e Performance on test data:

—6— Training
—6— Test

Bias and Variance

e Bias: How much of our error comes from
our choice of hypothesis space?

e Variance: How much of our error comes
from noise in the training data?




Example: 20 points
y = x+ 2 sin(1.5x) + N(0,0.2)
—_—

Noise

fitted hypothesis

Hypothesis space = linear in x

50 fits (20 examples each)

6 8 10

2 4
What are we seeing here?
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Bias

true function

Variance
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Trade off Between Bias and Variance

Is the problem a bad choice of polynomial?
Is the problem that we don’t have enough data?
Answer: Yes

For small datasets:
— Lower bias -> Higher Variance
— Higher bias -> Lower Variance

Bias and Variance: Lessons Learned

e When data are scarce relative to the
“capacity” of our hypothesis space
— Variance can be a problem

— Restricting hypothesis space can reduce
variance at cost of increased bias

e When data are plentiful
— Variance is less of a concern
— May afford to use richer hypothesis space
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Methods for Choosing Features

e Cross validation

e Regularization

Cross Validation

e Suppose we have many possible hypothesis
spaces, e.g., different degree polynomials

e Recall our empirical performance results:

1

0

e Why not use the data to find min of the red curve?
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Implementing Cross Validation

Many possible approaches to cross validation

Typical approach divides data into k equally sized chunks:
— Do kinstances of learning
— For each instance hold out 1/k of the data

Train on (k-1)/k fraction of the data

Test on held out data

Average results

Can also sample subsets of data with replacement

Cross validation can be used to search range of hypothesis
classes to find where overfitting starts

Problems with Cross Validation

Cross validation is a sound method, but requires a lot of data and/
oris slow

Must trade off two factors:
— Want enough data within each run
— Want to average over enough trials

With scarce data:
— Choose k close to n
— Almost as many learning problems as data points

With abundant data (then why are you doing cross validation?)
— Choose k = a small constant, e.g., 10

— Not too painful if you have a lot of parallel computing resources and a
lot of data, e.g., if you are Google
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Regularization

e Cross validation may also be impractical if
range of hypothesis classes is not easily
enumerated a searched iteratively

e Regularization aims to avoid overfitting, while
— Avoiding speed penalty of cross validation
— Not assuming an ordering on hypothesis spaces

Regularization

Idea: Penalize overly complicated answers
Ordinary regression minimizes:

Sy w) -t

i=1

L, Regularized regression minimizes:
M
Aw| + B (y(x";w)-t7)?
ol + >

Note: May exclude constants form the norm
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L, Regularization: Why?

1 M=9

M t
Mwl, + ¥ " w) -t [
i=1

-1

0 .1

e For polynomials, extreme curves typically require
extreme values

* In general, encourages use of features only when
they lead to a substantial increase in performance

* Problem: How to choose A (cross validation?)

The L, Regularized Solution

e Minimize:

M
AMwl, + 2 (y(x";w)—t")?
i=1

e Set gradient to 0, solve for w for features ®:

w=(® d+A)" Dt
e Compare with unregularized solution

w= (DD Dt
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Regularization Example

1 o—0 InA=0

o

High regularization produces “flat” solutions because
weights must approach 0. Lower values allow for
more curviness in the value function.

Concluding Comments

Regression is the most basic machine learning algorithm
for continuous targets
Multiple views are all equivalent:
— Minimize squared loss
— Maximize likelihood
— Orthogonal projection
Big question: Choosing features
Step towards understanding this: Bias/variance trade off

Cross validation, regularization automate (to some extent)
balancing bias and variance
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