Reinforcement Learning

Ron Parr
CPS 271

RL Highlights

Everybody likes to learn from experience

Use ML techniques to generalize from relatively
small amounts of experience

Some notable successes:
— Backgammon
— Flying a helicopter upside down

From Andrew Ng’s home page

Sutton’s seminal RL paper is 88t most cited ref. in
computer science (Citeseerx 10/09); Sutton &
Barto RL Book is the 14t most cited

Comparison w/Other Kinds of Learning

e Learning often viewed as:
— Classification (supervised), or
— Model learning (unsupervised)

e RLis between these (delayed signal)

e What the last thing that happens before an
accident?

Overview

e Review of value determination
e Motivation for RL

e Algorithms for RL
— Overview
- TD
— Q-learning
— Approximation

Recall Our Game Show

Start 1 correct 2 correct 2 correct
$S100 $1,000 $10,000 $100,000
S0 $0 $0 S0
$100 $1,100 $11,100

Optimal Policy w/o Cheating

V=$3,750 V=54,166 V=55,555 V=$11.1K

: 9/10 3/4

S0 30

1/2 1/10

$111,100

$100 $1,100 $11,100

Cheat until you win policy

V=$3,749 V=54,166 V=$5,555 V=$11.11K w/o

l l l l cheat

V=$32.47K V=$32.58K V=$32.95K V=534.43K

: : 9/10 : : 3/4 : : 1/2: : 1/10

$-1000

Solving for Values

V. =y V_ +Rm
For moderate numbers of states we can solve this system exacty:
-1
VJ‘L’ - (I _ }/Pn) R

Guaranteed invertible because YP,
has spectral radius <1

Iteratively Solving for Values

V. =yP V+R

For larger numbers of states we can solve this system indirectly:

V.t =yP V' +R

Guaranteed convergent because YP,
has spectral radius <1 for y<1

Convergence not guaranteed for y=1

Overview

e Review of value determination
e Motivation for RL

e Algorithms for RL
— Overview
- TD
— Q-learning
— Approximation

Why We Need RL

e Where do we get transition probabilities?

e How do we store them?

¢ Big problems have big models
e Model size is quadratic in state space size

e Where do we get the reward function?

RL Framework

Learn by “trial and error”
e No assumptions about model
e No assumptions about reward function

Assumes:

— True state is known at all times
— Immediate reward is known

— Discount is known

RL Schema

Il
* Perceive results a2
.,&.ﬁm
e Update something ;:; L™
e Repeat
RL for Our Game Show

e Problem: We don’t know probability of answering
correctly

e Solution:
— Buy the home version of the game
— Practice on the home game to refine our strategy
— Deploy strategy when we play the real game

Model Learning Approach

e Learn model, solve

e How to learn a model:
— Take action a in state s, observe s’
— Take action a in state s, n times
— Observe s’ m times
— P(s’|s,a) =m/n
— Fill in transition matrix for each action
— Compute avg. reward for each state

¢ Solve learned model as an MDP

Limitations of Model Learning

Partitions learning, solution into two phases

Model may be large (hard to visit every state lots
of times)
— Note: Can’t completely get around this problem...

Model storage is expensive

Model manipulation is expensive

Overview

e Review of value determination
¢ Motivation for RL

e Algorithms for RL
- TD
— Q-learning
— Approximation

Temporal Differences

* One of the first RL algorithms

e Learn the value of a fixed policy
(no optimization; just prediction)

e Recall iterative value determination:

V, " () = R(s.70(5)) + 7 Y, P(s'l s,70(s))V, (5")

l

Problem: We don’t know this.

Temporal Difference Learning

e Remember Value Determination:

V*(s) = R(s,7t(s)) + VE P(s'l s,m(s))V'(s")

e Compute an update as if the observed s’ and r
were the only possible outcomes:

Ve (s) =r+yV'(s")

e Make a small update in this direction:

V*H(s) = (1 = a)V'(s) + aV™™ (s)
O<a=<l

Example: Home Version of Game

: | $111,100

SO $0 $0 SO

$100 $1,100 $11,100

Suppose we guess: V(s;)=15K
We play and get the question wrong

\/temp=Q
V(s3) = (1-0)15K + a0

10

Convergence?

e Why doesn’t this oscillate?

