Regression

CPS 170 Ron Parr

Regression figures provided by Christopher Bishop and © 2007 Christopher Bishop With content adapted from Lise Getoor, Tom Dietterich, Andrew Moore & Rich Maclin

Supervised Learning

• Given: Training Set

• Goal: Good performance on test set

• Assumptions:

- Training samples are independently drawn, and identically distributed (IID)
- Test set is from same distribution as training set

Fitting Continuous Data (Regression)

- Datum i has feature vector: $\phi = (\phi_1(x^{(i)})...\phi_k(x^{(i)}))$
- Has real valued target: t(i)
- Concept space: linear combinations of features:

$$y(\mathbf{x}^{(i)}; \mathbf{w}) = \sum_{i=1}^{k} \phi_j(\mathbf{x}^{(i)}) w_j = \mathbf{\Phi}(\mathbf{x}^{(i)})^T \mathbf{w}$$

- Learning objective: Search to find "best" w
- (This is standard "data fitting" that most people learn in some form or another.)

Linearity of Regression

- Regression typically considered a *linear* method, but...
- Features not necessarily linear
- and, BTW, features not necessarily linear

Regression Examples

- Predicting housing price from:
 - House size, lot size, rooms, neighborhood*, etc.
- Predicting weight from:
 - Sex, height, ethnicity, etc.
- Predicting life expectancy increase from:
 - Medication, disease state, etc.
- Predicting crop yield from:
 - Precipitation, fertilizer, temperature, etc.
- Fitting polynomials
 - Features are monomials

Features/Basis Functions

- Polynomials
- Indicators
- Gaussian densities
- Step functions or sigmoids
- Sinusoids (Fourier basis)
- Wavelets
- Anything you can imagine...

What is "best"?

- No obvious answer to this question
- Three compatible answers:
 - Minimize squared error on training set
 - Maximize likelihood of the data (under certain assumptions)
 - Project data into "closest" approximation
- Other answers possible

Minimizing Squared Training Set Error

- Why is this good?
- How could this be bad?
- Minimize:

$$E(\mathbf{w}) = \sum_{i=1}^{N} \left(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}^{(i)}) - t^{(i)} \right)^{2}$$

Minimizing E by Gradient Descent

Start with initial weight vector **w**₀

Compute the gradient $\nabla_{\mathbf{w}} \mathcal{E} = \begin{pmatrix} \frac{\partial E(\mathbf{w})}{\partial w_0}, \frac{\partial E(\mathbf{w})}{\partial w_0}, \cdots, \frac{\partial E(\mathbf{w})}{\partial w_0} \end{pmatrix}$

Compute $\mathbf{W} \leftarrow \mathbf{W} - \alpha \nabla E$ where α is the step size

Repeat until convergence

(Adapted from Lise Getoor's Slides)

Gradient Descent Issues

- For this particular problem:
 - Global minimum exists
 - Convergence "guaranteed" if done in "batch"
- In general
 - Local optimum only
 - Batch mode more stable
 - Incremental possible
 - Can oscillate
 - Use decreasing step size (Robbins-Monro) to stabilize

Solving the Minimization Directly

$$E = \sum_{i=1}^{n} (t^{(i)} - w^{T} \phi(x^{(i)}))^{2}$$

$$\nabla_{w}E \propto \sum_{i=1}^{n} (t^{(i)} - w^{T}\phi(x^{(i)}))\phi(x^{(i)})^{T}$$

scalar row vector

Set gradient to 0 to find min:

$$\sum_{i=1}^{n} (t^{(i)} - \mathbf{w}^{\mathsf{T}} \phi(x^{(i)})) \phi(x^{(i)})^{\mathsf{T}} = 0$$

$$\sum_{i=1}^{n} \phi(x^{(i)})^{\mathsf{T}} t^{(i)} - \mathbf{w}^{\mathsf{T}} \sum_{i=1}^{n} \phi(x^{(i)}) \phi(x^{(i)})^{\mathsf{T}} = 0$$

$$\mathbf{t}^{\mathsf{T}} \Phi - \mathbf{w}^{\mathsf{T}} \Phi^{\mathsf{T}} \Phi = \Phi^{\mathsf{T}} \mathbf{t} - \Phi^{\mathsf{T}} \Phi \mathbf{w} = 0$$

$$\mathbf{w} = (\Phi^{\mathsf{T}} \Phi)^{-1} \Phi^{\mathsf{T}} \mathbf{t}$$

$$(\phi(x^{(i)}))^{\mathsf{T}} \Phi^{\mathsf{T}} \Phi^{\mathsf{T$$

Observations

- Degree 3 is the best match to the source
- Degree 9 is the best match to the samples
- Performance on test data:

Bias and Variance

- Bias: How much of our error comes from our choice of hypothesis space?
- Variance: How much of our error comes from noise in the training data?

