CPS 170
Search |

Ron Parr

With thanks to Vince Conitzer for some slides and figures

What is Search?

Search is a basic problem-solving method
We start in an initial state

We examine states that are (usually) connected
by a sequence of actions to the initial state

Note: Search is a thought experiment

We aim to find a solution, which is a sequence of
actions that brings us from the initial state to the
goal state, minimizing cost

Search vs. Web Search

When we issue a search query using Google, does
Google really go poking around the web for us?

Not in real time!
Google spiders the web continually, caches results

Uses page rank algorithm to find the most “popular”
web pages that are consistent with your query

Overview

Problem Formulation

Uninformed Search
— DFS, BFS, IDDFS, etc.

Informed Search
— Greedy, A*

Properties of Heuristics

Problem Formulation

e Four components of a search problem
— Initial State
— Actions
— Goal Test
— Path Cost

e Optimal solution = lowest path cost to goal

Example: Path Planning

1\
1 Q Goal
2 1
Start 2 2

Find shortest route from one city to another using highways.

Example 8(15)-puzzle

81314 Solution

1 7 — 31415

21615 6|1 718

Possible
Start State

Goal State

Actions: UP, DOWN, RIGHT, LEFT

I”

“Real” Problems

Robot motion planning
Drug design

Logistics

— Route planning

— Tour Planning

Assembly sequencing
Internet routing

Why Use Search?

Other algorithms exist e Use search when itis

for these problems: too expensive to
enumerate all states

e 8-puzzle has 362,800
states

e 15-puzzle has 1.3
trillion states

e 24-puzzle has 10%
states

— Dijkstra’s Algorithm
— Dynamic programming
— All-pairs shortest path

Basic Search Concepts

Assume a tree-structured space (for now)

Nodes: Places in search tree
(states exist in the problem space)

Search tree: portion of state space visited so far
Actions: Connect states to next states
Expansion: Generation of next states for a state
Frontier: Set of states visited, but not expanded
Branching factor: Max no. of successors =b
Goal depth: Depth of shallowest goal = d

Example Search Tree

-

O/ O

Frontier
O O
8-puzzle
1 2 1 2 O 1

Generic Search Algorithm

Function Tree-Search(problem, Queuing-Fn)

fringe = Make-Queue(Make-Node(Initial-State(problem)))
loop do

if empty(fringe) then return failure

node = pop(fringe)

if Goal-Test(problem, state) then return node

fringe = Add-To-Queue(fringe, expand(node, problem))
end

Interesting details are in the implementation of Add-To-Queue

Evaluating Search Algorithms

Completeness:

— Is the algorithm guaranteed to find a solution
when there is one?

Optimality:
— Does the algorithm find the optimal solution?

Time complexity
e Space complexity

Uninformed Search: BFS

Frontier is a FIFO

/@\

OO

[\
® OO

BFS Properties

e Completeness: v

e Optimality: Y (for uniform cost)
e Time complexity: o(be)

e Space complexity: O(b%?)

Uninformed Search: DFS

Frontier is a LIFO

/@\

OO

[\
ONOXOXD,

DFS Properties

e Completeness: N (unless tree is finite)
e Optimality: N
e Time complexity: 0(b™?) (m = depth we hit, m>d?)

e Space complexity: O(bm)

e \WWant:

Iterative Deepening

— DFS memory requirements

— BFS optimality, completeness

¢ |dea:

— Do a depth-limited DFS for depth m
— Iterate over m

IDDFS

10

IDDFS Properties

Completeness: v

Optimality: Y (whenever BFS is optimal)

Time complexity: 0(b%?)

Space complexity: 0O(bd)

IDDFS vs. BFS

Theorem: IDDFS visits no more than twice as many nodes
for a binary tree as BFS.

Proof: Assume the tree bottoms out at depth d, BFS visits:

2d+1 _1

In the worst case, IDDFS does no more than:

d d d
Y@ -1 =Y2" - Y 1= -2)-d =22 ~1) =2 x BFS(d)
i=1 i=1 i=1

What about b-ary trees? IDDFS relative cost is lower!

11

Bi-directional Search

(W SN

()

S S

image from cs-alb-pc3.massey.ac.nz/notes/59302/fig03.17.gif

bd/2+bd/2 <<bd

Issues with Bi-directional Search

e Uniqueness of goal
— Suppose goal is parking your car

— Huge no. of possible goal states
(configurations of other vehicles)

e Invertability of actions

12

What About Repeated States (graphs)

cycles exponentially large search trees

Can cause incompleteness or enormous runtimes
Can maintain list of previously visited states to avoid this

— If new path to the same state has greater cost, don’t pursue it further
— Leads to time/space tradeoff

“Algorithms that forget their history are doomed to repeat
it” [Russell and Norvig]

Informed Search

Idea: Give the search algorithm hints

Heuristic function: h(x)

h(x) = estimate of cost to goal from x

If h(x) is 100% accurate, then we can find
the goal in O(bd) time

13

Greedy Search

e Expand node with lowest h(x)
e Optimal if h(x) is 100% correct
e How can we get into trouble with this?

What Price Greed?

Iniﬁal h=1 h=1 h=1 h=1 h=1
State

What'’s broken with greedy search?

14

A*

e Path cost so far: g(x)

e Total cost estimate: f(x) = g(x) + h(x)

e Maintain frontier as a priority queue

e O(bd) time if his 100% accurate

e We want h to be an admissible heuristic
e Admissible: never overestimates cost

Some A* Properties

e Implies h(x)=0 if x is a goal state
e Implies f(x)=cost to goal if x is a goal state
and x is popped off the queue

e What if h(x)=0 for all x?
— Is this admissible?
— What does the algorithm do?

15

Optimality of A*

e If his admissible, A* is optimal

¢ Proof (by contradiction):

— Suppose a suboptimal solution node n with solution value f(n)
> C* is about to be expanded (where C* is optimal)

— Let n* be a goal state found on optimal path

— There must be some node n’ that is currently in the fringe and
on the path to n*

— We have f(n) > C*, and f(n’) = g(n’) + h(n’) < C*

— But then, n’ should be expanded first (contradiction)

Does A* fix the greedy problem?

h=2

Initial
State

16

A* is optimally efficient
e A*is optimally efficient: Any other optimal algorithm
must expand at least the nodes A* expands
e Proof:

— Besides solution, A* expands the nodes with g(n)+h(n) < C*

« Assuming it does not expand non-solution nodes with g(n)+h(n) = C*
— Any other optimal algorithm must expand at least these nodes
(since there may be a better solution there)
e Note: This argument assumes that the other algorithm
uses the same heuristic h

Properties of Heuristics

e h2 dominates hl if h2(x)>h1(x) for all x
e Does this mean that h2 is better?

e Suppose you have multiple admissible
heuristics. How do you combine them?

17

Designing heuristics

One strategy for designing heuristics: relax the problem
“Number of misplaced tiles” heuristic corresponds to relaxed
problem where tiles can jump to any location, even if
something else is already there

“Sum of Manhattan distances” corresponds to relaxed problem
where multiple tiles can occupy the same spot
The ideal relaxed problem is

— easy to solve,

— not much cheaper to solve than original problem

Some programs can successfully automatically create heuristics

18

