Introduction

CPS 296.1
ming Languages: Crossing the Chasm

Jun Yang
Duke University
January 14, 2010

1 Thanks to contents/ideas borrowed from

Babu (http://www.cs.duke.edu/courses/fall09/cps216/),

Cook (http://www.cs.utexas.edu/users/wcook/Courses/PLDB2003/),

and Loo (http://www.cis.upenn.edu/~boonloo/research/talks/dimacs-dbpl.pdf)

eyo
e Almost all systems require persistence
e Database systems (DBMS) is one paradigm for persistence
® Are there other DBMS features that make it attractive to use?
= Declarative (high-level) access
« Most often: SQL over relational data
« There are others data models and query languages too
= Run-time, data-driven optimization
« + persistence — good performance for large data
= Transactions
« Atomicity + Consistency + Isolation + Durability

>So our problem is more general than adding persistence to
programming languages

® Impedance mismatch
= E.g., between DB and PL:
« Flat tables vs. complex objects
« Declarative queries vs. procedural programs
« Transactions vs. semaphores
= Leads to not only lots of tedious code, but also inefficient data
repackaging
® Lack of automatic optimization across components
= Programmer decides what computation/data go across
= Needs expertise and tuning
= May result in suboptimal communication

1/14/2010

etss

® What percentage of the programs you wrote interfaced with a
database system (DBMS)?

® What percentage of the programs you wrote interfaced with

some persistent store (e.g., file system)?
® How about real-world applications out there?

SWe've got a widespread problem
® How often did you run into the following situation?

= “It would be cool if | let a DBMS manage data for this program”

= “Forget it... it’s such a hassle to get data in and out”

D We've got pain
20pportunity for high-impact research

® How many programming languages and paradigms have you
heard about or used over the years?

® Would you ever commit to one programming paradigm?

® One size doesn’t fit all—different tasks (sometime within one
application) call for different programming paradigms

2General problem: interfacing components with different
programming paradigms together in one application

® Cultural mismatch
= DB researchers don’t understand PL research
« “They are working on toy problems that fit in memory”
= PLresearchers don’t understand DB research
« “They are working in a narrow domain and with an ugly language”
= And anyway, it is not our problem
« “Industry and users will figure it out”




... at the PL/DB interaction in
several app domains:

® Web-based client/server apps
e Scientific/statistical computing
® Massive data analytics

® System building

image by Volker Hartmann/AFP/Getty Images

NTUTIC/S

How do you like the (pseudo) code snippet below on big datasets?

V1 = vector_from_db(DB, "SELECT I, VALUE FROM VECTORL");

Ml = matrix_from db(DB, "SELECT I, J, VALUE FROM MATRIX1");
% similarly load M2, M3, V2...

V3 = (std(V1)*Ml + M2) * M3 * V2;

® Chances are the code will thrash and perform horribly
= l.e., it uses up physical memory and OS starts swapping to/from disk
= Will I/O-efficient operator (+, *) libraries alone solve the problem?

e Which vectors/matrices can we avoid loading into memory?

2 Again, boundary between PL/DB processing dictated by code

e Can multiplications be reordered automatically?

® DB storage/layout of vectors/matrices may or may not be efficient

ing

YS
® Systems are becoming more complex and harder to build
= E.g., the Chord DHT, a P2P network, takes 10,000 LOC
= Not only a pain to write, but also a pain to verify
e Datalog: declarative query language with recursion studied in
depth by the DB community
= Chord in a Datalog-like language: 48 lines, easy to verify
® What about efficiency?
= No fundamental overhead
= Can benefit from well-studied Datalog optimization techniques
oSame question asked of relational DBMS in the 70’s
® Other tasks: trust management, network monitoring
= Used to be different subsystems speaking different languages
= Datalog provides hope to unify them

1/14/2010

-pase

How do you like the client (pseudo) code below?

pps

conn = new DBConnection(connURL, user, passwd);
resultSet = conn.query("SELECT PID, NAME, DESCRIPTION FROM Product");
while (resultSet.next()) {

pid = resultSet.getInt(1l);

name = resultSet.getString(2);

description = resultSet.getString(3);

resultSet2 = conn.quer

("SELECT * FROM Order WHERE PID = " + pid.toString());

count = 0; while (resultSet2.next()) count++;

resultSet2.close();

productList.append (new Product(pid, name, description, count));

Y
resultSet.close();
conn.close();