Trade off Between Bias and Variance

- Is the problem a bad choice of polynomial?
- Is the problem that we don't have enough data?
- Answer: Yes
- For small datasets:

 - Lower bias -> Higher VarianceHigher bias -> Lower Variance

Bias and Variance: Lessons Learned

- When data are scarce relative to the "capacity" of our hypothesis space
 - Variance can be a problem
 - Restricting hypothesis space can reduce variance at cost of increased bias
- When data are plentiful
 - Variance is less of a concern
 - May afford to use richer hypothesis space

Methods for Choosing Features

- Cross validation
- Regularization

Cross Validation

- Suppose we have many possible hypothesis spaces, e.g., different degree polynomials
- Recall our empirical performance results:

• Why not use the data to find min of the red curve?

Implementing Cross Validation

- Many possible approaches to cross validation
- Typical approach divides data into k equally sized chunks:
 - Do k instances of learning
 - For each instance hold out 1/k of the data
 - Train on (k-1)/k fraction of the data
 - Test on held out data
 - Average results
- Can also sample subsets of data with replacement
- Cross validation can be used to search range of hypothesis classes to find where overfitting starts

Problems with Cross Validation

- Cross validation is a sound method, but requires a lot of data and/ or is slow
- Must trade off two factors:
 - Want enough data within each run
 - Want to average over enough trials
- With scarce data:
 - Choose k close to n
 - Almost as many learning problems as data points
- With abundant data (then why are you doing cross validation?)
 - Choose k = a small constant, e.g., 10
 - Not too painful if you have a lot of parallel computing resources and a lot of data, e.g., if you are Google

Regularization

- Cross validation may also be impractical if range of hypothesis classes is not easily enumerated a searched iteratively
- Regularization aims to avoid overfitting, while
 - Avoiding speed penalty of cross validation
 - Not assuming an ordering on hypothesis spaces

Regularization

- Idea: Penalize overly complicated answers
- Ordinary regression minimizes:

$$\sum_{i=1}^{M} (y(x^{(i)}; \mathbf{w}) - t_i)^2$$

• L₂ Regularized regression minimizes: $\lambda \|\mathbf{w}\|_2 + \sum_{i=1}^{M} (y(x^{(i)}; \mathbf{w}) - t^{(i)})^2$

$$\lambda \|\mathbf{w}\|_{2} + \sum_{i=1}^{M} (y(x^{(i)}; \mathbf{w}) - t^{(i)})^{2}$$

• Note: May exclude constants form the norm

L₂ Regularization: Why?

$$\lambda \|\mathbf{w}\|_{2} + \sum_{i=1}^{M} (y(x^{(i)}; \mathbf{w}) - t^{(i)})^{2}$$

- For polynomials, extreme curves typically require extreme values
- In general, encourages use of features only when they lead to a substantial increase in performance
- Problem: How to choose λ (cross validation?)

The L₂ Regularized Solution

• Minimize:

$$\lambda \|\mathbf{w}\|_{2} + \sum_{i=1}^{M} (y(x^{(i)}; \mathbf{w}) - t^{(i)})^{2}$$

• Set gradient to 0, solve for w for features Φ :

$$\mathbf{w} = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{t}$$

• Compare with unregularized solution

$$\mathbf{w} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$$

Regularization Example

High regularization produces "flat" solutions because weights must approach 0. Lower values allow for more curviness in the value function.

Concluding Comments

- Regression is the most basic machine learning algorithm for continuous targets
- Multiple views are all equivalent:
 - Minimize squared loss
 - Maximize likelihood
 - Orthogonal projection
- Big question: Choosing features
- Step towards understanding this: Bias/variance trade off
- Cross validation, regularization automate (to some extent) balancing bias and variance