jty, OR-Style

Database and Programming Languages: Crossing the Chasm

Jun Yang
Duke University
January 21, 2010

1 Thanks to contents/ideas borrowed from
Hellerstein (http://redbook.cs.berkeley.edu/redbook3/lecs.html)

Image from http://www.codeproject.com/KB/cs/MEFIntro.aspx?msg=2835480

oo |

e Stonebraker & Kemnitz. “The Postgres Next-Generation
Database Management System.” CACM, 1991
= 1986-1994
= Overview of one of the first DBMS supporting OO & extensibility
= Many radical ideas
2 Some now standard, some yet to come of age
e Stonebraker. “Inclusion of New Type in Relational Data Base
Systems.” ICDE 1986
= What it really takes to add a new type
© Much more than adding just a declaration!

SJust how far can we push the Postgres-style extensibility?

y

® Table — class

= Tuple — instance; tuple id — oid

= Simple resolution of multiple inheritance
® Base types, e.g., dname=c12, floorspace=polygon

= UDTs (e.g., polygon) can be added—more in the second paper
e Array of base types, e.g., float[12]

OShould be a “type constructor,” but is limited here to base types
e Set of references, e.g., coworkers=EMP, hobbies=set

= 0 or more pointers (oids) instead of embedded instances

= “set” allows instances of any class

2 Not precise enough?

SO0verall, not really arbitrarily nested types

1/27/2010

P Aoumcemente |

® You will hear from me via email tonight regarding discussion
leader assignments

® For next Tuesday
= 2 papers on roots and history of OODBMS
= 1 review required
® For next Thursday
= 1 paper about the experience of making a persistent PL
= Review required

P————

® “Pyre” relational systems was too painful to use for non-
administrative data-intensive apps in the early 1980’s
= CAD/CAM, CASE, GIS, etc.

2ldeas/hypotheses

Relational “outer shell” + inheritance + collection-typed,

reference-typed, and UDT (User-Defined Types) attributes
suffice for modeling?

UDF (User-Defined Functions)/operators suffice for language?
Views: code as virtual data

Fast path to DBMS internals for performance

Rules system to make databases “active”

No-overwrite storage + time travel

P————

e C functions
= Convenient, but opaque, e.g.:
« overpaid(EMP) = /* check to see if annual salary > 150K */
SWhy is opaqueness bad?
« DBMS doesn’t know how to optimize (e.g., use index on salary)
® POSTQUEL functions
= POSTQUEL was the query language used by Postgres
= Can be optimized as part of the query
® Operators
= Written in C, but with properties and additional metadata that

DBMS can exploit in query processing and optimization
« More in the second paper

Xam

define function neighbors (DEPT) returns DEPT as
retrieve (DEPT.all) where DEPT.floor = $.floor
retrieve (DEPT.name)
where neighbors(DEPT).name = “shoe”
2“=" and “” can operate on sets
DTable/class name is heavily overloaded!
= As type declarations (in functions or create statements), it denotes a
set of 0 or more references to instances
= In queries, it denotes an instance variable ranging over the class extent
(collection of all its instances)?
« But not quite; DEPT and DEPT* are different!
= Explicitly declare instance variables to avoid confusion, e.g.:
retrieve (DEPT.dname)

where DEPT.floor NOT-IN
{D.floor from D in DEPT where D.dname != DEPT.dname}

ussion

® Postgres became PostgreSQL
= SQL has replaced (POST)QUEL (elephants won)
® Array of complex types is finally possible as of v8.3
= Integration with query language is cool
* ANY, ALL
« Unnest : explode_array (UDF)
« Nest: array_accum (User-Defined Aggregate)
= Each UDA is specified by 3 functions init, transition, final
« Need recursion to support truly arbitrary nesting
= Integration with storage/query optimization remains weak

« Each array is stored as a chunk of bits, apparently with no shredding or
additional indexing

age

References
+ http://www postgresal.org/about/featurematrix

® Event-condition-action rules
= Events include retrieval and modifications
= Powerful but messy
® Example: 2 ways to force Joe to earn the same salary as Fred
= Materialize Joe’s salary; when updating Fred’s, also update Joe’s
« “Forward chaining” by executing actions
= Virtualize Joe’s salary; when getting it, get Fred’s instead
« “Backward chaining” by rewriting queries
= And what if there are multiple Freds?
SNot terribly high-level or declarative
= Programmers specify how, not what

= Programmers need to choose based on data characteristics and
desired semantics

ecu

parent(older, younger)

retrieve* into answer

(parent.older) from a in answer

where parent.younger = "Joth” or parent.younger = a.older

Base case

Y
Recursion step

® Fixed-point semantics
= Start with an empty answer

= Evaluate over current answer;
make result the new answer

= Repeat until answer no longer changes

2P More on this when we talk about Datalog

Image from http://www.filemagazine.com/thecollection/archives/2008/10/fixedpoint_theo.html

1/27/2010

nteracti

® Fast path: allow app code to call DBMS internal modules
= Still in separate address spaces though
® One interesting motivation
= PL cache wants to assign OID before writing objects to DB
e Performance advantage if you know what you are doing
DPrice to pay for performance?
= Safety
= Data independence
2Can you think of a more restrictive alternative?

