1/19/2010

nn

® Sign up (by email) to lead discussions by Wednesday

Retmspect on = Student-led discussions start next week!

® Read the two papers on making DBMS object-relational for

Is & Languages Thursday

= Review for “Inclusion of New Types...” due by 9am on Thursday

CPS 296.1 . . .
. . = Submit your review on the Blackboard class forum by replying to
ming Languages: Crossing the Chasm ¢
Jun Yang my pos
Duke University = Again, see course website for instructions on reviewing and

January 19, 2010 submission, as well as tips on reading research papers

1 Thanks to contents/ideas borrowed from
Hellerstein (i html)
and LeFevre (http;, ecs.umich. Hellerstein.pdf)

Image from http://www.bccc.edu/887421129114724/blank/browse.asp?A=383&BMDRN=2000&BCOB=0&C=52764

nlea
e Three types of discussion: research papers, survey papers, or ® Stonebraker & Hellerstein. “What Goes Around Comes
tutorials of systems/platforms Around.” In Readings in Database Systems (aka “the red
e As leaders, you must finish reading/researching in advance book”), 4t ed., 2005
o | will meet you to talk about the lecture = Aretrospective survey of DBMS data models and query
= By default, during office hours on the day of the lecture before languages
the one you are leading = Lessons to learn from past experience
« Thursday lecture — meet on Tuesday; Tuesday lecture — meet on = And why XML is doomed

Thursday of the preceding week
® Besides providing summary, critique, and answering
questions, strive to generate discussion from class
= A good way is to ask “facilitating” questions

SWhat do you think?

ierarchicat: ssue

® Organize record types in hierarchies

DB schema #1 DB schema #2
= Each non-root type has a single parent type Supplier Part
(sno, st 3 , sstate) (pno, \e, psize, pcolor)
= Each record of a non-root type has one parent of the parent type — —
« Corollary: each record has a unique HSK (Hierarchical Sequence Key) -
Part Supplier
® Model simplicity facilitates simple language & implementation e i Coemnepel
DB schema : DB instance

® Information is repeated

Supplier

(sno, sname, scity sstate)

Supplier

(15, General Supply, Boston, MA)

Supplier = Schema #1: parts info repeated across suppliers

(32, M&P Hardware, Durham, NC)

= Schema #2: supplier info repeated across parts
® Existence depends on parent data
@, paW:;W 7, silver, = Schema #1: what if nobody supplies a part?
2.6 = Schema #2: what if a supplier doesn’t supply anything?

Part

(pno, pname, psize, peolor,
aty, price)

(27, Power Saw,
100, $20)

)

1/19/2010

ues wi ac
® Conceptually, records are laid out in HSK order: depth-first, Underlying physical schema “Logical” schema
left-to-right — get ingrained in language constructs
. I i
® Record-at-a-time language A Supplier

(sno, sname, scity, sstate)
® Programmer writes an algorithm for solving each query, e.g.:

» get unique Supplier with sno = 15
until failure do
get next within parent with pcolor = red

Why is this bad?
e Different underlying storage formats (sequential/B-tree/hash) e Store data in two physical databases
— different restrictions on commands
= Heavy coupling between storage and client apps
e Different data characteristics — different optimal algorithms
= Optimization is performed by programmer and DB designer
® Not declarative, poor physical data independence

Supply Part

(ono,aty,price] {pno, pname, psize, peolor)

(pno, aty, price)

= No redundancy
® |MS grafts together the two to present a logical view to
programmers
= But lots of restrictions and complexity
= No complete transparency

ph/ne : (1969)
® Lesson 1: physical/logical data independence is good e Adirected graph where nodes are records types and arcs are
= Adata > Aapp “sets” (relationships)
= Changes to physical/logical representations of data should not = Atype can have multiple owners (via incoming arcs)
require expensive changes to apps = Owner-child relationships are 1-to-many Part

(pno, pname, psize, pcolor)

® Lesson 2: tree-structured data models are restrictive Is_supplied_by

= Force navigation one way

Supplier

(sno, sname, scity, sstate)

Supply

(aty, price)

DB schema

. Supplies
= Need extensions/hacks to be general

e Lesson 3: logical reorganization of tree-structured data is hard DB instance Part

