PJama Discussion
Skeptics vs Hopefuls

Bilgen
Ryan

1/28/2010

Orthogonal Persistence Hypothesis

If applications developers are provided with a

well-implemented and well-supported

orthogonally persistent programming platform

¢ Then a significant increase in developer
productivity will ensue

¢ And operational performance will be
satisfactory

¢ Orthogonality, Completeness, Persistence

Independence

Is Java the right language for the OPH?

Is Java the right language for the OPH?

* Hopefuls
— Resources: SunLabs backing ($)
— Type Safety
— Popularity
— JVM
e Skeptics
— Rapid JDK changes
— Prototype was complex and unreliable

— Necessary to capture state (may be complicated in VM) at
a checkpoint and then reconstruct upon restart

— Use as Glueware

Existing Persistence Options for Java

* Java Object Serialization

Links to Relational DBs (JDBC)

* Object-Relational Mapping

Object Database Mapping
Java Data Objects (JDO)
Enterprise Java Beans (EJB)

Why are these approaches not good enough?

Why Not Enough? (Skeptics)

* Java Object Serialization
— Not Orthogonal (must be serializable)
— Not Complete (class info not preserved in object state)
— Fails persistence independence (copy = obj ID lost)
— Standard and customizable —at small scale
* Links to Relational DBs (JDBC)
— Impedence Mismatch Java - relational
* Automated Object-Relational Mapping
— Complex and difficult to automate object to relational
* Object Database Mapping
— Java operations defeat persistence independences
* Java Data Objects (JDO)
— No persistence independence
* Enterprise Java Beans (EJB)
— Strict rules for developers = no persistence independence

Past Failures

* “Host” of previously implemented orthogonally

persistent languages lacked conclusive test of OPH
— Insufficient Resources
— Language not popular or type safe

How did PJama get the resources?

1/28/2010

How did PJama get the resources?
(Hopefuls)

* Sunlabs and Java
* Proposal to use Forest (user group) for evaluation
* Planned prototype to meet “Industrial Strength” requirements
— Orthogonality
— Persistence Independence
— Durability
— Scalability
— Schema Evolution

Platform Migration
— Endurance

— Openness

— Transactional

— Performance

Achievements (Hopefuls) and ShortComings (Skeptics)

¢ Orthogonality
— “good enough” for many applications
— Thread
¢ Persistence Independence
— “completely achieved” all code runs unchanged
Durability
— ARIES recovery works well
— Other methods conflict with endurance
Scalability
— Up to 10GB (no problems anticipated)
¢ Schema Evolution
— Permits any change
— Must stop application to perform change

Achievements (Hopefuls) and ShortComings (Skeptics)

* Platform Migration
— Possible
— Stop application and must fit data in memory
* Endurance
— Stop: above reasons and for garbage collection
— 6days > few minutes (threads)
* Openness
— Demonstrated with some classes (sockets)
— Left out many core classes
* Transactional
— Simple transaction facility provided
— Threads must reach a consistent state before a VM checkpoint
* Performance
— Relative to some persistent applications, up to 100x faster (no details provided)
— 15-20% slower than normal execution (what about scalability impact?)

What are they actually gaining?

PJama Failure Tradeoffs

* Specific subset of Java

— More convincing and deliverable

— Sun may not see cost-benefit for other subsets
¢ Focus on a particular application

— Works well, can deliver as needed

— Devalue experiment
* Prioritize Requirements

— Achieve more reliability/functionality

— May not omit some requirements and still have a sufficient
foundation for testing OPH and maintaining support

¢ Technical Decisions
— Hindsight required
— May result in other challenges

Is the complex approach the right approach?
Does this provide much benefit compared to high level statements that can do this?

Industry Obstacles

* Commitment to Existing Practices

Displaced Problems

Alternative Solutions
¢ Dominance of Glueware

Distribution Drives Application Structure
Lack of Credibility
Language Trap

What has changed that makes this easier/harder?

VM Snapshot?

¢ Hopefuls
— Migrate to any system
— Save state
— Cheap
* Skeptics
— What about external resources (network, etc)?
— Persistent bugs as well? Can a DB fix this?

Can we use this idea to make it language independent?

Is OPH still a viable research area?
still a practical, attainable benefit for developers?
What has changed that makes this easier/harder?

¢ Orthogonality

e Completeness providing coherence and
comprehensibility to enterprise systems

* Mobility and ease of use/construction

1/28/2010

Funding Question

¢ |s $10M adequate?

¢ |s there a simpler/cheaper way to show the
benefits of OPH besides a multi-million
experiment?

¢ |If so (we all mostly thought so), then how can

OPH be demonstrably useful?
— Orthogonality

— Completeness providing coherence and
comprehensibility to enterprise systems

— Mobility and ease of use/construction