Manual schema mapping and data repackaging
Explicit boundary between PL/DB processing dictated by code
= Suboptimal, but perhaps easier to write for some programmers

assiv

Massive data requiring thousands of machines to process
= Numbers from Google in 2007:
« Data processed per month is 400 PB (PetaBytes)

« Average job size is 180 GB: half an hour just to read it from disk (@100 MB/s),
or 10 hours to download (@5 MB/s)

Relatively simple computation (e.g., extraction, filtering, grouping,
aggregation) for now, but this can change
PL is evolving: restrictive programming models like MapReduce
= Not so much to maximize performance, but to
« Make programs simpler to parallelize automatically
« Relieve programmers from worrying about fault tolerance and load balancing
People quickly jumped on lack of DBMS features and started adding
them—a new breed of scalable “DBMS” has emerged
= But how will they interface with PL?
= Can we get it right this time?

umma

® For some applications, we might be able to make the chasm
disappear to programmers

= How do we design one unifying programming paradigm?
But if the chasm stays...
® How can we automate mapping across the chasm?
= Between data, language constructs, and semantics
® How can we optimize across the chasm?
= Programmers can place data and computation wherever
they like, but we still can move data and computation
across the chasm to improve performance
= What to do on one side of the chasm may depend on what
happens on the other side




ing

There is more pain now than ever
® Growing data volume
® Growing system complexity

® Proliferation of data models, languages, paradigms, systems
specialized in different tasks

Zlnefficiency gets compounded, optimization becomes harder,

and programmers are overwhelmed and increasingly “picky”
(specialized)

_,; %ourM’

® Format: seminar + project
= No textbook
= Read, review, and discuss lots of papers
= Do a project (1-3 persons per team)
® Web: http://www.cs.duke.edu/courses/spring10/cps296.1/

= Your portal to everything 296.1: slides, schedule, reading
assignments, review submission, etc.

® No mailing list (to hide from spam)

= Reply-all to a message that | send to the whole class allows you
to contact everybody

® Time/location: TTH 2:50-4:05pm, North 306
e Office hours: TTH 1:30-2:50pm, or by appointment

! gourse rogg:i%l!!we!

e Weeks 1-3: historical perspectives
= Data models and query languages
= Object-oriented and object-relational DBMS
= Persistent PL
e Weeks 4-5: recent advances in client/server settings

= Object-relational mapping, language-integrated query, and how
to optimize them

= Tour of Hibernate, Django, and LINQ

® Week 6: massive data processing
= Dryad/LINQ, SCOPE

e Week 7: scientific/statistical computing

® % of Week 8: catch-up or topic of choice—open to suggestions
= Parallel data processing by GPU programming?

1/14/2010

® Find a way to cross the chasm or to
make it disappear, by
= Studying techniques and examples
= Casting away our PL/DB prejudices
= Looking to past, present, and future

Image from http://www.ibm.com/developerworks/rational/library/4620.html 14

! EOUI"SG Igga %!!mg

e Reading, discussion, and participation (50%)

= Short reviews for reading assignments (20%)

« No more than 4 papers per week

= Present and lead discussions in teams of 2 to 3, 2-3 times (20%)

= Attendance (10%)
® Course project (50%)

= Work on something that you’ll be proud of

= Proposal presentation in class (15%) after spring break

= Short progress report (5%) on April 8

= Final presentation in class + final report (30%) in the final slot
2> More details on course website

! EOUFSE rggé%u !'

® Week 9: spring break

® \Week 10: project proposal talks

e Week 11 + % of Week 12: compilation essentials

® % of Week 12 + Week 13: more scientific/statistical computing
= End of Week 13: short project progress report

® Week 14: more massive data processing
= Pig and ScalaQL

® Week 15: declarative networking and access control

® Week 16: graduate reading period

® Week 17: show time!




1/14/2010

P Comeres | [ Reaamg fornexcweet |

STAND UP ° Think deeply 3 papers by Stonebraker et al.
® Show respect ® Historical perspectives on data models and query languages
® Question authority = No review due
® Be creative ® Postgres, the DBMS that started the “object-relational” era
e Commit to Honor Code = No review due
® And how Postgres added user-defined types
SYou must be self-motivated * Review!
in this class

DSee course website for links to PDFs, what to write in a review,
how to submit, and tips on reading

=t

Dissent IS Patriotic

Image from somewhere on digg.com 19| 20