(27, Power saw, 7, silver) | (29, Power Drill 10, red) | (50, Paint Brush, 3, white)

® |esson 4: record-at-a-time interface forces programmer to do

Supplier
manual query optimization

(32, M&P Hardware, Durham, NC)
Supply]

(100, 520) (30, 560) (80,5)

9| 10|
® Bachmann (Turing Award 1973): program by navigation ® Model is powerful itself to avoid redundancy and dependency
* get unique Supplier with sno = 15 on owners’ existence
until failure do

get next Supply in Supplies

get owner Part through Is supplied by

check peolor = red ® Arcs are just binary, though n-ary relationships can be

simulated

e Alternatively, start navigating from Parts
® |anguage is still record-at-a-time

® Programming over graphs is harder than over trees
® | ess logical data independence than IMS
 Still no physical data independence

P———

® Lesson 5: graphs are more flexible than trees but more
complex

® Lesson 6: loading and recovering graphs is harder than trees

e crestoebate |

e |deological battle throughout the 1970’s
= Codd et al. advocating relational
= Bachman et al. advocating CODASYL (graph/network)

® Relational ® CODASYL too
languages too complex
hard ® Too much

® Implementing ZZ‘:’:Z?;:;? on
relational model o Record-at-ti
efficiently too meoc 7,2,,_:; t;)lme
difficult optimize

® CODASYL able to ® Relational better
simulate relational for complex

relationships

Image by NY Times, http://graphics8.nytimes.com/images/2007/10/31/us/31debate.xlarge3.jpg. 15|

P

® Lesson 7: set-at-time languages offer better physical data
independence

= Up to the DBMS to optimize physical structure based on
data/workload characteristics

® Lesson 8: simpler data models lend themselves to better
logical data independence
® Lesson 9: technological debates are often settled by dollars
rather than ideas
® Lesson 10: query optimizers almost always better than a
programmer optimizing manually
DAre there exceptions?

1/19/2010

e

e Started with the 1970 proposal by Codd (Turing Award 1981)
= Motivated by heavy maintenance required with IMS applications
® Data stored in flat tables—no nesting
® High-level, set-oriented language
e Underlying physical storage is completely up to vendors
® Example schema and query

Supplier(sno, sname, scity, sstate)
Part(pno, pname, psize, pcolor)
Supplies(sno, pno, qty, price)

SELECT * FROM Supplier, Supplies, Part

WHERE Supplier.sno = 15 AND Part.pcolor = 'red'
AND Supplier.sno = Supplies.sno AND Supplies.pno = Part.pno;

® Both parties adopted many of each other’s policies while
pretending to remain at oppose sites of the ideological
spectrum

® |BM advocated the relational model, and won in the
marketplace due to its dominant position in the
microcomputers industry

® Schema expressed in diagrams with “entity” sets connected by
“relationship” sets

Supply

Supplier

peolor

e Never caught on as a physical/implementation model, but
very successful for modeling and DB design

= Automatic mapping to relational schema possible

® |esson 11: “relationships” are easier to understand than
“functional dependencies”

ggl% Elona:!!; EEE E#I! 'early 1980's)

® Pure relational seemed inadequate for many apps
e Add features to data model
= Set-valued attributes
= Record/tuple references (and the “cascaded dot” notation)
« “Inverse” references
= Inheritance, single or multiple
= Etc.
® Not enough pain at the time—most features could be
simulated in relational with some programming and no loss of
performance
® Lesson 12: without large performance/functionality
advantages, new constructs will go nowhere

d

® Extend PL (e.g., C++) with DB features to support persistence
= Data model comes directly from PL, including all its OO features

L Persistent Part p;
Persistent int ij
i = 1i+1;

Problems

® Absence of leverage: loading/unloading code is gone; so what?
® No standards: different OODBMS were incompatible

® Painful upgrade: all programs have to be relinked

® No PL Esperando: huge chore to add persistence to all PLs

® Unsuccessful in the bigger market of business data processing

= Query language is lacking or an after-thought
« Back to CODASYL: programmers wrote algorithms; no optimization
= Running DB and PL in the same address space raises security concerns

