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With thanks to Vince Conitzer for LP,(M)IP examples.

Overview

e Memory-bounded Search

e Local Search and Optimization

e Searching with Incomplete Information




Memory-bounded Search: Why?

e We run out of memory before we run out of time.

Problem: Need to remember entire search horizon

Solution: Remember only a partial search horizon

Issue: Maintaining optimality, completeness
Issue: How to minimize time penalty

Attempt 1: IDA*

e |terative deepening A*

e |dea: Like IDDFS, but use the f cost as a cutoff
— Cutoff all searches with f>1, thenf> 2, f> 3, etc.
— Motivation: Cut off bad-looking branches early

e Problems:
— Excessive node regeneration
— Can still use a lot of memory




Attempt 2: RBFS

Recursive best first search

Objective: Linear space

Idea: Remember best alternative

Rewind, try alternatives if “best first” path gets
too expensive

Remember costs on the way back up

RBFS
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SMA*

e |dea: Use all of available memory

e Discard the worst leaf when memory starts to
run out, to make room for new leaves

e Values get backed up to parents
e Optimal if solution fits in memory

e Complete
e Thrashing still possible Expand
Replace ~ hl \ h=1
Painful to imol @ with h=3(+1)
aintul to Implemen if we remove A
this node % ><
Optimization

e Solution is more important than path
e Interested in minimizing or maximizing some
function of the problem state
— Find a protein with a desirable property
— Optimize circuit layout
— Satisfy requirements for your major

e History of search steps not worth the trouble




State Space Landscape
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Problem feature

Goal: Find values of problem features
that maximize objective function.

Note: This is conceptual. Often this function is not smooth.

Hill Climbing

e |dea: Try to climb up the state space
landscape to find a setting of the problem
features with high value.

e Approaches:

— Steepest ascent
— Stochastic — pick one of the good ones
— First choice

e This is a greedy procedure




Limitations of Hill Climbing

* Local maxima

» Ridges — direction of ascent is at 45
degree angle to any of the local changes

» Plateaux — flat expanses

Getting Unstuck

e Random restarts

e Simulated annealing
— Take downhill moves with small probability

— Probability of moving downhill decreases with
¢ Number of iterations
e Steepness of downhill move

— If system is “cooled” slowly enough, will find global
optimal w.p. 1

— Motivated by the annealing of metals and glass




Genetic Algorithms

GAs are hot in some circles
Biological metaphors to motivate search

Organism is a word from a finite alphabet
(organisms = states)

Fitness of organism measures its performance on task
(fitness = objective)

Uses multiple organisms (parallel search)

Uses mutation (random steps)

Crossover

Crossover is a distinguishing feature of GAs:
Randomly select organisms for “reproduction” in accordance
with their fitness. More “fit” individuals are more likely to

reproduce.

Reproduction is sexual and involves crossover:

Organism 1: 010

Organism 2:

000101110>

Offspring: 110011110




Is this a good idea?

Has worked well in some examples

Can be very brittle

— Representations must be carefully engineered

— Sensitive to mutation rate

— Sensitive to details of crossover mechanism

For the same amount of work, stochastic variants of
hill climbing often do better

Hard to analyze; needs more rigorous study

Continuous Spaces

In continuous spaces, we don’t need to “probe” to find
the values of local changes

If we have a closed-form expression for our objective
function, we can use the calculus

Suppose objective function is: FXLY15X5,Y5 X5,Y3)
Gradient tells us direction and steepness of change

vp o OF of of of of
ox, dy, 9x, dy, ox, dy,




Following the Gradient

x = (Xl’yl’xz 7y2 9X3 7y3)

X< X+ aVf(x)

For sufficiently small step sizes, this will converge to
a local optimum.

If gradient is hard to compute:
e Compute empirical gradient
e Compare with classical hill climbing

Constrained Optimization

e Don’t forget about the easier cases
— If the objective function is linear, things are easier
— If linear constraints, solve as a linear program:
— Maximize (minimize):

f()
Ax<b |(Ax=b)

— Subject to:

— Can be done in polynomial time
— Can solve some quadratic programs in poly time




Linear programs: example

* Make reproductions of 2 paintings

maximize 3x + 2y

subject to
4x + 2y £16
* Painting 1: X+2y<38
* Sells for $30 X+y<5
* Requires 4 units of blue, 1 ,1red
| .quwes units of blue, 1 green, 1 re x>0
* Painting 2
* Sells for $20 y20

* Requires 2 blue, 2 green, 1 red
* We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

maximize 3x + 2y
subject to
4x + 2y £16
X+2y<8
X+y<5 4
x20

y=0 2

optimal solution:
=3, y=2
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Modified LP

maximize 3x + 2y _ _
] Optimal solution: x=2.5,y = 2.5
subject to
s Solutionvalue=7.5+5=12.5
Ax +2y <15
X+2y<8
X+y<5
x20

y20

Half paintings?

Integer (linear) program

maximize 3x + 2y

subject to
4x + 2y <15 optimal IP
solution: x=2, y=3
X + 2y < 8 (objective 12)
X+y <5 4 / optimal LP
solution: x=2.5,

y=2.5

x 20, integer
(objective 12.5)

y 20, integer 2

11



Mixed integer (linear) program

maximize 3x + 2y
subject to
4x +2y <15
X+2y<8
X+y<5
x20

y 20, integer

optimal IP
solution: x=2, y=3
(objective 12)

optimal LP
solution: x=2.5,

=2.5
(objective 12.5)

optimal MIP
solution: x=2.75,

N

Solving linear/integer programs
Linear programs can be solved efficiently

— Simplex, ellipsoid, interior point methods...

(Mixed) integer programs are NP-hard to solve

— Quite easy to model many standard NP-complete problems as
integer programs (try it!)

— Search type algorithms such as branch and bound

Standard packages for solving these
— GNU Linear Programming Kit, CPLEX, ...

LP relaxation of (M)IP: remove integrality constraints

— Gives upper bound on MIP (~admissible heuristic)
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Searching with Partial Information

e Multiple state problems

— Several possible initial states
e Contingency problems

— Several possible outcomes for each action
e Exploration problems

— Outcomes of actions not known a priori, must
be discovered by trying them

Example

e |nitial state may not be detectable
— Suppose sensors for a nuclear reactor fail

— Need safe shutdown sequence despite ignorance of
some aspects of state

e This complicates search enormously

e |In the worst case, contingent solution could
cover the entire state space
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State Sets

e |dea:
— Maintain a set of candidate states
— Each search node represents a set of states
— Can be hard to manage if state sets get large
e If states have probabilistic outcomes, we maintain
a probability distribution over states

Searching in Unknown Environments

e What if we don’t know the consequences of actions

before we try them?
e Often called on-line search
e Goal: Minimize competitive ratio
— Actual distance/distance traveled if model known
— Problematic if actions are irreversible
— Problematic if links can have unbounded cost
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Conclusions and Parting Thoughts

» There are search algorithms for almost every situation
* Many problems can be formulated as search

* While search is a very general method, it can sometimes
outperform special-purpose methods
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