— e.g. consider some low probability s’ with a
very high (or low) reward value

— This could still cause a big jump in V(s)

Convergence Intuitions

e Need heavy machinery from stochastic
process theory to prove convergence

e Main ideas:
— Iterative value determination converges
— TD updates approximate value determination
— Samples approximate expectation

V™*(s) = R(s,m(s)) + VE P(s'l s,m(s))V'(s")

11

Ensuring Convergence

Rewards have bounded variance

O=<y<l1
Every state visited infinitely often

Learning rate decays so that:

— ET&’(S) = 00
- Ejaiz(s) <

These conditions are jointly sufficient to ensure
convergence in the limit with probability 1.

How Strong is This?

Bounded variance of rewards: easy
Discount: standard

Visiting every state infinitely often: Hmmm...

Learning rate: Often leads to slow learning

Convergence in the limit: Weak

— Hard to say anything stronger w/o knowing the mixing rate of
the process

— Mixing rate can be low; hard to know a priori

Convergence w.p. 1: Not a problem.

12

Using TD for Control

e Recall value iteration:
V*(s) = max, R(s,a) + yE P(s'ls,a)V'(s")
e Why not pick the maximizin; a and then do:
V() =1 - a)V'(s) + aV*™(s")

— s’ is the observed next state after taking action a

Problems

e Pick the best action w/o model?

e Must visit every state infinitely often
— What if a good policy doesn’t do this?

e Learning is done “on policy”

— Taking random actions to make sure that all states
are visited will cause problems

13

Q-Learning Overview

e Want to maintain good properties of TD

e Learns good policies and optimal value function,
not just the value of a fixed policy

e Simple modification to TD that learns the optimal
policy regardless of how you act! (mostly)

Q-learning
e Recall value iteration:
V™*(s) = max_ R(s,a) + yE P(s'ls,a)V'(s")
e Can split this into two funsctions:
Q"' (s,a) =R(s,0) + yE P(s'l s,a)V'(s")

V*(s) = max, Q*'(s,a)

14

Q-learning
e Store Q values instead of a value function
e Makes selection of best action easy

e Update rule:

Qtemp(s,a) = r +ymax,, Qi(s"a')

Q" (s,0) =(1 - a)Q'(s,0) + aQ*™ (s,a)

Q-learning Properties

e Converges under same conditions as TD
e Still must visit every state infinitely often

e Separates policy you are currently following from
value function learning:

Qtemp(s’a) —r +‘)/1'IlaXav Qi(s',a')

Q™" (s,0) =1 -a)Q'(s,0) + aQ*“™ (s,a)

15

Value Function Representation

e Fundamental problem remains unsolved:

— TD/Q learning solves model-learning problem, but
— Large models still have large value functions

— Too expensive to store these functions

— Impossible to visit every state in large models

e Function approximation

— Use machine learning methods to generalize
— Avoid the need to visit every state

Properties of approximate RL

Table-updates are a special case
Can be combined with Q-learning

Convergence not guaranteed

— Policy evaluation with linear function approximation
converges if samples are drawn “on policy”

— Ordinary neural nets converge to local opt

— NN + RL convergence not guaranteed
e Chasing a moving target
e Errors can compound

Success requires very well chosen features

16

How’d They Do That???

e Backgammon (Tesauro)
— Neural network value function approximation
— TD sufficient (known model)
— Carefully selected inputs to neural network
— About 1 million games played against self
e Helicopter (Ng et al.)
— Approximate policy iteration
— Constrained policy space
— Trained on a simulator

Swept under the rug...

e Difficulty of finding good features
e Partial observability

e Exploration vs. Exploitation

17

Conclusions

Reinforcement learning solves an MDP
Converges for exact value function representation
Can be combined with approximation methods

Good results require good features

18