= Allow client to specify execution plans + limited set of stored
procedures

ISCU

So how is it done in SQL now?
® Assertions: ideal, but nobody does it because efficient
implementation is too hard

= create assertion joe_and_fred_earn_same as check
not exist (select * from EMP el, EMP e2
where el.name = 'Joe' and e2.name = 'Fred"
and el.salary <> e2.salary)

® Views: defined as queries over base tables

= Virtual/materialized decision is orthogonal and starting to be
automated by DBMS

= Updating through views is still tricky
« Oracle allows customization by INSTEAD OF triggers
® Triggers: just on modification events
= Different controls (e.g., timing, batching)

1/27/2010

0-0V errorm

® Just write a new version of the updated record
= A “vacuum” process moves old data to a historical database
= “Time travel” is possible
® Can do without data logging
= Undo info is already in old versions
= But must flush updates when committing
« Stable memory required for performance
SSince then

= WAL (undo/redo) strikes back after
Informix acquisition

= PostgreSQL added redo logging
2 New argument for no-overwrite today?

References

® Why was the OODB being compared so fast?
= Same address space; tight integration with PL
® Fast path performance vs. no fast path
= Price of physical data independence
® Generic B-trees are slower
= Price of extensibility

html

* http iki Sty 1. ostgreSQL_for_Oracle_DBAs
18/docs/5.0/satic/wal bl
13 1
] erini
® Content
® Main point: adding a new type entails more than just = Specify the amount of space for storage and code for conversion
declaring it! from/to strings for input/output
= How can you store/access data of this type efficiently? ® Operators
= How can you optimize queries containing functions/operators = For each operator, specify token, operand types, result type,
involving this type? precedence, and implementation code
= How can you support transaction semantics (concurrency ® Code safety issue

control, recovery) for data of this type? = Unprotected: same address space as server; fast but risky

= Protected: different address space: safer but slow
= Use protected for debugging, unprotected for production

aking everagi

® AM = access methods, e.g., B-tree ® To leverage an AM, a new type need to implement ops
® E.g., what does a B-tree assume about the type it handles? required by the AM template)
= E.g.: need a B-tree to store boxes by order of their areas?

« Implement area-eq(box1, box2), area-gt(box1, box2), etc.
® |n general, each AM needs a template specifying: What else?

= What ops (signatures) it expects

« E.g., B-tree requires <=, and <, >, =, >= are optional
= What properties it expects

« E.g., totally ordered domain

= Basically, a totally ordered domain

® Each op provides cardinality/page count estimation formulae
= Why are these estimates so important?
= Interpretable by DBMS, and based on

« Statistics kept by AM: # of tuples (N), # of disk pages, # of (unique)
« Only as guidance to developers who want to use this AM index keys (Ituples), max & min key value (high-key, low-key), etc.

« Difficult to enforce + Run-time parameter: the constant value in TABLE.ATTR OP value

= E.g., area-eq(box1, box2): N/Ituples

= E.g., area-lt(box1, value): (value—low-key)/(high-key—low-ley)*N
SlLimitations of these formulae?

1/27/2010

| ontrio S
® E.g., R-tree is needed for high-dimensional indexing ® For logging/recovery
e First, specify the template = Physical logging (of bits on pages) requires no additional work
= E.g., R-tree requires contains(T1, T2) and union(T1, T2) = Logical logging requires implementing REDO and UNDO for built-

in events (insert/delete/replace records, etc.)
« Also possible to add AM-specific events

o Enough for R-tree?

® Second, implement AM methods (which call the required ops)
® For concurrency control

= AM code can call a standard scheduler when it reads and writes
= More concurrency possible by calling lower-level lock/unlock

« E.g.: top-down access of a tree-based index allows unlocking the parent
after locking the child (and knowing the parent won’t be changed later)
= Default 2-phase locking would allow no concurrent index accesses

= open/close
= insert/delete/replace, build (why not repeatedly insert?)
= get-unique(descriptor, tuple-id)
= get-first(descriptor, OP, value)
get-next(descriptor, OP, value, tuple-id)
« For returning all records satisfying TABLE.ATTR OP value

For each new op, specify: JO0RDBMS is surprisingly accommodating
® How to compute selectivities of predicates 2... up to a point; then model/language will turn ugly and
TABLE.ATTR OP value and TABLE1.ATTR1 OP TABLE2.ATTR2 performance will suffer

= Use AM estimation if index is available, e.g.: (1/Ituple) else 1/10 = Most indexing/processing/optimization
® Whether built-in join methods are applicable techniques revolve around tables with

= Merge-joinable? (still quite) opaque cells

* Hash-joinable? Zlnstead of fitting everything in RDBMS,

= Nested-loop join always possible time has come to take good DBMS ideas

= “Iterative substitution” (indexed nested-loop) possible with index and apply them to vertical markets?
Slimitation? = Physical data independence, I/O-efficient

= Only enables existing query processing algorithms for new ops; what algorithms, cost-based optimization, etc.

i ?
about new algorithms? = Read Stonebraker’s “one size fits all” papers!
= And how to make new algorithms reusable for old and new ops?
21 Image from http://bi i us/wp-c pl /2009/03/ii 20size.jpg 22

