d Databases

CPS 296.1
ahguages: Crossing the Chasm

Jun Yang
Duke University
January 26, 2010

Image from irg

oo |

e Atkinson et al. “The Object-Oriented Database System
Manifesto.” Deductive and Object-Oriented Databases 1989
= A group of researchers converging on a set of mandatory,
optional, and open features for OODBMS
2 Did vendors follow their advice?
2 How close did ORDBMS get?
e Carey and DeWitt. “Of Objects and Databases: A Decade of
Turmoil.” VLDB 1996
= 4 (+1) different ways of embracing objects
= Past history, present status (as of 1996), and future predictions
2 How did their predictions pan out?
© What remain the most important challenges as of 2010?

an

e 13 features in basically two categories
® |t should be a DBMS

= 5 features: persistence, secondary storage management (i.e.,
large data), concurrency, recovery, ad hoc query facility

e |t should be OO (consistent with the OO PLs)
= 8 features: complex objects, object identity, encapsulation, types

or classes, inheritance, overriding/overloading/late binding,
extensibility, and computational completeness

1/27/2010

P Aoumcemente |

® For Thursday
= 1 paper about the experience of making a persistent PL
= Review required
= Bilgen and Ryan will lead the discussion

® For next week

Explore Java/Hibernate and Python/Django
« Read online tutorials and documentation

« Search for people’s critiques

« Perhaps try some coding yourself

Matt and Peter will lead the discussion

P

® Backgrounds of authors
= OODBMS (majority) + persistent PL
= Academia (majority) + industry
« But even Bancilhon started out in academia
® Motivation

= A purely Darwinian approach to system
building may lead to dominance by the :
first “good-enough” system instead of the fittest

= There was much more confusion in the OODBMS landscape than
the relational one

= Get your definition/terminology straight!

Image from http://onegoodmove.org/1gm/1gmarchive/2005/02/happy_darwin_da.html

-man

® Persistence, large data, CC, recovery, ad hoc query facility
Discussion points?
2Requirement of an “ad hoc query facility” is rather weak
= “A graphical browser could be sufficient”
= No program access to the facility — burden on programmers
SEliminating the need to write additional operations for each
UDT (under “ad hoc query facility”) is hard
= Okay at the query language level
= But efficiency will suffer; e.g.:

« Queries involving UDT for 3-d boxes will be slow without customized
access methods




-ma

e Complex objects, OID, encapsulation, types/classes, inheritance,
overriding/loading/late binding, extensibility, completeness
Discussion points?
2 Presenting the full extent as a table isn’t always a good idea
= E.g.: the same rectangle type can be used in different contexts
2 0rthogonal object constructors: any constructor can apply to any
object (Postgres didn’t have this)
2lt’s reasonable to not extend the collection of constructors (tuples,
sets, and lists are minimal)
2 Differentiating is-part-of/general references is interesting
DThey argue it’s okay to “violate encapsulation” by allowing ad hoc
queries to access fields without going through methods
= IMO queryable fields have implicit getters; so no violation

P orsom |

SWas their advice any good?
= To be fair, they just wanted to clarify,
and said, “Thou shalt question the
golden rules”
= Could have been more focused
= Could have pushed physical data
independence further

>Did vendors follow their advice?
2How close did ORDBMS get?

Image from http://www.definitivejux.net/files/imagecache/container_full/files/news/advice.jpg 9

Ve asorioos— |

® Persistent PL and DBMS toolkits were practical dead-ends
® OODBMS failed to deliver
e ORDBMS flourished and appeared to be the winner
® 0O client wrappers emerged as a new approach
= Mostly language-specific, to help with impedance mismatch

= Integration still imperfect: programmer need to write some SQL,
and decide what business logic goes into DBMS

DHibernate and Django are recent examples
® Related efforts
= CORBA: interoperable object RPC, but don’t overdo it!
= Java: safety makes it an ideal language for UDF
= DB middleware: a uniform interface over multiple data sources

1/27/2010

P

Mandatory or optional?

e All DB-related: views and derived data, DB admin utilities,
integrity constraints, schema evolution facility

Optional

® OO-related: multiple inheritance, type checking/inferencing

e DB-related: distribution, versions

® App-related: design transactions (long or nested)

Open choices

® Mostly PL/religion-related: programming paradigm,
representation system, type system, uniformity

2 Authors are making a stronger statement by marking a feature as open as
opposed to optional!

P A decate ot tarmot— |

Four approaches (mid-1980’s to mid-1990’s)
® Extended relational DBMS
= Later dubbed OR, exemplified by Postgres
® Persistent OOPL
= More on Thursday
® Object-oriented DBMS
= Persistent OOPL + DB features (e.g., indexing, queries, versions)
® DBMS toolkits/components
= One size cannot fit all
= Provide tools for “rapidly” developing a domain-specific DBMS
= EXODUS, GENESIS, DASDBS
= Starburst (also seen as “developer-extended” relational)

easonin S

2lnsights not covered by “What Goes Around Comes Around”?
® On DBMS toolkits
= Too much work/expertise required to use these toolkits
= Generalizability is hard—even with sacrifice of usability and
performance, functionality is still incomplete
e On CORBA
= Attempts at factoring object services (persistence, collection,
indexing, transaction, etc.) and making each DB object a CORBA
object will likely fail due to poor performance
® On OODBMS
= While OODBMS was betting on “fat clients,” “thin clients” talking
database APIs like ODBC were becoming the norm




redi

e ORDBMS will provide “fully integrated” solutions

= Truly OO types, as well as views, authorization, triggers,
constraints on OO data
« All standardized in SQL

= An 0O caching layer that supports queries and transactions, and
intelligently decides where to execute them

= 0O client wrappers would be a first step
® OODBMS will remain only in niche markets
<Did they pan out?
= ORDBMS still has a long way to go
= 0O client wrappers remain popular
= XML has created much diversion (or a good testbed?)

P orsom |

SFrom server extensibility to integration/interoperability
= Between client/server \\
= Across multiple servers W

= Across data models and languages
SWhat happened to ORDBMS
in the past decade (beyond
trying to incorporate XML)?
SDomain-specific DBMS
relevant again?
= What’s the lesson from 1986-1996?
SWhat remain the most important challenges as of 2010?

Image from http://www.databaseguides.com/wp-content/uploads/2009/09/Data-Integration-Software-Option.jpg 15

1/27/2010

alle

* ORDBMS
= Catching up with relational: query processing, views, updates,
authorization, triggers, constraints...
= Extensible access methods in ORDBMS
e Client integration
= Intelligent object cache, “cooperation hooks” provided by servers
® Parallelization
® Legacy/heterogeneous data sources; AKA information integration
= Distributed query optimization, semi-structured data, ranked queries
® Standardization

= Metadata about UDTs/UDFs, access method interface, client/server
interface, new query language to shed old SQL baggage