P

® |Lesson 13: new systems will not sell to users unless they are in
“major pain”

® Lesson 14: persistent PL requires the support of the PL
community

1/19/2010

® 00 had become the standard programming paradigm

® Impedance mismatch makes writing DB-backed apps difficult
= Need to translate between DB and PL objects introduces both
inconvenience and inefficiency
® Some apps, e.g., CAD (Computer-Aided Design), really want
persistent complex objects

S

® A French company built on research at INRIA
o A carefully designed OO data model

= Closer to the semantic data model than to C++
® A high-level, declarative language (OQL)

= Embedded into the host language

® Could have worked, but “as goes the
United States goes the rest of the world”
= Move to attack US market came too late

Image from http://sctnowonthecampus.files.wordpress.com/2009/07/uncle-sam.jpg 22

® Motivated by the need for new, richer data types (e.g., GIS)

® Extend DB instead of PL
= User-defined data types (e.g., box)
= User-defined operators (e.g., box-intersects-box)
= User-defined functions (e.g., implementing box-intersects-box)
= User-defined access methods (e.g., R-tree indexing)

® Basic “outer” data type is relation, with extensible data types
in the fields

® Relational theory applies to outer operations

P ——

® Postgres
= Showed how to build a DBMS engine so new types, functions,
etc. could be plugged in
o More on this on Thursday
® Sybase
= Showed that stored procedures were also a good idea for coding
application logic (not just operators)
« Good for both performance and software development (keeping
business logic in one place)
e Extensibility and stored procedures have now made it into the
SQL standards and most commercial DBMS

%mI-S;FUMN 00)

® Conventional DBMS are schema-first
= Schema defined at DB creation time; difficult to evolve
How about schema-later?
® Application classes
= Structured data — schema-first
= Structured data with text fields (e.g., forms) — schema-first
= Semi-structured data (e.g., ads, resumes) — schema-last
= Free text — schema-not-at-all
® But even ads and resumes are moving to become more
structured!

e Semantic heterogeneity remains difficulty to tackle, and
schema-first will make matter worse

mo

XML Schema
e Hierarchical data (like IMS)
o References (like CODASYL)
® Set-valued attributes, inheritance,
“union” types
e Allin all, a major KISS (Keep It Simple,
Stupid) violation
XQuery
® Declarative
® But many features are more difficult to work out, e.g.:
= View support
2Query optimization, authorization...

Image from http://whatapic.blogspot.com/2008/05/baby-kiss-pig.html 29|

1/19/2010

e |

® |esson 15: OR has two major benefits: putting code into DB
and user-defined access methods

® Lesson 16: widespread adoption requires standards or an
elephant pushing hard

® Person

= Name: Joe Jones
Wages: 14.75
Employer: My_adounting
Hobbies: skiing, bic)ling
Works for: ref (Fred SN
Favorite joke: Why did th&\cNicken cross the road? To get to the other side
Office number: 247
Major skill: accountant
® Person:
Name: Smith, Vanessa
Wages: 2000
Favorite coffee: Arabian
Pastimes: sewing, swimming:
Works_for: Between jobs
Favorite restaurant: Panera
Number of children: 3

® Semantic heterogeneity
= Different sets of attributes

= Same attributes have
different meanings/formats

= Different attributes have
same meaning

esson

® |esson 17: schema-last is probably a niche market
® |Lesson 18: XQuery is pretty much OR SQL with a different
syntax

® |Lesson 19: XML will not solve the semantic heterogeneity
either inside or outside the enterprise

Predictions

® XML will become a standard data exchange format

® ORDBMS will be better at handling the next “big thing”
® Elephants will add XML to their ORDBMS

DTrue, but IMO it required extensibility beyond what the standard
OR features had to offer

2KISS is good, but what if you need to choose between
programs and DBMS?
SO0R s still mostly relational, and still DB-centric
= Treating a complex-typed attribute as a sequence of bits to be
handled by a user-defined function won’t be enough
SDeclarative access is key, but is it possible for richer data
models?
= It of course will be harder and not as perfect, but IMO the jury is
still out on the question of feasibility
SWhat if CODASYL introduced a declarative language, or 02
were more successful at marketing?

P———

1/19/2010

